
54 Int. J. Ad Hoc and Ubiquitous Computing, Vol. 9, No. 1, 2012

Copyright © 2012 Inderscience Enterprises Ltd.

The construction of binary Huffman equivalent
codes with a greater number of synchronising
codewords

Yuh-Ming Huang* and Sheng-Chi Wu
Department of Computer Science and Information Engineering,
National Chi Nan University, Nantou, 545, Taiwan
E-mail: ymhuang@csie.ncnu.edu.tw
E-mail: terry.wu.68@gmail.com
*Corresponding author

Abstract: An inherent problem with a Variable-Length Code (VLC) is that even a single bit
error can cause a loss of synchronisation, and thus lead to error propagation. Codeword
synchronisation has been extensively studied as a means to overcome this drawback and
efficiently stop error propagation. In this paper, we first present the sufficient and necessary
conditions for the existence of binary Huffman equivalent codes with the shortest, or at most
two shortest, synchronising codeword(s) of length m + 1, where m (>1) is the shortest codeword
length. Next, based on the results, we propose a unified approach for constructing each of these
binary Huffman equivalent codes with the shortest, or at most two shortest, synchronising
codeword(s) of length m + 1, if such a code exists for a given length vector.

Keywords: VLC; variable-length code; Huffman code; Huffman equivalent code; synchronous
code; synchronising codeword; ad hoc; ubiquitous computing.

Reference to this paper should be made as follows: Huang, Y-M. and Wu, S-C. (2012)
‘The construction of binary Huffman equivalent codes with a greater number of synchronising
codewords’, Int. J. Ad Hoc and Ubiquitous Computing, Vol. 9, No. 1, pp.54–65.

Biographical notes: Yuh-Ming Huang received the BSc in Mathematics from National Tsing
Hua University, Hsinchu, Taiwan, in 1987 and the MSc and PhD in Computer Science and
Information Engineering from National Taiwan University, Taipei, Taiwan, in 1989 and 1999,
respectively. He is now an Assistant Professor with the Department of Computer Science and
Information Engineering, National Chi Nan University, Nantou, Taiwan. His current research
interests include data compression, error correction coding, joint source/channel coding, video
encryption and key agreement in mobile wireless communication.

Sheng-Chi Wu received his BSc Degree in Computer Science and Information Engineering from
I-Shou University, Kaohsiung, Taiwan, in 2001, and his MSc Degree in Computer Science and
Information Engineering from National Chi Nan University, Nantou, Taiwan, in 2003.

1 Introduction

Variable-Length Code (VLC) is an efficient entropy-coding
technology for minimising the total amount of data for
image/video information transmission. For instance,
Huffman code (Huffman, 1952) has been shown to be
optimal in terms of the minimum average codeword length.
In addition, there are still some VLCs that have the same
average codeword length as a Huffman code, but cannot be
constructed by a Huffman algorithm. All of these codes are
called “Huffman equivalent codes”. A major problem with a
VLC is that if a channel error occurs during transmission, it
may lead to the loss of synchronisation for decoding, and
the error may propagate and affect the correctness of the
next received codewords.

To halt this error propagation, Rudner (1971) defined a
synchronising sequence that allows the decoder to
resynchronise for a VLC. If a VLC contains at least one

synchronising sequence, it is called a statistically
synchronisable code, for example the code obtained by
Capocelli et al. (1992). The resynchronising ability of this
kind of code has also been extensively studied (Wei and
Sholtz, 1980; Capocelli et al., 1988).

A synchronous code that has at least one of its
codewords as a synchronising sequence belongs to a special
class of statistically synchronisable codes. This codeword is
also called a synchronising codeword. Ferguson and
Rabinowiz (1984) were the first to introduce the definition
for a synchronous code. Next, Montgomery and Abrahams
(1986) generalised it at the expense of a slight increase in
redundancy. Later, Escott and Perkins (1996, 1998) and,
Perkins and Escott (1999) provided an algorithm for
constructing a binary Huffman equivalent code that contains
at least one synchronising codeword of length m + 1, where
m (>1) is the shortest codeword length (the case of m = 1

 The construction of binary Huffman equivalent codes with a greater number of synchronising codewords 55

was covered in Rudner (1971)), if such a code exists for a
given length vector.

For the synchronisation problem of a VLC, Takishima
et al. (1994) formulated it as a discrete-time Markov chain
(Kleinrock, 1975). Through an analysis of error state
transition, a good VLC tree structure was suggested, and an
algorithm for finding such a code with high synchronisation
capability was also proposed. Later, Zhou and Zhang (2002)
re-examined the synchronisation capability of a prefix-free
code by means of two good measurement criteria, the
Mean Error Propagation Length (MEPL) and the Variance
of Error Propagation Length (VEPL). They also proposed
two algorithms for designing a code with a short MEPL and
VEPL. The effect of a binary symmetric channel on the
synchronisation behaviour was explored in Zhou et al.
(2008). Chabbouh and Lamy (2002) proposed another VLC
tree structure with good synchronisation behaviour.
Higgs et al. (2009) proposed another class of VLCs with
good synchronisation properties. Recently, it has been
shown that the self-synchronising feature of a synchronising
codeword can be integrated with Maximum A-posterior
Probability (MAP) VLC decoding to improve the decoding
performance and reduce the complexity (Malinowski et al.,
2007; Cao et al., 2007).

In this paper, we first present the sufficient and
necessary conditions for the existence of binary Huffman
equivalent codes with the shortest, or at most two shortest,
synchronising codeword(s) of length m + 1, where m (>1) is
the shortest codeword length.

Next, based on the results, we propose a unified
approach for constructing each of these binary Huffman
equivalent codes with the shortest, or at most two shortest,
synchronising codeword(s) of length m + 1, if such a code
exists for a given length vector.

In general, our constructed codes result in a greater
number of synchronising codewords than the existing codes
in the literature. Moreover, we further show that one of the
constructed codes has better synchronisation capability than
the existing ones.

2 Preliminaries

Let A be the set {0,1}, and An be the set of all sequences
obtained by concatenating n symbols of A. Let A+ = ∪n≥1 An
be the set of finite sequences of elements of A and
A* = A+∪{λ}, where λ is the empty sequence. A sequence
with a run of r ones (resp. zeros) is denoted by 1r (resp. 0r).
A finite subset C of A+ is called a binary code, and every
c ∈ C is called a codeword.

Let (n1, …, nM) be the length vector of code C, where
ni and M, respectively, denote the number of codewords
of length i in C and the maximum length of the codewords
in C. In this paper, we suppose that each given length vector
(n1, …, nM) satisfies

1

2 1.
M

i
i

i

n −

=

=∑

That is, the given length vector stands for a Huffman code
or a Huffman equivalent code.

Any binary Huffman equivalent code, C, can be
represented by a unique binary tree, where each node either
has two branches (left-branch denoted as symbol 0 and
right-branch denoted as symbol 1) or is a terminal node.
The level of a node in the tree is defined by initially letting
the root be at level zero. The depth of the tree is defined as
the maximum level of nodes in the tree. The path of a node
is a string composed of the collection of symbols traversed
from the root to that node. A codeword is the path of some
terminal node.

