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Abstract: An inherent problem with a Variable-Length Code (VLC) is that even a single bit  
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conditions for the existence of binary Huffman equivalent codes with the shortest, or at most  
two shortest, synchronising codeword(s) of length m + 1, where m (>1) is the shortest codeword 
length. Next, based on the results, we propose a unified approach for constructing each of these 
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codeword(s) of length m + 1, if such a code exists for a given length vector. 
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1 Introduction 

Variable-Length Code (VLC) is an efficient entropy-coding 
technology for minimising the total amount of data for 
image/video information transmission. For instance, 
Huffman code (Huffman, 1952) has been shown to be 
optimal in terms of the minimum average codeword length. 
In addition, there are still some VLCs that have the same 
average codeword length as a Huffman code, but cannot be 
constructed by a Huffman algorithm. All of these codes are 
called “Huffman equivalent codes”. A major problem with a 
VLC is that if a channel error occurs during transmission, it 
may lead to the loss of synchronisation for decoding, and 
the error may propagate and affect the correctness of the 
next received codewords. 

To halt this error propagation, Rudner (1971) defined a 
synchronising sequence that allows the decoder to 
resynchronise for a VLC. If a VLC contains at least one 

synchronising sequence, it is called a statistically 
synchronisable code, for example the code obtained by 
Capocelli et al. (1992). The resynchronising ability of this 
kind of code has also been extensively studied (Wei and 
Sholtz, 1980; Capocelli et al., 1988). 

A synchronous code that has at least one of its 
codewords as a synchronising sequence belongs to a special 
class of statistically synchronisable codes. This codeword is 
also called a synchronising codeword. Ferguson and 
Rabinowiz (1984) were the first to introduce the definition 
for a synchronous code. Next, Montgomery and Abrahams 
(1986) generalised it at the expense of a slight increase in 
redundancy. Later, Escott and Perkins (1996, 1998) and, 
Perkins and Escott (1999) provided an algorithm for 
constructing a binary Huffman equivalent code that contains 
at least one synchronising codeword of length m + 1, where 
m (>1) is the shortest codeword length (the case of m = 1 
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was covered in Rudner (1971)), if such a code exists for a 
given length vector. 

For the synchronisation problem of a VLC, Takishima  
et al. (1994) formulated it as a discrete-time Markov chain 
(Kleinrock, 1975). Through an analysis of error state 
transition, a good VLC tree structure was suggested, and an 
algorithm for finding such a code with high synchronisation 
capability was also proposed. Later, Zhou and Zhang (2002) 
re-examined the synchronisation capability of a prefix-free 
code by means of two good measurement criteria, the  
Mean Error Propagation Length (MEPL) and the Variance 
of Error Propagation Length (VEPL). They also proposed 
two algorithms for designing a code with a short MEPL and 
VEPL. The effect of a binary symmetric channel on the 
synchronisation behaviour was explored in Zhou et al. 
(2008). Chabbouh and Lamy (2002) proposed another VLC 
tree structure with good synchronisation behaviour.  
Higgs et al. (2009) proposed another class of VLCs with 
good synchronisation properties. Recently, it has been 
shown that the self-synchronising feature of a synchronising 
codeword can be integrated with Maximum A-posterior 
Probability (MAP) VLC decoding to improve the decoding 
performance and reduce the complexity (Malinowski et al., 
2007; Cao et al., 2007). 

In this paper, we first present the sufficient and 
necessary conditions for the existence of binary Huffman 
equivalent codes with the shortest, or at most two shortest, 
synchronising codeword(s) of length m + 1, where m (>1) is 
the shortest codeword length. 

Next, based on the results, we propose a unified 
approach for constructing each of these binary Huffman 
equivalent codes with the shortest, or at most two shortest, 
synchronising codeword(s) of length m + 1, if such a code 
exists for a given length vector. 

In general, our constructed codes result in a greater 
number of synchronising codewords than the existing codes 
in the literature. Moreover, we further show that one of the 
constructed codes has better synchronisation capability than 
the existing ones. 

2 Preliminaries 

Let A be the set {0,1}, and An be the set of all sequences 
obtained by concatenating n symbols of A. Let A+ = ∪n≥1 An 
be the set of finite sequences of elements of A and  
A* = A+∪{λ}, where λ is the empty sequence. A sequence 
with a run of r ones (resp. zeros) is denoted by 1r (resp. 0r). 
A finite subset C of A+ is called a binary code, and every  
c ∈ C is called a codeword. 

Let (n1, …, nM) be the length vector of code C, where  
ni and M, respectively, denote the number of codewords  
of length i in C and the maximum length of the codewords 
in C. In this paper, we suppose that each given length vector 
(n1, …, nM) satisfies 
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That is, the given length vector stands for a Huffman code 
or a Huffman equivalent code. 

Any binary Huffman equivalent code, C, can be 
represented by a unique binary tree, where each node either 
has two branches (left-branch denoted as symbol 0 and 
right-branch denoted as symbol 1) or is a terminal node.  
The level of a node in the tree is defined by initially letting 
the root be at level zero. The depth of the tree is defined as 
the maximum level of nodes in the tree. The path of a node 
is a string composed of the collection of symbols traversed 
from the root to that node. A codeword is the path of some 
terminal node. 

In error propagation, an error that occurs in some 
codeword of the received string causes the codeword to be 
decoded incorrectly, and then the next codeword(s)  
(one codeword or many codewords) is (are) also decoded 
incorrectly. Until some codeword is decoded correctly, the 
code is resynchronised. The processes of error propagation 
and resynchronisation in a Huffman code are shown  
in Figure 1. 

