暨大資工系通訊導論 期末考 104．1．16

1．(30%)
（a）Find the Fourier transform of $x_{1}(t)$ ．
（b）Find the Fourier series of $x_{2}(t)$ ．
（c）Show pictorially that $x_{2}(t)=\int_{-\infty}^{\infty} \frac{1}{\pi f} \sin (2 \pi f) e^{j 2 \pi f t} d f$ as $T \rightarrow \infty$ ，from the viewpoint of Riemann integral．

Solutions：
（a）

$$
\left.\begin{array}{rl}
X_{1}(f) & =\int_{-\infty}^{\infty} x_{1}(t) e^{-j 2 \pi f t} d t=\int_{-T_{s}}^{T_{s}} e^{-j 2 \pi f t} d t \\
& =\frac{1}{-j 2 \pi f}\left[e^{-j 2 \pi f T_{s}}-e^{j 2 \pi f T_{s}}\right] \\
& =\frac{\sin \left(2 \pi f T_{s}\right)}{\pi f}=2 T_{s} \operatorname{sinc}\left(2 f T_{s}\right) ; \text { where } \operatorname{sinc}(\mathrm{x}) \triangleq \sin (\pi x) / \pi x \\
X_{1}(0) & =\frac{\left[\sin \left(2 \pi f T_{s}\right)\right]^{\prime}}{[\pi f]^{\prime}}=\frac{2 \pi T_{s} \cos \left(2 \pi f T_{s}\right)}{\pi}=2 T_{s} .\left(\text { Here, } T_{s}=1\right)
\end{array}\right\}
$$

（b）
［Fourier series in standard form］

$$
\begin{aligned}
& x_{2}(t)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(2 \pi n f_{0} t\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(2 \pi n f_{0} t\right), \text { where } \\
& a_{0}=\frac{1}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2} x(t) d t=\frac{1}{T_{0}} \int_{-T_{s}}^{T_{s}} d t=\frac{2 T_{s}}{T_{0}}=\frac{1}{2} .\left(T_{s}=1 ; T_{0}=4 ; f_{0}=1 / T_{0}=0.25\right)
\end{aligned}
$$

$a_{n}=\frac{2}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2} x(t) \cos \left(2 \pi n f_{o} t\right) d t=\frac{2}{T_{0}} \int_{-T_{s}}^{T_{s}} \cos \left(2 \pi n k f_{0} t\right) d t$

$$
=\left.\frac{2}{2 \pi n f_{0} T_{0}} \sin \left(2 \pi n f_{0} t\right)\right|_{-T_{s}} ^{T_{s}}=\frac{2}{\pi n f_{0} T_{0}} \sin \left(2 \pi n f_{0} T_{s}\right)=\frac{2}{\pi k} \sin \left(2 \pi n f_{0} T_{s}\right)=\frac{2}{\pi n} \sin \left(2 \pi n f_{0}\right) .
$$

$b_{k}=\frac{2}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2} x(t) \sin \left(2 \pi k f_{o} t\right) d t=\frac{1}{2} \int_{-1}^{1} \sin \left(\frac{\pi k t}{2}\right) d t=0$.
i.e. $x_{2}(t)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{\pi n} \sin \left(\frac{\pi n}{2}\right) \times \cos \left(\frac{\pi n t}{2}\right)$.

[Fourier series in complex form]

$$
\begin{aligned}
x_{2}(t) & =\sum_{k=-\infty}^{\infty} X_{k} e^{j 2 \pi k f_{0} t}, \text { where } \\
X_{k} & =\frac{1}{T_{0}} \int_{-T_{0} / T_{0}}^{T_{0}} x(t) e^{-j 2 \pi k f_{0} t} d t=\frac{1}{T_{0}} \int_{-T_{s}}^{T_{s}} e^{-j 2 \pi k f_{0} t} d t \\
& =-\left.\frac{1}{j 2 \pi k f_{0} T_{0}} e^{-j 2 \pi k f_{0} t}\right|_{-T_{s}} ^{T_{s}}=\frac{2}{2 \pi k}\left(\frac{e^{j 2 \pi k f_{0} T_{s}}-e^{-j 2 \pi k f_{0} T_{s}}}{2 j}\right) \\
& =\frac{1}{\pi k} \sin \left(2 \pi k f_{0} T_{s}\right)=\frac{1}{\pi k} \sin \left(2 \pi k f_{0}\right)=\frac{1}{\pi k} \sin \left(\frac{\pi k}{2}\right) ; \quad X_{0}=\frac{1}{T_{0}} \int_{-T_{s}}^{T_{s}} d t=\frac{2 T_{s}}{T_{0}}=\frac{1}{2} .
\end{aligned}
$$