In error propagation, an error that occurs in some
codeword of the received string causes the codeword to be
decoded incorrectly, and then the next codeword(s)
(one codeword or many codewords) is (are) also decoded
incorrectly. Until some codeword is decoded correctly, the
code is resynchronised. The processes of error propagation
and resynchronisation in a Huffman code are shown
in Figure 1.

Figure 1 Error propagation and resynchronisation (see online
version for colours)

The following definitions and theorem in this section were
originally given in Rudner (1971) and Escott and Perkins
(1998).

Definition 1: Let C be a binary Huffman equivalent
code. We say that C is synchronous if there is a
codeword c = c1c2…cr in C satisfying the following two
conditions:

• For all b = b1b2…bn in C such that n > r and c is a
substring of b, we have c1c2…cr = bn–r+1bn–r…bn, but
c1c2…cr ≠ bibi+1…bi+r–1 for any i ≠ n – r + 1.

• For any j < r such that c1c2…cj appears as a suffix of a
codeword, the sequence cj+1cj+2…cr must be a sequence
of codewords.

If such a codeword c exists, it is called a synchronising
codeword for C.

Definition 2: Let C be a binary Huffman equivalent
code with the shortest codeword of length m. Let c1c2…cr
be a synchronising codeword of C with r = m + 1. A node,
N, of the corresponding binary tree is a c-node if its path is
either c2…cr or z*c1c2…cr, where z* ∈ A*. A node, N, is a
d-node if its path is of the type z*c1c2…ck for some k,
2 ≤ k < r. A node, N, that is neither a c-node nor a
d-node is a 0-node (resp. 1-node) if its path ends in a 0
(resp. 1).

56 Y-M. Huang and S-C. Wu

Notice that any shortest codeword must not be a
synchronising codeword.

Theorem 1: c-nodes are ones that must be terminated
(taken as codewords) and d-nodes are nodes that must be
extended (cannot be taken as codewords).

Theorem 2: Suppose C is a binary equivalent Huffman
code with the shortest codeword of length m (m > 1).
Let c1c2…cr be a synchronising codeword of C such that
r = m + 1 and c1 = 0 (resp. 1). Then, ci = 1 (resp. 0) for
i = 2, …, r – 1. That is, if there exist length-(m + 1)
synchronising codewords with c1 = 0 (resp. 1) for C with the
shortest codeword of length m, then they can only be 01r–20
or 01r–1 (resp. 10r–21 or 10r–1).

Proof: A method that was more straightforward than that of
Rudner (1971) was given in Huang and Wu (2003). 

Escott and Perkins (1996) pointed out that at most two
synchronising codewords (01r–20 and 01r–1, or 10r–21 and
10r–1) can exist simultaneously in a code, C, if such a code
exists. Without loss of generality, we consider the
synchronising codewords 01r–20 and 01r–1.

3 Existence of a code with two synchronising
codewords 01r–20 and 01r–1 of length r

BT: The corresponding binary tree of code C.
FBT: The full binary tree of depth M.
SFBT: Any subtree of the FBT.
Ci: The number of level i c-nodes in the BT.
Di: The number of level i d-nodes in the BT.
0i: The number of level i 0-nodes in the BT.
CFi: The number of level i c-nodes in the FBT.
DFi: The number of level i d-nodes in the FBT.
C0i: The number of level i c-nodes in an SFBT whose

root is a 0-node.
Cci: The total number of level i c-nodes in two SFBTs

of which the roots are c-nodes; the respective
paths of these two c-nodes end, respectively, in a
0 and a 1.

D0i: The number of level i d-nodes in an SFBT whose
root is a 0-node.

Dci: The total number of level i d-nodes in two SFBTs
of which the roots are c-nodes; the respective
paths of these two c-nodes end, respectively, in a
0 and a 1.

T0i: The number of level i 0-nodes taken as codewords
in the FBT.

Notes

• The level of a node in the referenced tree (BT, FBT, or
SFBT) is defined by initially letting the root be at level
zero.

• The depth of a tree is defined as the maximum level of
any node in the tree.

In this section, we derive the sufficient and necessary
condition for the co-existence of two length r synchronising
codewords, 01r–20 and 01r–1, in a code, C. The sufficient and
necessary conditions for the other two cases:

• the existence of a unique length r synchronising
codeword 01r–1

• the existence of a unique length r synchronising
codeword 01r–20, are, respectively, shown in
Appendices (A) and (B).

Let C be any binary Huffman equivalent code whose length
vector (n1, …, nM) satisfies ni = 0 for i < m and nm ≥ 2 for
some m > 1, and with synchronising codewords 01r–20
and 01r–1 for r = m + 1. Then, Lemmas 1–3 hold for such
a code.

Lemma 1: The number of level i c-nodes in the BT can be
obtained as

()

for1 2

0 0
2

 for 2 ,

i i

i m i m
k

i i k i k i k
k m k m

C CF i m
C

C CF T C Cc

 i m

− −

− −
= =

= ≤ <


  = − × − ×  
 

 ≥

∑ ∑

where

(1)

0 for 1
2 for

2 2 2 for ,

i

i
i m i m

i

CF i m
CF i m

CF i m− + −

 = ≤ <
 = =
 = × = >

 (1-1)

(1)

0 0 for 1
0 2 for

0 2 2 2 for ,

i

i
i m i m

i

C i m
C i m

C i m− + −

 = ≤ <
 = =
 = × = >

 (1-2)

and

(1) 1

0 for1
2 for

2 2 2 2 for .

i

i
i m i m

i

Cc i m
Cc i m

Cc i m− + − +

 = ≤ <
 = =
 = × × = >

 (1-3)

Proof: (1-1) The number of level i (i < m) c-nodes in the
FBT is trivially equal to zero. The paths of the two level
m c-nodes in the FBT are 1r–20 and 1r–1, respectively.
The paths of the level i (i > m) c-nodes in the FBT are

 The construction of binary Huffman equivalent codes with a greater number of synchronising codewords 57

of the form x1x2…xi–r01r–20 and x1x2…xi–r01r–1, where xj

(j = 1…i – r) ∈ {0, 1}. Hence, the number of level i c-nodes
in the FBT is equal to 2i–(m+1) × 2 = 2i–m for i > m (see
Figure 2).

Figure 2 FBT of depth 6 with two shortest SCs 0110 and 0111,
where SC denotes synchronising codeword (see online
version for colours)

(1-2) For any SFBT whose root is a 0-node, the number of
level i (i < m) c-nodes in the SFBT is trivially equal to zero.
The paths of the two level m c-nodes in the SFBT are 1r–20
and 1r–1, respectively. The paths of those level i (i > m)
c-nodes in the SFBT are also of the form x1x2…xi–r01r–20
and x1x2…xi–r01r–1 (see Figure 3).