Figure 1 Error propagation and resynchronisation (see online 
version for colours) 

 

The following definitions and theorem in this section were 
originally given in Rudner (1971) and Escott and Perkins 
(1998). 

Definition 1: Let C be a binary Huffman equivalent  
code. We say that C is synchronous if there is a  
codeword c = c1c2…cr in C satisfying the following two 
conditions: 

• For all b = b1b2…bn in C such that n > r and c is a 
substring of b, we have c1c2…cr = bn–r+1bn–r…bn, but 
c1c2…cr ≠ bibi+1…bi+r–1 for any i ≠ n – r + 1. 

• For any j < r such that c1c2…cj appears as a suffix of a 
codeword, the sequence cj+1cj+2…cr must be a sequence 
of codewords. 

If such a codeword c exists, it is called a synchronising 
codeword for C. 

Definition 2: Let C be a binary Huffman equivalent  
code with the shortest codeword of length m. Let c1c2…cr  
be a synchronising codeword of C with r = m + 1. A node, 
N, of the corresponding binary tree is a c-node if its path is 
either c2…cr or z*c1c2…cr, where z* ∈ A*. A node, N, is a  
d-node if its path is of the type z*c1c2…ck for some k, 
2 ≤ k < r. A node, N, that is neither a c-node nor a  
d-node is a 0-node (resp. 1-node) if its path ends in a 0 
(resp. 1). 
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Notice that any shortest codeword must not be a 
synchronising codeword. 

Theorem 1: c-nodes are ones that must be terminated 
(taken as codewords) and d-nodes are nodes that must be 
extended (cannot be taken as codewords). 

Theorem 2: Suppose C is a binary equivalent Huffman 
code with the shortest codeword of length m (m > 1).  
Let c1c2…cr be a synchronising codeword of C such that 
r = m + 1 and c1 = 0 (resp. 1). Then, ci = 1 (resp. 0) for 
i = 2, …, r – 1. That is, if there exist length-(m + 1) 
synchronising codewords with c1 = 0 (resp. 1) for C with the 
shortest codeword of length m, then they can only be 01r–20 
or 01r–1 (resp. 10r–21 or 10r–1). 

Proof: A method that was more straightforward than that of 
Rudner (1971) was given in Huang and Wu (2003).  

Escott and Perkins (1996) pointed out that at most two 
synchronising codewords (01r–20 and 01r–1, or 10r–21 and 
10r–1) can exist simultaneously in a code, C, if such a code 
exists. Without loss of generality, we consider the 
synchronising codewords 01r–20 and 01r–1. 

3 Existence of a code with two synchronising 
codewords 01r–20 and 01r–1 of length r 

BT: The corresponding binary tree of code C. 
FBT: The full binary tree of depth M. 
SFBT: Any subtree of the FBT. 
Ci: The number of level i c-nodes in the BT. 
Di: The number of level i d-nodes in the BT. 
0i: The number of level i 0-nodes in the BT. 
CFi: The number of level i c-nodes in the FBT. 
DFi: The number of level i d-nodes in the FBT. 
C0i: The number of level i c-nodes in an SFBT whose 

root is a 0-node. 
Cci: The total number of level i c-nodes in two SFBTs 

of which the roots are c-nodes; the respective  
paths of these two c-nodes end, respectively, in a  
0 and a 1. 

D0i: The number of level i d-nodes in an SFBT whose 
root is a 0-node. 

Dci: The total number of level i d-nodes in two SFBTs 
of which the roots are c-nodes; the respective  
paths of these two c-nodes end, respectively, in a  
0 and a 1. 

T0i: The number of level i 0-nodes taken as codewords 
in the FBT. 

 
 
 
 

Notes 

• The level of a node in the referenced tree (BT, FBT, or 
SFBT) is defined by initially letting the root be at level 
zero. 

• The depth of a tree is defined as the maximum level of 
any node in the tree. 

In this section, we derive the sufficient and necessary 
condition for the co-existence of two length r synchronising 
codewords, 01r–20 and 01r–1, in a code, C. The sufficient and 
necessary conditions for the other two cases: 

• the existence of a unique length r synchronising 
codeword 01r–1 

• the existence of a unique length r synchronising 
codeword 01r–20, are, respectively, shown in 
Appendices (A) and (B). 

Let C be any binary Huffman equivalent code whose length 
vector (n1, …, nM) satisfies ni = 0 for i < m and nm ≥ 2 for 
some m > 1, and with synchronising codewords 01r–20  
and 01r–1 for r = m + 1. Then, Lemmas 1–3 hold for such  
a code. 

Lemma 1: The number of level i c-nodes in the BT can be 
obtained as 
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Proof: (1-1) The number of level i (i < m) c-nodes in the 
FBT is trivially equal to zero. The paths of the two level  
m c-nodes in the FBT are 1r–20 and 1r–1, respectively.  
The paths of the level i (i > m) c-nodes in the FBT are  
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of the form x1x2…xi–r01r–20 and x1x2…xi–r01r–1, where xj 

(j = 1…i – r) ∈ {0, 1}. Hence, the number of level i c-nodes 
in the FBT is equal to 2i–(m+1) × 2 = 2i–m for i > m (see  
Figure 2). 

Figure 2 FBT of depth 6 with two shortest SCs 0110 and 0111, 
where SC denotes synchronising codeword (see online 
version for colours) 

 

(1-2) For any SFBT whose root is a 0-node, the number of 
level i (i < m) c-nodes in the SFBT is trivially equal to zero. 
The paths of the two level m c-nodes in the SFBT are 1r–20 
and 1r–1, respectively. The paths of those level i (i > m)  
c-nodes in the SFBT are also of the form x1x2…xi–r01r–20 
and x1x2…xi–r01r–1 (see Figure 3). 

Figure 3 Any one SFBT of depth 6 whose root is 0-node when 
two shortest synchronising codewords, 0110 and 0111, 
exist in code C (see online version for colours) 

 

(1-3) For any pair of SFBTs whose roots are c-nodes, the 
paths of these two c-nodes end, respectively, in a 0 and a 1. 
The total number of level i c-nodes in these two SFBTs is 
trivially equal to zero for i < m. The paths of the two level  
m c-nodes in the former SFBT are 1r–20 and 1r–1. However, 
there exists no c-node at level m in the latter SFBT.  
The paths of the level i (i > m) c-nodes in either of these  
two SFBTs are all of the form x1x2…xi–r01r–20 and x1x2… 
xi–r01r–1. Hence, the total number of level i c-nodes in the 
pair of SFBTs is equal to 2i–(m+1) × 2 × 2 = 2i–m+1 for i > m 
(see Figure 4). 

From equations (1-1)–(1-3) and T0k, which will be 
introduced in Lemma 3, Ci can be easily obtained, where  
1 ≤ i ≤ M.   
 
 
 

Figure 4 Two SFBTs of depth 5 whose roots are c-nodes.  
The paths of these c-nodes end, respectively, in a 0  
and a 1 (see online version for colours) 

 

Lemma 2: The number of level i d-nodes in the BT can be 
obtained as 
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Proof: (2-1) The number of level 1 d-nodes in the FBT is 
trivially equal to zero. The paths of the level i (1 < i < m)  
d-nodes in the FBT are of the form x1x2…xi–j–101j, where  
j = 1…i – 1. Hence, the number of level i d-nodes in the 
FBT is equal to 
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The paths of the level i (i ≥ m) d-nodes in the FBT are of the 
form x1x2…xi–j–101j, where j = 1…m – 1. Hence, the number 
of level i d-nodes in the FBT is equal to 

2
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m

i k

k
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=

≥∑  (see Figure 2). 

(2-2) For any SFBT whose root is a 0-node, the number  
of level 1 d-nodes in the SFBT is trivially equal to one.  
The paths of the level i (1 < i < m) d-nodes in the SFBT are 
of the form x1x2…xi–j–101j, where j = 1…i – 1 and 1i. Hence, 
the number of level i d-nodes in the SFBT is equal to  
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The paths of the level i (i ≥ m) d-nodes in the SFBT are of 
the form x1x2…xi–j–101j, where j = 1…m – 1. Hence, the 
number of level i d-nodes in the SFBT is equal to  

2
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m

i k

k
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≥∑ (see Figure 3). 

(2-3) For any pair of SFBTs whose roots are c-nodes, the 
paths of these two roots end, respectively, in a 0 and a 1. 
There is one level 1 d-nodes in the former SFBT, whereas 
no level 1 d-node exists in the latter SFBT. The paths of the 
level i (1 < i < m) d-nodes in the former SFBT are of  
the forms 1i and x1x2…xi–j–101j, where j = 1…i – 1. And, the 
paths of the level i (1 < i < m) d-nodes in the latter SFBT  
are of the form x1x2…xi–j–101j, j = 1…i – 1. Thus,  
the total number of level i d-nodes in the pair of SFBTs is 
equal to 
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The paths of the level i (i ≥ m) d-nodes in either of these  
two SFBTs are all of the form x1x2…xi–j–101j, where 
j = 1…m – 1. Hence, the total number of level i d-nodes in 
the pair of SFBTs is equal to 
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From equations (2-1)–(2-3) and T0k, which will be 
introduced in Lemma 3, Di can be easily obtained, where  
1 ≤ i ≤ M.   

Lemma 3: The number of level i 0-nodes (0i) and the 
number of level i 0-nodes taken as codewords (T0i) in the 
BT can be obtained as 
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Proof: (3-1) Since no c-node exists and there is just one  
1-node at level i (1 ≤ i < m) in the BT, the number of level  
i 0-nodes in the BT is equal to 2i-Di-1 for 1 ≤ i < m. 
Furthermore, by Corollary 7 of Escott and Perkins (1996), 
there exists no 1-node of length greater than or equal to  
m in the BT. Hence, the number of level m 0-nodes in  
the BT is equal to 2m – Cm – Dm. Moreover, based on Escott 
and Perkins (1996), extending a level i 0-node or extending 
a level i d-node with no suffix 01m–1 forms a level-(i + 1)  
0-node for m ≤ i ≤ M – 1. Hence, for m < i ≤ M, the number 
of level i 0-nodes in the BT is equal to the sum of 0i–1–T0i–1 
(which is the number of extended 0-nodes at level i – 1) and 
Di–1 – Ci/2 (which is the number of d-nodes at level i – 1 
with no suffix 01m–1). 

(3-2) The number of level i 0-nodes taken as codewords in 
the FBT is trivially equal to zero for 1 ≤ i < m. On the other 
hand, no 1-node exists at level i, m ≤ i ≤ M in the BT. Thus, 
only 0-nodes and c-nodes can be taken as codewords, and 
all c-nodes must be taken as codewords in the BT. Hence, 
the number of level i 0-nodes taken as codewords in the  
BT is equal to ni – Ci for m ≤ i ≤ M.   