Figure 3 Any one SFBT of depth 6 whose root is 0-node when
two shortest synchronising codewords, 0110 and 0111,
exist in code C (see online version for colours)

(1-3) For any pair of SFBTs whose roots are c-nodes, the
paths of these two c-nodes end, respectively, in a 0 and a 1.
The total number of level i c-nodes in these two SFBTs is
trivially equal to zero for i < m. The paths of the two level
m c-nodes in the former SFBT are 1r–20 and 1r–1. However,
there exists no c-node at level m in the latter SFBT.
The paths of the level i (i > m) c-nodes in either of these
two SFBTs are all of the form x1x2…xi–r01r–20 and x1x2…
xi–r01r–1. Hence, the total number of level i c-nodes in the
pair of SFBTs is equal to 2i–(m+1) × 2 × 2 = 2i–m+1 for i > m
(see Figure 4).

From equations (1-1)–(1-3) and T0k, which will be
introduced in Lemma 3, Ci can be easily obtained, where
1 ≤ i ≤ M. 

Figure 4 Two SFBTs of depth 5 whose roots are c-nodes.
The paths of these c-nodes end, respectively, in a 0
and a 1 (see online version for colours)

Lemma 2: The number of level i d-nodes in the BT can be
obtained as

()
1 1

 for1 and

0 0
2

 for ,

− −

− −
= =

= ≤ ≤

  = − × − ×  

 
 >

∑ ∑
i i

i i
k

i i k i k i k
k m k m

D DF i m
C

D DF T D Dc

 i m

where

2

2

0 for = 1

2 for 1 < <

2 for ,

−

=

−

=


 =


=



= ≥


∑

∑

i

i
i k

i
k

m
i k

i
k

DF i

DF i m

DF i m

 (2-1)

2

2

0 1 for 1

0 2 1 for 1

0 2 for ,

−

=

−

=


 = =
 = + < <



= ≥


∑

∑

i

i
i k

i
k

m
i k

i
k

D i

D i m

D i m

 (2-2)

and

2 1

1

2 1

1 for 1

2 2 1 2 for 1

2 2 2 for .

− −

= =

−
− −

= =


 = =
 = × + = < <



= × = ≥


∑ ∑

∑ ∑

i

i i
i k i k

i
k k

m m
i k i k

i
k k

Dc i

Dc i m

Dc i m

 (2-3)

Proof: (2-1) The number of level 1 d-nodes in the FBT is
trivially equal to zero. The paths of the level i (1 < i < m)
d-nodes in the FBT are of the form x1x2…xi–j–101j, where
j = 1…i – 1. Hence, the number of level i d-nodes in the
FBT is equal to

58 Y-M. Huang and S-C. Wu

2

2 for 1 < < .
i

i k

k

i m−

=
∑

The paths of the level i (i ≥ m) d-nodes in the FBT are of the
form x1x2…xi–j–101j, where j = 1…m – 1. Hence, the number
of level i d-nodes in the FBT is equal to

2

2 for
m

i k

k

i m−

=

≥∑ (see Figure 2).

(2-2) For any SFBT whose root is a 0-node, the number
of level 1 d-nodes in the SFBT is trivially equal to one.
The paths of the level i (1 < i < m) d-nodes in the SFBT are
of the form x1x2…xi–j–101j, where j = 1…i – 1 and 1i. Hence,
the number of level i d-nodes in the SFBT is equal to

2

1 2 for 1 < < .
i

i k

k

i m−

=

+∑

The paths of the level i (i ≥ m) d-nodes in the SFBT are of
the form x1x2…xi–j–101j, where j = 1…m – 1. Hence, the
number of level i d-nodes in the SFBT is equal to

2

2 for
m

i k

k

i m−

=

≥∑ (see Figure 3).

(2-3) For any pair of SFBTs whose roots are c-nodes, the
paths of these two roots end, respectively, in a 0 and a 1.
There is one level 1 d-nodes in the former SFBT, whereas
no level 1 d-node exists in the latter SFBT. The paths of the
level i (1 < i < m) d-nodes in the former SFBT are of
the forms 1i and x1x2…xi–j–101j, where j = 1…i – 1. And, the
paths of the level i (1 < i < m) d-nodes in the latter SFBT
are of the form x1x2…xi–j–101j, j = 1…i – 1. Thus,
the total number of level i d-nodes in the pair of SFBTs is
equal to

2

1 2 2 for 1 .
i

i k

k

i m−

=

+ × < <∑

The paths of the level i (i ≥ m) d-nodes in either of these
two SFBTs are all of the form x1x2…xi–j–101j, where
j = 1…m – 1. Hence, the total number of level i d-nodes in
the pair of SFBTs is equal to

2

2 2 for
m

i k

k

i m−

=

× ≥∑ (see Figure 4)

From equations (2-1)–(2-3) and T0k, which will be
introduced in Lemma 3, Di can be easily obtained, where
1 ≤ i ≤ M. 

Lemma 3: The number of level i 0-nodes (0i) and the
number of level i 0-nodes taken as codewords (T0i) in the
BT can be obtained as

()1 1 1

0 2 1 for 1

0 2 for

0 0 0 for
2

i
i i

i
i i i

i
i i i i

D i m

C D i m
C

D T m i M− − −


 = − − ≤ <
 = − − =
   = − + − < ≤   

 (3-1)

and

.
0 0 for 1
0 for

= ≤ <
 = − ≤ ≤

i

i i i

T i m
T n C m i M

 (3-2)

Proof: (3-1) Since no c-node exists and there is just one
1-node at level i (1 ≤ i < m) in the BT, the number of level
i 0-nodes in the BT is equal to 2i-Di-1 for 1 ≤ i < m.
Furthermore, by Corollary 7 of Escott and Perkins (1996),
there exists no 1-node of length greater than or equal to
m in the BT. Hence, the number of level m 0-nodes in
the BT is equal to 2m – Cm – Dm. Moreover, based on Escott
and Perkins (1996), extending a level i 0-node or extending
a level i d-node with no suffix 01m–1 forms a level-(i + 1)
0-node for m ≤ i ≤ M – 1. Hence, for m < i ≤ M, the number
of level i 0-nodes in the BT is equal to the sum of 0i–1–T0i–1
(which is the number of extended 0-nodes at level i – 1) and
Di–1 – Ci/2 (which is the number of d-nodes at level i – 1
with no suffix 01m–1).

(3-2) The number of level i 0-nodes taken as codewords in
the FBT is trivially equal to zero for 1 ≤ i < m. On the other
hand, no 1-node exists at level i, m ≤ i ≤ M in the BT. Thus,
only 0-nodes and c-nodes can be taken as codewords, and
all c-nodes must be taken as codewords in the BT. Hence,
the number of level i 0-nodes taken as codewords in the
BT is equal to ni – Ci for m ≤ i ≤ M. 

Next, through the computations in Lemma 1, Lemmas 2
and 3, we obtain the main result of this section.

Theorem 3: For the length vector (n1, …, nM), where ni = 0
for i < m and nm ≥ 2 for some m > 1, there exists a binary
Huffman equivalent code, C, that contains two
synchronising codewords, 01r–20 and 01r–1, with r = m+1,
 if and only if Ci ≤ ni ≤ Ci + 0i for m ≤ i ≤ M.