Next, through the computations in Lemma 1, Lemmas 2  
and 3, we obtain the main result of this section. 

Theorem 3: For the length vector (n1, …, nM), where ni = 0 
for i < m and nm ≥ 2 for some m > 1, there exists a binary 
Huffman equivalent code, C, that contains two 
synchronising codewords, 01r–20 and 01r–1, with r = m+1, 
 if and only if Ci ≤  ni ≤ Ci + 0i for m ≤ i ≤ M. 

Proof: Since all c-nodes must be taken as codewords in  
the BT, ni must be greater than or equal to Ci; otherwise, 
some c-nodes will be extended. On the other hand, because 
only the 0-nodes and c-nodes can be taken as codewords  
in this BT, ni must be less than or equal to Ci + 0i; otherwise, 
some d-nodes will be terminated. Therefore, Ci ≤ ni ≤ Ci + 0i 
for m ≤ i ≤ M and the sufficient condition part of the 
theorem is proved. 

Since Lemmas 1–3 hold for such a code, C,  
the inequalities, Ci ≤ ni ≤ Ci + 0i for m ≤ i ≤ M, assert the 
existence of the code (i.e., the BT) and the necessary 
condition part of the theorem is proved.   

4 A unified algorithm for constructing a binary 
Huffman equivalent code with the shortest, or 
at most two shortest, synchronising 
codeword(s) of length r 

In Escott and Perkins (1998), the authors pointed out that 
when 01r–20 is the shortest synchronising codeword, a better 
code (in terms of the synchronising capability) can  
sometimes be generated by extending the 0-nodes rather 
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than always extending the 1-nodes. Here, we give the 
condition under which this criterion can be used, and obtain 
a better code. 

Theorem 4: If all of these equations, 
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hold for some i, where m ≤ i ≤ M-m, then during the 
construction of code C, there will exist at least one pair of 
terminated 0-node and extended 1-node at level i in the 
corresponding binary tree. For this moment, if we swap 
them (i.e., extending the 0-node and terminating the  
1-node), then we can also finally obtain a binary equivalent 
code, C′, with one synchronising codeword, 01r–20, for the 
same length vector, which is sometimes better than C, with a 
greater number of synchronising codewords. 

Proof (E1): This implies that at least one 0-node can be 
terminated (T0i > 0, i.e., ni > Ci & 0i > 0) and at least one  
1-node can be extended (T1i < 1i, i.e., T1i = ni – Ci – 0i < 1i). 

(E2–Em): On the basis of Lemma 7 of Escott and Perkins 
(1998), extending a level i 0-node forms 0-nodes of every 
level, (i + l) for l = 1…r – 2; d-nodes of every level, (i + l) 
for l = 1…r – 2; a level (i + r – 1) c-node; a level-(i + r – 1) 
1-node, whereas extending a level i 1-node forms a level-
(i + 1) 0-node and a level-(i + 1) 1-node. Since any d-node 
must be extended, only when at least one extended 1-node 
(T1i+h < 1i, i.e., T1i+h = ni+h–Ci+h–0i+h < 1i+h) exists for each 
of the following levels, (i + h) for 1 ≤ h ≤ m – 1, is it 
possible to swap them. 

(Em+1): Since the number of level-(i + m) c-nodes will 
increase by one after swapping, ni+m must be greater than 
Ci+m; otherwise, Theorem B.1 will no longer hold.   

After swapping, the notations in equation (5) need to be 
updated to fulfil Theorem B.1, which was originally  
derived based on the constructing algorithm of Escott and 
Perkins (1998). 

1 1

2 2

1 1

1 1 1;
1 1 1;
       
1 1 1;
0 0 1 and 1;

i i

i i

i m i m

i m i m i m i m    C C

+ +

+ +

+ − + −

+ + + +

= −
 = −

 = −
 = − = +

 (5) 

Next, based on the sufficient and necessary conditions 
(derived in Section 3 and appendices) and Theorem 4,  
we propose a unified construction algorithm guaranteed to 
generate a binary Huffman equivalent code with the 
shortest, or at most two shortest, synchronising codeword(s)  
of length r, if such a code exists for a given length vector.  
 

Furthermore, the number of synchronising codewords of the  
constructed code is greater than or equal to that of any that 
exists in the literature. 

Algorithm 1 

Input: A length vector (n1, …, nM) with ni = 0 for 1 ≤ i < m 
and nm ≥ 1 for some m > 1. 

Output: A synchronous binary Huffman equivalent  
code, C. 

Step 1: Let m be the smallest integer satisfying nm ≠ 0,  
and let M be the largest integer satisfying nM ≠ 0. 

  Put r = m+1. 
Step 2: If nm = 1, then go to Step 3. 

If both synchronising codewords, 01r–20 and 01r–1, 
can exist simultaneously in code C (tested by 
Theorem 3), then 01r–20 and 01r–1 are selected, and 
go to Step 5. 

Step 3: If the synchronising codeword, 01r–1, can exist in 
code C (tested by Theorem A.1), then 01r–1 is 
selected, and go to Step 5. 

Step 4: If the synchronising codeword, 01r–20, can exist in 
code C (tested by Theorem B.1), then 01r–20 is 
selected, and go to Step 6. 
else Return “There exists no binary Huffman 

equivalent code C with at least one 
synchronising codeword of length r for this 
length vector”. 

Step 5: Repeat for each length i, where 1 ≤ i ≤ M { 
Terminate all level i c-nodes. 
Extend all level i d-nodes. 

  If i ≥ m, then terminate any 0-nodes as required, 
and extend the remaining 0-nodes. 

   else 
extend the remaining 0-nodes and 1-nodes. 

   } Return C. 
Step 6: Repeat for each length i, where 1 ≤ i ≤ M { 

Terminate all level i c-nodes. 
  Extend all level i d-nodes. 
  If m ≤ i ≤ M-m then { 

Swapno = 0 
Repeat { 

If equation (4) holds & (swapno < 1i), 
then {terminate any one 1-node and 
extend any one 0-node simultaneously, 
swapno=swapno+1, and update equation 
(5)}. 
else if any one 0-node is available then 

terminate any one 0-node. 
else terminate any one 1-node. 

} Until (ni–Ci) nodes are terminated 
             } 

else if M–m < i ≤ M then terminate any 0-nodes 
whenever possible, otherwise 1-nodes as 
required. 

Extend the remaining 0-nodes and 1-nodes. 
} Return C. 
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5 Examples 

Example 1: For the length vector (0, 0, 2, 7, 7, 5, 1, 1, 1, 2), 
a corresponding binary Huffman equivalent code, C, with 
synchronising codeword 0110 can be generated by using 
Algorithm 1. 

Step 1: m = 3, M = 10, and r = 4. 

Step 2: From Table 1, we can ensure that no Huffman 
equivalent code exists for the given length vector 
with two synchronising codewords, 0110 and 0111, 
through the test of Theorem 3. 

Step 3: From Table 2, we can further ensure that there  
is also no Huffman equivalent code for the  
given length vector, even with only one 
synchronising codeword, 0111, through the test of 
Theorem A.1. 

Step 4: From Table 3, we know that one Huffman 
equivalent code exists for the given length  
vector with a synchronising codeword, 0110, 
through the test of Theorem B.1. Then, go to  
Step 6. 

Step 6: In this step, equation (4) will hold for the cases of  
i = 3 and i = 7. 

Table 1 Test of Theorem 3 

Level i ni Ci 0i 
3 2 2 3 
4 7 2 5 
5 7 4 3 
6 5 6 0 

Table 2 Test of Theorem A.1 

Level i ni Ci 0i 
3 2 1 4 
4 7 1 6 
5 7 2 5 

 

Table 2 Test of Theorem A.1 (continued) 

Level i ni Ci 0i 
6 5 3 3 
7 1 0 1 
8 1 0 1 
9 1 1 1 
10 2 0 1 

Table 3 Test of Theorem B.1 

Level i ni Ci 0i 1i 
3 2 1 3 1 
4 7 1 5 2 
5 7 2 3 3 
6 5 2 1 3 
7 1 0 1 1 
8 1 0 1 1 
9 1 0 1 1 
10 2 0 1 1 

Code C is shown in Table 4. We also list the codes, 
respectively, obtained by using the algorithms of Ferguson 
and Rabinowiz (1984), Escott and Perkins (1998) and  
Zhou and Zhang (2002). Although the codes generated  
from Algorithm 1 and the Fixed Order method both have the 
same number of synchronising codewords, the latter has a 
smaller MEPL and VEPL. In general, a larger sum for the 
probabilities of transmitting a synchronising codeword leads 
to a quicker resynchronisation for the code. The sum of the 
probabilities of transmitting a synchronising codeword for 
the above-mentioned two codes are, respectively, equal to 
0.2593 and 0.2919. Although the sum of the probabilities of 
transmitting a synchronising codeword for the code 
constructed by the Max Gain method is smaller (0.2563), 
the code also has a smaller MEPL and VEPL. Thus, it is a 
better statistically synchronisable code. That is, using the 
MEPL and VEPL to evaluate the synchronisation capability 
of a code is more accurate than using the sum of the 
probabilities of transmitting a synchronising codeword. 

Table 4 Comparisons of MEPLs and VEPLs of Huffman equivalent codes for English alphabet source 

Letter Prob. 
Fixed Order of Zhou and 

Zhang (2002) 
Max Gain of Zhou and 

Zhang (2002) 
Ferguson and  

Rabinowiz (1984) 
Escott and Perkins 

(1998) Algorithm 1 

E 0.1278 001 001 001 110 110 
T 0.0855 101 101 010 100 111 
O 0.0804 0001 1001* 0001 0110* 0110* 
A 0.0778 1001* 1101 0110 0000 0000 
N 0.0686 0101 0001 0111 0010 0010 
I 0.0667 1101 0101 1010 0100 0100 
R 0.0651 0111 0111 1011 0111 0111 
S 0.0622 1111 1111 1100 1010 1000 
H 0.0595 0000 0000 1111 1110 1010 
D 0.0404 10001* 01001* 00001 00110* 00110* 
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Table 4 Comparisons of MEPLs and VEPLs of Huffman equivalent codes for English alphabet source (continued) 