Proof: Since all c-nodes must be taken as codewords in
the BT, ni must be greater than or equal to Ci; otherwise,
some c-nodes will be extended. On the other hand, because
only the 0-nodes and c-nodes can be taken as codewords
in this BT, ni must be less than or equal to Ci + 0i; otherwise,
some d-nodes will be terminated. Therefore, Ci ≤ ni ≤ Ci + 0i
for m ≤ i ≤ M and the sufficient condition part of the
theorem is proved.

Since Lemmas 1–3 hold for such a code, C,
the inequalities, Ci ≤ ni ≤ Ci + 0i for m ≤ i ≤ M, assert the
existence of the code (i.e., the BT) and the necessary
condition part of the theorem is proved. 

4 A unified algorithm for constructing a binary
Huffman equivalent code with the shortest, or
at most two shortest, synchronising
codeword(s) of length r

In Escott and Perkins (1998), the authors pointed out that
when 01r–20 is the shortest synchronising codeword, a better
code (in terms of the synchronising capability) can
sometimes be generated by extending the 0-nodes rather

 The construction of binary Huffman equivalent codes with a greater number of synchronising codewords 59

than always extending the 1-nodes. Here, we give the
condition under which this criterion can be used, and obtain
a better code.

Theorem 4: If all of these equations,

1

2 1 1 1 1

1 1 1 1

1

,() : 0 1 0 0 1 0;
() : 0 1 ;

() : 0 1 ;
() : ;

+ + + +

+ − + − + − + −

+ + +

< < + + > >
 < + +

 < + +
 <

i i i i i i i

i i i i

m i m i m i m i m

m i m i m

E C n C and
E n C

E n C
E C n

 (4)

hold for some i, where m ≤ i ≤ M-m, then during the
construction of code C, there will exist at least one pair of
terminated 0-node and extended 1-node at level i in the
corresponding binary tree. For this moment, if we swap
them (i.e., extending the 0-node and terminating the
1-node), then we can also finally obtain a binary equivalent
code, C′, with one synchronising codeword, 01r–20, for the
same length vector, which is sometimes better than C, with a
greater number of synchronising codewords.

Proof (E1): This implies that at least one 0-node can be
terminated (T0i > 0, i.e., ni > Ci & 0i > 0) and at least one
1-node can be extended (T1i < 1i, i.e., T1i = ni – Ci – 0i < 1i).

(E2–Em): On the basis of Lemma 7 of Escott and Perkins
(1998), extending a level i 0-node forms 0-nodes of every
level, (i + l) for l = 1…r – 2; d-nodes of every level, (i + l)
for l = 1…r – 2; a level (i + r – 1) c-node; a level-(i + r – 1)
1-node, whereas extending a level i 1-node forms a level-
(i + 1) 0-node and a level-(i + 1) 1-node. Since any d-node
must be extended, only when at least one extended 1-node
(T1i+h < 1i, i.e., T1i+h = ni+h–Ci+h–0i+h < 1i+h) exists for each
of the following levels, (i + h) for 1 ≤ h ≤ m – 1, is it
possible to swap them.

(Em+1): Since the number of level-(i + m) c-nodes will
increase by one after swapping, ni+m must be greater than
Ci+m; otherwise, Theorem B.1 will no longer hold. 

After swapping, the notations in equation (5) need to be
updated to fulfil Theorem B.1, which was originally
derived based on the constructing algorithm of Escott and
Perkins (1998).

1 1

2 2

1 1

1 1 1;
1 1 1;

1 1 1;
0 0 1 and 1;

i i

i i

i m i m

i m i m i m i m C C

+ +

+ +

+ − + −

+ + + +

= −
 = −

 = −
 = − = +

 (5)

Next, based on the sufficient and necessary conditions
(derived in Section 3 and appendices) and Theorem 4,
we propose a unified construction algorithm guaranteed to
generate a binary Huffman equivalent code with the
shortest, or at most two shortest, synchronising codeword(s)
of length r, if such a code exists for a given length vector.

Furthermore, the number of synchronising codewords of the
constructed code is greater than or equal to that of any that
exists in the literature.

Algorithm 1

Input: A length vector (n1, …, nM) with ni = 0 for 1 ≤ i < m
and nm ≥ 1 for some m > 1.

Output: A synchronous binary Huffman equivalent
code, C.

Step 1: Let m be the smallest integer satisfying nm ≠ 0,
and let M be the largest integer satisfying nM ≠ 0.

 Put r = m+1.
Step 2: If nm = 1, then go to Step 3.

If both synchronising codewords, 01r–20 and 01r–1,
can exist simultaneously in code C (tested by
Theorem 3), then 01r–20 and 01r–1 are selected, and
go to Step 5.

Step 3: If the synchronising codeword, 01r–1, can exist in
code C (tested by Theorem A.1), then 01r–1 is
selected, and go to Step 5.

Step 4: If the synchronising codeword, 01r–20, can exist in
code C (tested by Theorem B.1), then 01r–20 is
selected, and go to Step 6.
else Return “There exists no binary Huffman

equivalent code C with at least one
synchronising codeword of length r for this
length vector”.

Step 5: Repeat for each length i, where 1 ≤ i ≤ M {
Terminate all level i c-nodes.
Extend all level i d-nodes.

 If i ≥ m, then terminate any 0-nodes as required,
and extend the remaining 0-nodes.

 else
extend the remaining 0-nodes and 1-nodes.

 } Return C.
Step 6: Repeat for each length i, where 1 ≤ i ≤ M {

Terminate all level i c-nodes.
 Extend all level i d-nodes.
 If m ≤ i ≤ M-m then {

Swapno = 0
Repeat {

If equation (4) holds & (swapno < 1i),
then {terminate any one 1-node and
extend any one 0-node simultaneously,
swapno=swapno+1, and update equation
(5)}.
else if any one 0-node is available then

terminate any one 0-node.
else terminate any one 1-node.

} Until (ni–Ci) nodes are terminated
 }

else if M–m < i ≤ M then terminate any 0-nodes
whenever possible, otherwise 1-nodes as
required.

Extend the remaining 0-nodes and 1-nodes.
} Return C.

60 Y-M. Huang and S-C. Wu

5 Examples

Example 1: For the length vector (0, 0, 2, 7, 7, 5, 1, 1, 1, 2),
a corresponding binary Huffman equivalent code, C, with
synchronising codeword 0110 can be generated by using
Algorithm 1.

Step 1: m = 3, M = 10, and r = 4.

Step 2: From Table 1, we can ensure that no Huffman
equivalent code exists for the given length vector
with two synchronising codewords, 0110 and 0111,
through the test of Theorem 3.

Step 3: From Table 2, we can further ensure that there
is also no Huffman equivalent code for the
given length vector, even with only one
synchronising codeword, 0111, through the test of
Theorem A.1.

Step 4: From Table 3, we know that one Huffman
equivalent code exists for the given length
vector with a synchronising codeword, 0110,
through the test of Theorem B.1. Then, go to
Step 6.

Step 6: In this step, equation (4) will hold for the cases of
i = 3 and i = 7.