Letter Prob. 
Fixed Order of Zhou and 

Zhang (2002) 
Max Gain of Zhou and 

Zhang (2002) 
Ferguson and  

Rabinowiz (1984) 
Escott and Perkins 

(1998) Algorithm 1 

L 0.0372 01001* 11001* 10010 10110* 10110* 
U 0.0308 11001* 11101 10011 00010 00010 
C 0.0296 01101* 01101* 11010 01010 00111 
M 0.0288 11101 10001 11011 10111 01010 
P 0.0223 10000 10000 11100 11110 10010 
F 0.0197 01000 11000 11101 11111 10111* 
Y 0.0196 110001* 111001* 100001* 000110* 000110* 
W 0.0176 011001* 011001* 100010 010110* 010110* 
G 0.0174 111001* 010001* 100011 000111 100110* 
B 0.0141 110000* 010000* 000001 001110 000111* 
V 0.0112 011000 011000 000000 010111 010111* 
K 0.0074 1110001* 1110001 1000001* 0011110 1001111 
J 0.0051 11100001 11100001 10000001 00111110 10011100 
X 0.0027 111000001 111000001 100000001 001111110 100111010 
Z 0.0017 1110000001 1110000001 1000000001 0011111110* 1001110110*
Q 0.0008 1110000000 1110000000 1000000000 0011111111 1001110111 
MEPL  1.9030 1.8483 3.3998 2.0522 1.9260 
VEPL  1.3634 1.2294 7.2986 2.0672 1.5225 

*Denotes that the codeword is a synchronising codeword. 
 
Example 2: For the length vector (0, 2, 3, 2), a binary 
Huffman equivalent code, C, with two synchronising 
codewords, 010 and 011, as shown in Table 5, can be 
generated by using Algorithm 1. However, only one 
synchronising codeword, 101, exists in the code obtained by 
using either the Fixed Order method or the Max  
Gain method of Zhou and Zhang (2002). The MEPL and 
VEPL values of the code generated from Algorithm 1 are 
smaller. 

From Examples 1 and 2, we find that none of the existing 
algorithms can be guaranteed to find an optimal solution. 
That is, all of the existing algorithms are just heuristic, and 
an algorithm for finding the Huffman equivalent code with 
minimum MEPL and VEPL is still not available, and may 
be impossible, as stated by Zhou and Zhang (2002). 

A shorter synchronising codeword (i.e., its occurrence 
probability is higher) will result in a quicker 
resynchronisation for the code. We conjecture that, for a 
given length vector, if only one shortest synchronising 
codeword of length r can exist in the corresponding 
constructed code, then the two codes, respectively, 
generated by the Fixed Order and Max Gain methods of 
Zhou and Zhang (2002) will have better synchronisation 
capability than that generated by Algorithm 1. However, if 
two synchronising codewords with the shortest length, r, can 
exist simultaneously in the corresponding constructed code, 
the code generated by Algorithm 1 will have better 
synchronisation capability than the two codes, respectively,  
 
 

generated by the Fixed Order and Max Gain methods of 
Zhou and Zhang (2002). 

Table 5 Comparisons of MEPLs and VEPLs of Huffman 
equivalent codes for length vector (0, 2, 3, 2) 

Letter Prob.
F.O. of Zhou and 

Zhang (2002) 
M.G. of Zhou and 

Zhang (2002) Algorithm 1 
A 0.25 01 01 10 
B 0.25 11 11 11 
C 0.125 101* 101* 010* 
D 0.125 001 001 011* 
E 0.125 000 000 000 
F 0.0625 1001* 1001* 0010* 
G 0.0625 1000* 1000* 0011* 
MEPL 1.9252 1.9252 1.8163 
VEPL 1.1318 1.1318 0.9637 

6 Conclusion and discussion 

In this paper, we elaborately derived the sufficient and 
necessary conditions for the existence of binary Huffman 
equivalent codes with the shortest, or at most two shortest, 
synchronising codeword(s) of length r, and proposed  
a unified approach for constructing these codes.  
We also showed that one code constructed by the proposed 
algorithm had better synchronisation capability than the 
existing ones. 
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The results of Zhou and Zhang (2002) are significant, 
but the synchronisation capability of the code constructed 
by the construction algorithm of Zhou and Zhang (2002) is 
not always the best. A method for combining the ideas of 
Zhou and Zhang (2002) and the synchronising codeword 
technique to design a much better code deserves further 
investigation. 
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Appendices 

In Appendices (A) and (B), since there are no two c-nodes 
with the same parent, the abbreviated notations, Cci and Dci, 
are redefined as follows: 

Cci: The number of level i c-nodes in an SFBT whose root is 
a c-node. 

Dci: The number of level i d-nodes in an SFBT whose root 
is a c-node. 

For the following lemmas and theorems, we will omit 
portions of the proofs because these proofs are similar to 
those of Section 3. 

(A) Existence of a code with a unique synchronising 
codeword 01r–1 of length r 

Let C be any binary Huffman equivalent code whose  
length vector (n1, …, nM) satisfies ni = 0 for i < m and nm ≥ 1  
for some m > 1, and with only one synchronising codeword 
01r–1 of length r, where r = m + 1. Then, Lemmas A.1–A.3 
hold for such a code. 

Lemma A.1: The number of level i c-nodes in the BT can be 
obtained as 

 for1 2
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( 1)

0 for 1

2 for .
i

i m
i

Cc i m

Cc  i m− +

= ≤ ≤


= >
 (A1-3) 

Proof: (A1-3) The number of level i c-nodes in an SFBT 
whose root is a c-node is trivially equal to zero for 1 ≤ i ≤ m. 
The path of the level i (i > m) c-nodes in the SFBT is of the 
form x1x2,…xi–r01r–1. Hence, the number of level i c-nodes 
in the SFBT is equal to 2i–(m+1) for i > m.   