Table 1 Test of Theorem 3

Level i ni Ci 0i
3 2 2 3
4 7 2 5
5 7 4 3
6 5 6 0

Table 2 Test of Theorem A.1

Level i ni Ci 0i
3 2 1 4
4 7 1 6
5 7 2 5

Table 2 Test of Theorem A.1 (continued)

Level i ni Ci 0i
6 5 3 3
7 1 0 1
8 1 0 1
9 1 1 1
10 2 0 1

Table 3 Test of Theorem B.1

Level i ni Ci 0i 1i
3 2 1 3 1
4 7 1 5 2
5 7 2 3 3
6 5 2 1 3
7 1 0 1 1
8 1 0 1 1
9 1 0 1 1
10 2 0 1 1

Code C is shown in Table 4. We also list the codes,
respectively, obtained by using the algorithms of Ferguson
and Rabinowiz (1984), Escott and Perkins (1998) and
Zhou and Zhang (2002). Although the codes generated
from Algorithm 1 and the Fixed Order method both have the
same number of synchronising codewords, the latter has a
smaller MEPL and VEPL. In general, a larger sum for the
probabilities of transmitting a synchronising codeword leads
to a quicker resynchronisation for the code. The sum of the
probabilities of transmitting a synchronising codeword for
the above-mentioned two codes are, respectively, equal to
0.2593 and 0.2919. Although the sum of the probabilities of
transmitting a synchronising codeword for the code
constructed by the Max Gain method is smaller (0.2563),
the code also has a smaller MEPL and VEPL. Thus, it is a
better statistically synchronisable code. That is, using the
MEPL and VEPL to evaluate the synchronisation capability
of a code is more accurate than using the sum of the
probabilities of transmitting a synchronising codeword.

Table 4 Comparisons of MEPLs and VEPLs of Huffman equivalent codes for English alphabet source

Letter Prob.
Fixed Order of Zhou and

Zhang (2002)
Max Gain of Zhou and

Zhang (2002)
Ferguson and

Rabinowiz (1984)
Escott and Perkins

(1998) Algorithm 1

E 0.1278 001 001 001 110 110
T 0.0855 101 101 010 100 111
O 0.0804 0001 1001* 0001 0110* 0110*
A 0.0778 1001* 1101 0110 0000 0000
N 0.0686 0101 0001 0111 0010 0010
I 0.0667 1101 0101 1010 0100 0100
R 0.0651 0111 0111 1011 0111 0111
S 0.0622 1111 1111 1100 1010 1000
H 0.0595 0000 0000 1111 1110 1010
D 0.0404 10001* 01001* 00001 00110* 00110*

 The construction of binary Huffman equivalent codes with a greater number of synchronising codewords 61

Table 4 Comparisons of MEPLs and VEPLs of Huffman equivalent codes for English alphabet source (continued)

Letter Prob.
Fixed Order of Zhou and

Zhang (2002)
Max Gain of Zhou and

Zhang (2002)
Ferguson and

Rabinowiz (1984)
Escott and Perkins

(1998) Algorithm 1

L 0.0372 01001* 11001* 10010 10110* 10110*
U 0.0308 11001* 11101 10011 00010 00010
C 0.0296 01101* 01101* 11010 01010 00111
M 0.0288 11101 10001 11011 10111 01010
P 0.0223 10000 10000 11100 11110 10010
F 0.0197 01000 11000 11101 11111 10111*
Y 0.0196 110001* 111001* 100001* 000110* 000110*
W 0.0176 011001* 011001* 100010 010110* 010110*
G 0.0174 111001* 010001* 100011 000111 100110*
B 0.0141 110000* 010000* 000001 001110 000111*
V 0.0112 011000 011000 000000 010111 010111*
K 0.0074 1110001* 1110001 1000001* 0011110 1001111
J 0.0051 11100001 11100001 10000001 00111110 10011100
X 0.0027 111000001 111000001 100000001 001111110 100111010
Z 0.0017 1110000001 1110000001 1000000001 0011111110* 1001110110*
Q 0.0008 1110000000 1110000000 1000000000 0011111111 1001110111
MEPL 1.9030 1.8483 3.3998 2.0522 1.9260
VEPL 1.3634 1.2294 7.2986 2.0672 1.5225

*Denotes that the codeword is a synchronising codeword.

Example 2: For the length vector (0, 2, 3, 2), a binary
Huffman equivalent code, C, with two synchronising
codewords, 010 and 011, as shown in Table 5, can be
generated by using Algorithm 1. However, only one
synchronising codeword, 101, exists in the code obtained by
using either the Fixed Order method or the Max
Gain method of Zhou and Zhang (2002). The MEPL and
VEPL values of the code generated from Algorithm 1 are
smaller.

From Examples 1 and 2, we find that none of the existing
algorithms can be guaranteed to find an optimal solution.
That is, all of the existing algorithms are just heuristic, and
an algorithm for finding the Huffman equivalent code with
minimum MEPL and VEPL is still not available, and may
be impossible, as stated by Zhou and Zhang (2002).

A shorter synchronising codeword (i.e., its occurrence
probability is higher) will result in a quicker
resynchronisation for the code. We conjecture that, for a
given length vector, if only one shortest synchronising
codeword of length r can exist in the corresponding
constructed code, then the two codes, respectively,
generated by the Fixed Order and Max Gain methods of
Zhou and Zhang (2002) will have better synchronisation
capability than that generated by Algorithm 1. However, if
two synchronising codewords with the shortest length, r, can
exist simultaneously in the corresponding constructed code,
the code generated by Algorithm 1 will have better
synchronisation capability than the two codes, respectively,

generated by the Fixed Order and Max Gain methods of
Zhou and Zhang (2002).

Table 5 Comparisons of MEPLs and VEPLs of Huffman
equivalent codes for length vector (0, 2, 3, 2)

Letter Prob.
F.O. of Zhou and

Zhang (2002)
M.G. of Zhou and

Zhang (2002) Algorithm 1
A 0.25 01 01 10
B 0.25 11 11 11
C 0.125 101* 101* 010*
D 0.125 001 001 011*
E 0.125 000 000 000
F 0.0625 1001* 1001* 0010*
G 0.0625 1000* 1000* 0011*
MEPL 1.9252 1.9252 1.8163
VEPL 1.1318 1.1318 0.9637

6 Conclusion and discussion

In this paper, we elaborately derived the sufficient and
necessary conditions for the existence of binary Huffman
equivalent codes with the shortest, or at most two shortest,
synchronising codeword(s) of length r, and proposed
a unified approach for constructing these codes.
We also showed that one code constructed by the proposed
algorithm had better synchronisation capability than the
existing ones.

62 Y-M. Huang and S-C. Wu

The results of Zhou and Zhang (2002) are significant,
but the synchronisation capability of the code constructed
by the construction algorithm of Zhou and Zhang (2002) is
not always the best. A method for combining the ideas of
Zhou and Zhang (2002) and the synchronising codeword
technique to design a much better code deserves further
investigation.

References
Cao, L., Yao, L. and Chen, C.W. (2007) ‘MAP decoding of

variable length codes with self-synchronization strings’,
IEEE Trans. Signal Processing, Vol. 55, No. 8, August,
pp.4325–4330.