Lemma A.2: The number of level i d-nodes in the BT can 
be obtained as 
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Proof: (A2-3) The number of level 1 d-nodes in an SFBT 
whose root is a c-node is trivially equal to zero. The paths  
of those level i (1 < i < m) d-nodes in the SFBT are of the 
form x1x2 … xi–j–101j (x1, x2, …, xi–j–1 ∈ {0,1}), where 
j = 1 … i – 1. Hence, the number of level i d-nodes in the 
SFBT is equal to 

2
2

i
i k

k

−

=
∑  for 1 < i < m. 

The paths of the level i (i ≥ m) d-nodes in the SFBT  
are of the form x1x2 … xi–j–101j, where j = 1 … m – 1.  
Hence, the number of level i d-nodes in the SFBT is  
equal to 

2
2

m
i k

k

−

=
∑    for i ≥ m.  

Lemma A.3: The number of level i 0-nodes (0i) and the 
number of level i 0-nodes taken as codewords (T0i) in the 
BT can be obtained as 
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Proof: (A.3-1) On the basis of Escott and Perkins (1998), 
extending a level i 0-node or extending a level i d-node 
must form a level-(i + 1) 0-node for m ≤ i ≤ M–1. Hence, for 
m < i ≤ M, the number of level i 0-nodes in the BT is equal 
to the sum of 0i–1–T0i–1 (which is the number of extended  
0-nodes at level i – 1) and Di–1 (which is the number of  
d-nodes at level i – 1).  

Next, through the computations in Lemma A.1, Lemma A.2 
and Lemma A.3, we have the following theorem. 

Theorem A.1: For the length vector (n1,…,nM), where 
ni = 0 for i < m and nm ≥ 1 for some m > 1, there exists a 
binary Huffman equivalent code, C, that contains only one 
synchronising codeword, 01r–1, of length r, with r = m + 1, 
if and only if Ci ≤ ni ≤ Ci + 0i for m ≤ i ≤ M. 

Proof: Since all c-nodes must be taken as codewords in the 
BT, ni must be greater than or equal to Ci; otherwise, some 
c-nodes will be extended. On the other hand, because only 
the 0-nodes and c-nodes can be taken as codewords in this 
BT, ni must be less than or equal to Ci + 0i; otherwise, some 
d-nodes will be terminated. Therefore, Ci ≤ ni ≤Ci + 0i for 
m ≤ i ≤ M and the sufficient condition part of the theorem is 
proved. 

Since Lemmas A.1–A.3 hold for such a code, C, the 
inequalities, Ci ≤ n i≤ Ci + 0i for m ≤ i ≤ M, assert the 
existence of the code (i.e., the BT) and the necessary 
condition part of the theorem is proved.  

(B) Existence of a code with a unique synchronising 
codeword 01r–20 of length r 

C1i: The number of level i c-nodes in an SFBT whose root is 
a 1-node. 

D1i: The number of level i d-nodes in an SFBT whose root 
is a 1-node. 

1i: The number of level i 1-nodes in the BT. 

T1i: The number of level i 1-nodes taken as codewords in 
the FBT. 
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Let (n1, …, nM) be the length vector of any binary Huffman 
equivalent code, C, with only one synchronising codeword 
01r–20, of length r = m + 1, where ni = 0 for i < m and nm ≥ 1 
for some m > 1. Suppose this code is constructed by using 
Algorithm 2 of Escott and Perkins (1998), and always 
terminates 0-nodes (alternatively extends 1-nodes) 
whenever possible. Then, Lemmas B.1–B.4 hold for such a 
code. 

Lemma B.1: The number of level i c-nodes in the BT can be 
obtained as 
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Proof: (B1-4) The number of level i c-nodes in an SFBT 
whose root is a c-node is trivially equal to zero for 1 ≤ i < m. 
The path of the level i (i > m) c-nodes in the SFBT is of the 
form x1x2…xi–r01r–1. Hence, the number of level i c-nodes in 
the SFBT is equal to 2i–(m+1) for i > m.   

Lemma B.2: The number of level i d-nodes in the BT can be 
obtained as 
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Proof: (B2-4) The number of level 1 d-nodes in an SFBT 
whose root is a c-node is trivially equal to one. The paths of 
the level i (1 < i < m) d-nodes in the SFBT are of the form  
1i and x1x2…xi–j–101j (x1x2…xi–j–1 ∈ {0,1}), where j = 1…i –
 1. Hence, the number of level i d-nodes in the SFBT is 
equal to 

2

1 2
i

i k

k

−

=

+∑    for 1 < i < m. 

The paths of the level i (i ≥ m) d-nodes in the SFBT are of 
the form x1x2…xi–j–101j (x1x2…xi–j–1 ∈ {0,1}), where 
j = 1…m – 1. Hence, the number of level i d-nodes in the 
SFBT is equal to 

2

2
m

i k

k

−

=
∑    for i ≥ m.  

Lemma B.3: The number of level i 1-nodes (1i) and the 
number of level i 1-nodes taken as codewords (T1i) in the 
BT can be obtained as 
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and 

           

1 0 for 1
0                    if  0

1
0      if  0 0 1

 for .

i

i i i i
i

i i i i i i i i i

T i m
C n C

T
n C C n C

m i M
<

= ≤ <
 ≤ ≤ + =  − − + ≤ + +
 ≤ ≤

 (B3-2) 

Proof: (B3-1) There exists only one 1-node whose path is  
1i at each level i (1 ≤ i ≤ m) in the BT. On the basis of Escott 
and Perkins (1998), extending a level i 1-node or extending 
a level i d-node with suffix 01r–2 forms a level-(i + 1)  
1-node for m ≤ i ≤ M – 1. Hence, the number of level  
i 1-nodes is equal to the sum of 1i–1 – T1i–1 (which is the 
number of extended 1-nodes at level i – 1) and Ci (which is 
the number of level-(i – 1) d-nodes with suffix 01r–2) for 
m < i ≤ M. 