Capocelli, R.M., Gargano, L., and Vaccaro, U. (1988) ‘On the
characterization of statistically synchronizable variable-
length codes’, IEEE Trans. Inf. Theory, Vol. 34, July,
pp.817–825.

Capocelli, R.M., Santis, A.A.D., Gargano, L. and Vaccaro, U.
(1992) ‘On the construction of statistically synchronizable
codes’, IEEE Trans. Inf. Theory, Vol. 38, March,
pp.407–414.

Chabbouh, S. and Lamy, C. (2002) ‘A structure for fast
synchronizing variable-length codes’, IEEE Commun. Letters,
Vol. 6, No. 11, November, pp.500–502.

Escott, A.E. and Perkins, S. (1996) ‘The construction of binary
Huffman equivalent codes with two short synchronizing
codewords’, Proc. Int. Symp. Inf. Theory and its Applications,
Victoria, Canada, pp.294–297.

Escott, A.E. and Perkins, S. (1998) ‘Binary Huffman equivalent
codes with a short synchronizing codeword’, IEEE Trans. Inf.
Theory, Vol. 44, January, pp.346–351.

Ferguson, T.J. and Rabinowiz, J.H. (1984) ‘Self-synchronizing
Huffman codes’, IEEE Trans. Inf. Theory, Vol. IT-30, July,
pp.687–693.

Higgs, M.B.J., Perkins, S. and Smith, D.H. (2009)
‘The construction of variable length codes with good
synchronization properties’, IEEE Trans. Inf. Theory, Vol. 55,
No. 4, April, pp.1696–1700.

Huang, Y-M. and Wu, S-C. (2003) ‘Shortest synchronizing
codeword of a binary Huffman equivalent code’, Proc. IEEE
Int. Conf. on Information Technology: Coding and Computing
(ITCC), Las Vegas, IEEE Computer Society, April,
pp.226–231.

Huffman, D.A. (1952) ‘A method for the construction of minimum
redundancy codes’, Proc. IRE, Vol. 40, No. 2, pp.1098–1101.

Kleinrock, L. (1975) Queueing System Volume I: Theory,
John Wiley & Sons Incorporation, New York.

Malinowski, S., Jegou, H. and Guillemot, C. (2007)
‘Synchronization recovery and state model reduction for soft
decoding of variable length codes’, IEEE Trans. Inf. Theory,
Vol. 53, No. 1, January, pp.368–377.

Montgomery, B.L. and Abrahams, J. (1986) ‘Synchronization of
binary source codes’, IEEE Trans. Inf. Theory, Vol. IT-32,
November, pp.849–854.

Perkins, S. and Escott, A. E. (1999) ‘Synchronizing codewords for
q-ary Huffman codes’, Discrete Mathematics, Vols. 197, 198,
February, pp.637–655.

Rudner, B. (1971) ‘Construction of minimum-redundancy codes
with an optimum synchronization property’, IEEE Trans. Inf.
Theory, Vol. IT-17, July, pp.478–487.

Takishima, Y., Wada, M. and Murakami, H. (1994) ‘Error states
and synchronization recovery for variable length codes’,
IEEE Trans. Commun., Vol. 42, Nos. 2–4, February–March,
pp.782–792.

Wei, V.K.W. and Sholtz, R.A. (1980) ‘On the characterization of
statistically synchronizable codes’, IEEE Trans. Inf. Theory,
Vol. IT-26, November, pp.733–735.

Zhou, G. and Zhang, Z. (2002) ‘Synchronization recovery of
variable-length codes’, IEEE Trans. Inf. Theory, Vol. 48,
No. 1, January, pp.219–227.

Zhou, J., Au, O.C., Fan, X. and Wong, P.H.W. (2008) ‘Error
recovery of variable length codes over BSC with arbitrary
crossover probability’, Proc. IEEE Int. Symp. Inf. Theory,
Toronto, Canada, July, pp.1188–1192.

Appendices

In Appendices (A) and (B), since there are no two c-nodes
with the same parent, the abbreviated notations, Cci and Dci,
are redefined as follows:

Cci: The number of level i c-nodes in an SFBT whose root is
a c-node.

Dci: The number of level i d-nodes in an SFBT whose root
is a c-node.

For the following lemmas and theorems, we will omit
portions of the proofs because these proofs are similar to
those of Section 3.

(A) Existence of a code with a unique synchronising
codeword 01r–1 of length r

Let C be any binary Huffman equivalent code whose
length vector (n1, …, nM) satisfies ni = 0 for i < m and nm ≥ 1
for some m > 1, and with only one synchronising codeword
01r–1 of length r, where r = m + 1. Then, Lemmas A.1–A.3
hold for such a code.

Lemma A.1: The number of level i c-nodes in the BT can be
obtained as

 for1 2

(0 0) ()

 for 2 ,

i i

i m i m

i i k i k k i k
k m k m

C CF i m

C CF T C C Cc

 i m

− −

− −
= =

= ≤ <
 = − × − ×

 ≥

∑ ∑

where

(1)

0 for 1
1 for

2 for ,

i

i

i m
i

CF i m
CF i m

CF i m− +

 = ≤ <
 = =
 = >

 (A1-1)

(1)

0 0 for 1
0 1 for

0 2 for ,

i

i

i m
i

C i m
C i m

C i m− +

 = ≤ <
 = =
 = >

 (A1-2)

and

 The construction of binary Huffman equivalent codes with a greater number of synchronising codewords 63

(1)

0 for 1

2 for .
i

i m
i

Cc i m

Cc i m− +

= ≤ ≤


= >
 (A1-3)

Proof: (A1-3) The number of level i c-nodes in an SFBT
whose root is a c-node is trivially equal to zero for 1 ≤ i ≤ m.
The path of the level i (i > m) c-nodes in the SFBT is of the
form x1x2,…xi–r01r–1. Hence, the number of level i c-nodes
in the SFBT is equal to 2i–(m+1) for i > m. 

Lemma A.2: The number of level i d-nodes in the BT can
be obtained as

1 1

for 1

(0 0) ()

for ,

i i

i i

i i k i k k i k
k m k m

D DF i m

D DF T D C Dc

 i m

− −

− −
= =

= ≤ ≤
 = − × − ×

 >

∑ ∑

where

2

2

0 for 1

2 for 1

2 for .

i

i
i k

i
k

m
i k

i
k

DF i

DF i m

DF i m

−

=

−

=


 = =

 = < <



= ≥


∑

∑

 (A2-1)

2

2

0 1 for 1

0 2 1 for 1

0 2 for ,

i

i
i k

i
k

m
i k

i
k

D i

D i m

D i m

−

=

−

=


 = =

 = + < <



= ≥


∑

∑

 (A2-2)

and

2

2

0 for 1

2 for 1

2 for .

i

i
i k

i
k

m
i k

i
k

Dc i

Dc i m

Dc i m

−

=

−

=


 = =

 = < <



= ≥


∑

∑

 (A2-3)

Proof: (A2-3) The number of level 1 d-nodes in an SFBT
whose root is a c-node is trivially equal to zero. The paths
of those level i (1 < i < m) d-nodes in the SFBT are of the
form x1x2 … xi–j–101j (x1, x2, …, xi–j–1 ∈ {0,1}), where
j = 1 … i – 1. Hence, the number of level i d-nodes in the
SFBT is equal to

2
2

i
i k

k

−

=
∑ for 1 < i < m.

The paths of the level i (i ≥ m) d-nodes in the SFBT
are of the form x1x2 … xi–j–101j, where j = 1 … m – 1.
Hence, the number of level i d-nodes in the SFBT is
equal to

2
2

m
i k

k

−

=
∑ for i ≥ m. 

Lemma A.3: The number of level i 0-nodes (0i) and the
number of level i 0-nodes taken as codewords (T0i) in the
BT can be obtained as

1 1 1

0 2 1 for 1

0 2 for
0 (0 0) for

i
i i

i
i i i

i i i i

D i m

C D i m
D T m i M− − −

 = − − ≤ <


= − − =
 = + − < ≤

 (A3-1)

and

0 0 for 1
0 for .

i

i i i

T i m
T n C m i M

= ≤ <
 = − ≤ ≤

 (A3-2)

Proof: (A.3-1) On the basis of Escott and Perkins (1998),
extending a level i 0-node or extending a level i d-node
must form a level-(i + 1) 0-node for m ≤ i ≤ M–1. Hence, for
m < i ≤ M, the number of level i 0-nodes in the BT is equal
to the sum of 0i–1–T0i–1 (which is the number of extended
0-nodes at level i – 1) and Di–1 (which is the number of
d-nodes at level i – 1). 

Next, through the computations in Lemma A.1, Lemma A.2
and Lemma A.3, we have the following theorem.

Theorem A.1: For the length vector (n1,…,nM), where
ni = 0 for i < m and nm ≥ 1 for some m > 1, there exists a
binary Huffman equivalent code, C, that contains only one
synchronising codeword, 01r–1, of length r, with r = m + 1,
if and only if Ci ≤ ni ≤ Ci + 0i for m ≤ i ≤ M.

Proof: Since all c-nodes must be taken as codewords in the
BT, ni must be greater than or equal to Ci; otherwise, some
c-nodes will be extended. On the other hand, because only
the 0-nodes and c-nodes can be taken as codewords in this
BT, ni must be less than or equal to Ci + 0i; otherwise, some
d-nodes will be terminated. Therefore, Ci ≤ ni ≤Ci + 0i for
m ≤ i ≤ M and the sufficient condition part of the theorem is
proved.

Since Lemmas A.1–A.3 hold for such a code, C, the
inequalities, Ci ≤ n i≤ Ci + 0i for m ≤ i ≤ M, assert the
existence of the code (i.e., the BT) and the necessary
condition part of the theorem is proved. 

(B) Existence of a code with a unique synchronising
codeword 01r–20 of length r

C1i: The number of level i c-nodes in an SFBT whose root is
a 1-node.

D1i: The number of level i d-nodes in an SFBT whose root
is a 1-node.

1i: The number of level i 1-nodes in the BT.

T1i: The number of level i 1-nodes taken as codewords in
the FBT.

64 Y-M. Huang and S-C. Wu

Let (n1, …, nM) be the length vector of any binary Huffman
equivalent code, C, with only one synchronising codeword
01r–20, of length r = m + 1, where ni = 0 for i < m and nm ≥ 1
for some m > 1. Suppose this code is constructed by using
Algorithm 2 of Escott and Perkins (1998), and always
terminates 0-nodes (alternatively extends 1-nodes)
whenever possible. Then, Lemmas B.1–B.4 hold for such a
code.

Lemma B.1: The number of level i c-nodes in the BT can be
obtained as

()

() ()

 for1 2

0 0

 1 1

 for 2 ,

i i
i m

i i k i k
k m

i m i m

k i k k i k
k m k m

C CF i m

C CF T C

C Cc T C

 i m

−

−
=

− −

− −
= =

= ≤ <

 = − ×


 − × − ×


≥

∑

∑ ∑

where

(1)

0 for 1
1 for

2 for ,

i

i

i m
i

CF i m
CF i m

CF i m− +

 = ≤ <
 = =
 = >

 (B1-1)

(1)

0 0 for 1
0 1 for

0 2 for ,

i

i

i m
i

C i m
C i m

C i m− +

 = ≤ <
 = =
 = >

 (B1-2)

(1)

1 0 for 1

1 2 for ,
i

i m
i

C i m

C i m− +

= ≤ ≤


= >
 (B1-3)

and

(1)

0 for 1
1 for

2 for .

i

i

i m
i

Cc i m
Cc i m

Cc i m− +

 = ≤ <
 = =
 = >

 (B1-4)

Proof: (B1-4) The number of level i c-nodes in an SFBT
whose root is a c-node is trivially equal to zero for 1 ≤ i < m.
The path of the level i (i > m) c-nodes in the SFBT is of the
form x1x2…xi–r01r–1. Hence, the number of level i c-nodes in
the SFBT is equal to 2i–(m+1) for i > m. 

Lemma B.2: The number of level i d-nodes in the BT can be
obtained as

() ()

()

1 1

1

for 1

0 0

 1 1 for ,

i i

i i

i i k i k k i k
k m k m

i

k i k
k m

D DF i m

D DF T D C Dc

T D i m

− −

− −
= =

−

−
=


 = ≤ ≤

 = − × − ×



− × >


∑ ∑

∑

where

2

2

0 for =1

2 for 1 < <

2 for ,

i

i
i k

i
k

m
i k

i
k

DF i

DF i m

DF i m

−

=

−

=


 =


=



= ≥


∑

∑

 (B2-1)

2

2

0 1 for 1

0 2 1 for 1

0 2 for ,

i

i
i k

i
k

m
i k

i
k

D i

D i m

D i m

−

=

−

=


 = =


= + < <



= ≥


∑

∑

 (B2-2)

2

2

1 0 for 1

1 2 for 1

1 2 for ,

i

i
i k

i
k

m
i k

i
k

D i

D i m

D i m

−

=

−

=


 = =

 = < <



= ≥


∑

∑

 (B2-3)

and

2

2

1 for 1

2 1 for 1

2 for .

i
i

i k
i

k
m

i k
i

k

Dc i

Dc i m

Dc i m

−

=

−

=




= =

 = + < <


 = ≥


∑

∑

 (B2-4)

Proof: (B2-4) The number of level 1 d-nodes in an SFBT
whose root is a c-node is trivially equal to one. The paths of
the level i (1 < i < m) d-nodes in the SFBT are of the form
1i and x1x2…xi–j–101j (x1x2…xi–j–1 ∈ {0,1}), where j = 1…i –
 1. Hence, the number of level i d-nodes in the SFBT is
equal to

2

1 2
i

i k

k

−

=

+∑ for 1 < i < m.

The paths of the level i (i ≥ m) d-nodes in the SFBT are of
the form x1x2…xi–j–101j (x1x2…xi–j–1 ∈ {0,1}), where
j = 1…m – 1. Hence, the number of level i d-nodes in the
SFBT is equal to

2

2
m

i k

k

−

=
∑ for i ≥ m. 