(B3-2) There exists no terminal node at each level i 
(1 ≤ i < m) in the BT. Hence, the number of level i 1-nodes 
taken as codewords in the BT is equal to zero for 1 ≤ i < m. 
In addition, all of the c-nodes must be taken as codewords in 
the BT. In the constructing algorithm of Escott and Perkins 
(1998), 0-nodes are always taken as codewords first 
whenever possible. Hence, for m ≤ i ≤ M, the number of 
level i 1-nodes taken as codewords in the BT is equal to zero 
if Ci ≤ ni ≤ Ci + 0i, and ni-Ci-0i if Ci + 0i <ni ≤ Ci + 0i + 1i.  

Lemma B.4: The number of level i 0-nodes (0i) and the 
number of level i 0-nodes taken as codewords (T0i) in the 
BT can be obtained as 
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Proof: (B4-1) For the BT, there exists no c-node at level  
i (1 ≤ i < m) by Lemma B.1 and there exists only one 1-node 
at level i (1 ≤ i < m) by Lemma B.3. Hence, the number of 
level i 0-nodes is equal to 2i – Di – 1 for 1 ≤ i < m. Also by 
Lemma B.3, there exists only one 1-node at level m. Hence, 
the number of level m c-nodes is equal to 2i – Ci – Di – 1. 
On the basis of Escott and Perkins (1998), extending a level 
i d-node with no suffix 01r–2, extending a level i 0-node, or 
extending a level i 1-node forms a level-(i + 1) 0-node for 
m ≤ i ≤ M – 1. Hence, for m < i ≤ M, the number of level i  
0-nodes is equal to the sum of Di–1 – Ci (which is the 
number of level-(i – 1) d-nodes with no suffix 01r–2),  
0i–1 – T0i–1 (which is the number of extended 0-nodes at 
level i – 1), and 1i–1 – T1i–1 (which is the number of 
extended 1-nodes at level i – 1). 

(B4-2) In the BT, there exists no terminal node at level  
i (1 ≤ i < m). Hence, the number of level i 0-nodes taken as 
codewords is equal to zero for 1 ≤ i < m. In addition, all of 
the c-nodes must be taken as codewords. In the constructing 
algorithm of Escott and Perkins (1998), 0-nodes are always 
taken as codewords first whenever possible. Hence, for  
m ≤ i ≤ M, the number of level i 0-nodes taken as codewords 
is equal to ni–Ci if Ci ≤ ni ≤ Ci + 0i, and 0i if ni > Ci+0i.  

Next, through the computations in Lemma B.1, Lemma B.2, 
Lemma B.3 and Lemma B.4, we have the following 
corollary. 

Corollary B.1: For the length vector (n1,…,nM), where 
ni = 0 for i < m and nm ≥ 1 for some m > 1, there exists a 
binary Huffman equivalent code, C, that is constructed by 
using algorithm 2 of Escott and Perkins (1998), and always 
terminates 0-nodes whenever possible and contains only 
one synchronising codeword, 01r–20, of length r = m + 1,  
if and only if Ci ≤ ni ≤ Ci + 0i + 1i for m ≤ i≤M. 

Proof: Since all c-nodes must be taken as codewords  
in the BT, ni must be greater than or equal to Ci; otherwise, 
some c-nodes will be extended. On the other hand,  
because only the 0-nodes, 1-nodes and c-nodes can  
be taken as codewords in this BT, ni must be less than  
or equal to Ci + 0i + 1i; otherwise, some d-nodes  
will be terminated. Therefore, Ci ≤ ni ≤ Ci + 0i + 1i for 
m ≤ i ≤ M and the sufficient condition part of the corollary 
is proved. 

Since Lemmas B.1–B.4 hold for such a code, C, the 
inequalities, Ci ≤ ni ≤ Ci + 0i + 1i for m ≤ i ≤ M, assert  
the existence of the code (i.e., the BT) and the necessary 
condition part of the corollary is proved.   

Now, we have the following theorem. 

Theorem B.1: For the length vector (n1,…,nM), where 
ni = 0 for i < m and nm ≥ 1 for some m > 1, there  
exists a binary Huffman equivalent code, C, that  
contains only one synchronising codeword, 01r–20, of  
length r = m + 1, if and only if Ci ≤ ni ≤ Ci + 0i + 1i for  
m ≤  i≤ M. 

Proof: Obviously, by Corollary B.1, the necessary condition 
part of the theorem holds. 

Notice that although Lemmas B.1–B.4 were derived 
based on the assumption of always terminating 0-nodes 
whenever possible, by Theorem 9 of Escott and Perkins 
(1998), the sufficient condition part of Theorem B.1 still 
holds. Suppose it does not hold, i.e., the conditions 
Ci ≤ ni ≤ Ci + 0i + 1i for m ≤ i ≤ M do not hold, and there still 
exists a binary Huffman equivalent code, C, that contains 
only one synchronising codeword 01r–20 of length  
r = m+1. By Theorem 9 of Escott and Perkins (1998), there  
exists one equivalent code, C′ (which can be obtained by 
always terminating 0-nodes whenever possible). Then, for 
such a code, C’, Lemmas B.1–B.4 will hold and the 
conditions Ci ≤ ni ≤ Ci + 0i + 1i for m ≤ i ≤ M must hold and 
we have a contradiction.  