Lemma B.3: The number of level i 1-nodes (1i) and the
number of level i 1-nodes taken as codewords (T1i) in the
BT can be obtained as

1 1

1 1 for 1
1 (1 1) for

i

i i i i

i m
C T m i M− −

= ≤ ≤
 = + − < ≤

 (B3-1)

 The construction of binary Huffman equivalent codes with a greater number of synchronising codewords 65

and

1 0 for 1
0 if 0

1
0 if 0 0 1

 for .

i

i i i i
i

i i i i i i i i i

T i m
C n C

T
n C C n C

m i M
<

= ≤ <
 ≤ ≤ + =  − − + ≤ + +
 ≤ ≤

 (B3-2)

Proof: (B3-1) There exists only one 1-node whose path is
1i at each level i (1 ≤ i ≤ m) in the BT. On the basis of Escott
and Perkins (1998), extending a level i 1-node or extending
a level i d-node with suffix 01r–2 forms a level-(i + 1)
1-node for m ≤ i ≤ M – 1. Hence, the number of level
i 1-nodes is equal to the sum of 1i–1 – T1i–1 (which is the
number of extended 1-nodes at level i – 1) and Ci (which is
the number of level-(i – 1) d-nodes with suffix 01r–2) for
m < i ≤ M.

(B3-2) There exists no terminal node at each level i
(1 ≤ i < m) in the BT. Hence, the number of level i 1-nodes
taken as codewords in the BT is equal to zero for 1 ≤ i < m.
In addition, all of the c-nodes must be taken as codewords in
the BT. In the constructing algorithm of Escott and Perkins
(1998), 0-nodes are always taken as codewords first
whenever possible. Hence, for m ≤ i ≤ M, the number of
level i 1-nodes taken as codewords in the BT is equal to zero
if Ci ≤ ni ≤ Ci + 0i, and ni-Ci-0i if Ci + 0i <ni ≤ Ci + 0i + 1i. 

Lemma B.4: The number of level i 0-nodes (0i) and the
number of level i 0-nodes taken as codewords (T0i) in the
BT can be obtained as

()
1 1 1

1 1

0 2 1 for 1

0 2 1 for
0 () (0 0)
 1 1 for

i
i i

i
i i i

i i i i i

i i

D i m

C D i m
D C T

T m i M
− − −

− −

 = − − ≤ <


= − − − =
 = − + −
 + − < ≤

 (B4-1)

and

0 0 for 1
 0

0
0 0

 for .

i

i i i i i i
i

i i i i

T i m
n C if C n C

T
if n C

 m i M

= ≤ <
 − ≤ ≤ + =  > +
 ≤ ≤

 (B4-2)

Proof: (B4-1) For the BT, there exists no c-node at level
i (1 ≤ i < m) by Lemma B.1 and there exists only one 1-node
at level i (1 ≤ i < m) by Lemma B.3. Hence, the number of
level i 0-nodes is equal to 2i – Di – 1 for 1 ≤ i < m. Also by
Lemma B.3, there exists only one 1-node at level m. Hence,
the number of level m c-nodes is equal to 2i – Ci – Di – 1.
On the basis of Escott and Perkins (1998), extending a level
i d-node with no suffix 01r–2, extending a level i 0-node, or
extending a level i 1-node forms a level-(i + 1) 0-node for
m ≤ i ≤ M – 1. Hence, for m < i ≤ M, the number of level i
0-nodes is equal to the sum of Di–1 – Ci (which is the
number of level-(i – 1) d-nodes with no suffix 01r–2),
0i–1 – T0i–1 (which is the number of extended 0-nodes at
level i – 1), and 1i–1 – T1i–1 (which is the number of
extended 1-nodes at level i – 1).

(B4-2) In the BT, there exists no terminal node at level
i (1 ≤ i < m). Hence, the number of level i 0-nodes taken as
codewords is equal to zero for 1 ≤ i < m. In addition, all of
the c-nodes must be taken as codewords. In the constructing
algorithm of Escott and Perkins (1998), 0-nodes are always
taken as codewords first whenever possible. Hence, for
m ≤ i ≤ M, the number of level i 0-nodes taken as codewords
is equal to ni–Ci if Ci ≤ ni ≤ Ci + 0i, and 0i if ni > Ci+0i. 

Next, through the computations in Lemma B.1, Lemma B.2,
Lemma B.3 and Lemma B.4, we have the following
corollary.

Corollary B.1: For the length vector (n1,…,nM), where
ni = 0 for i < m and nm ≥ 1 for some m > 1, there exists a
binary Huffman equivalent code, C, that is constructed by
using algorithm 2 of Escott and Perkins (1998), and always
terminates 0-nodes whenever possible and contains only
one synchronising codeword, 01r–20, of length r = m + 1,
if and only if Ci ≤ ni ≤ Ci + 0i + 1i for m ≤ i≤M.

Proof: Since all c-nodes must be taken as codewords
in the BT, ni must be greater than or equal to Ci; otherwise,
some c-nodes will be extended. On the other hand,
because only the 0-nodes, 1-nodes and c-nodes can
be taken as codewords in this BT, ni must be less than
or equal to Ci + 0i + 1i; otherwise, some d-nodes
will be terminated. Therefore, Ci ≤ ni ≤ Ci + 0i + 1i for
m ≤ i ≤ M and the sufficient condition part of the corollary
is proved.

Since Lemmas B.1–B.4 hold for such a code, C, the
inequalities, Ci ≤ ni ≤ Ci + 0i + 1i for m ≤ i ≤ M, assert
the existence of the code (i.e., the BT) and the necessary
condition part of the corollary is proved. 

Now, we have the following theorem.

Theorem B.1: For the length vector (n1,…,nM), where
ni = 0 for i < m and nm ≥ 1 for some m > 1, there
exists a binary Huffman equivalent code, C, that
contains only one synchronising codeword, 01r–20, of
length r = m + 1, if and only if Ci ≤ ni ≤ Ci + 0i + 1i for
m ≤ i≤ M.

Proof: Obviously, by Corollary B.1, the necessary condition
part of the theorem holds.

Notice that although Lemmas B.1–B.4 were derived
based on the assumption of always terminating 0-nodes
whenever possible, by Theorem 9 of Escott and Perkins
(1998), the sufficient condition part of Theorem B.1 still
holds. Suppose it does not hold, i.e., the conditions
Ci ≤ ni ≤ Ci + 0i + 1i for m ≤ i ≤ M do not hold, and there still
exists a binary Huffman equivalent code, C, that contains
only one synchronising codeword 01r–20 of length
r = m+1. By Theorem 9 of Escott and Perkins (1998), there
exists one equivalent code, C′ (which can be obtained by
always terminating 0-nodes whenever possible). Then, for
such a code, C’, Lemmas B.1–B.4 will hold and the
conditions Ci ≤ ni ≤ Ci + 0i + 1i for m ≤ i ≤ M must hold and
we have a contradiction. 