(c) From the complex form of Fourier series, we have

$$
\begin{align*}
& x_{2}(t)=\sum_{k=-\infty}^{\infty} X_{k} e^{j 2 \pi k f_{0} t}=X_{0}+\sum_{k=-\infty}^{-1} X_{k} e^{j 2 \pi k f_{0} t}+\sum_{k=1}^{\infty} X_{k} e^{j 2 \pi k f_{0} t} \\
& =2 T_{s} \times f_{0}+\sum_{k=-\infty}^{-1} \frac{1}{\pi k f_{0}} \sin \left(2 \pi k f_{0}\right) e^{j 2 \pi k f_{0} t} f_{0}+\sum_{k=1}^{\infty} \frac{1}{\pi k f_{0}} \sin \left(2 \pi k f_{0}\right) e^{j 2 \pi k f_{0} t} f_{0} . \tag{2}
\end{align*}
$$

Hence, by Riemann integral, $x_{2}(t)$ becomes as
$x_{2}(t)=\int_{-\infty}^{\infty} \frac{1}{\pi f} \sin (2 \pi f) e^{j 2 \pi f t} d f$ as $f_{0} \rightarrow 0$.

2. (10%) (Baseband Pulse Transmission; BPT) The transmitted signal is expressed as $s(t)=\sum_{k=-\infty}^{\infty} b_{k} h(t-0.001 k)$, where $b_{k} \in\{+1,-1\}$ and
$h(t)=\left\{\begin{array}{cc}1 & 0 \leq t<0.001 \\ 0 & \text { otherwise }\end{array}\right.$.
(a) For the baseband pulse transmission method, there is no carrier frequency involved, why do we still say that the transmitted digital signal has a bandwidth? What determines the bandwidth?
(b) Can the baseband pulse transmission method be used to send signals wirelessly?

Solutions: (Provided by R.C.T. Lee, M. C. Chiu, and J. S. Lin, "Communications Engineering," Wiley, 2007.)
(a) In the baseband pulse transmission system, we transmit purely pulses. Through Fourier transform, we know that a pulse contains a number of cosine functions. The narrower the pulse, the larger the bandwidth. The width of the pulse determines the bandwidth.
(b) We can't use this method to send signals wirelessly, because electromagnetic waves are sinusoidal signals.
3. (30\%) (Binary Phase-Shift Keying; BPSK) For the first signal interval, the transmitted signal is expressed as

$$
h(t)=\left\{\begin{aligned}
h_{1}(t) & =\sqrt{\frac{2 E_{b}}{T_{b}}} \cos \left(2 \pi f_{c} t\right) \quad 0 \leq t \leq T_{b}, \text { if input bit is one } \\
h_{2}(t) & =\sqrt{\frac{2 E_{b}}{T_{b}}} \cos \left(2 \pi f_{c} t+\pi\right) \\
& =-\sqrt{\frac{2 E_{b}}{T_{b}}} \cos \left(2 \pi f_{c} t\right) \quad 0 \leq t \leq T_{b}, \text { if input bit is zero. }
\end{aligned}\right.
$$

Suppose $E_{b}=5, T_{b}=2 \mathrm{sec}$, and $f_{c}=100 \mathrm{~Hz}$.
(a) Find the average power $P_{h_{1}}$ of $h_{1}(t)$.
(b) Show that the modulation property

$$
F\left[x(t) \cos \left(2 \pi f_{c} t\right)\right]=\frac{1}{2} X\left(f-f_{c}\right)+\frac{1}{2} X\left(f+f_{c}\right) .
$$

(c) Please derive the Fourier transform $H_{1}(f)$ of $h_{1}(t)$ directly from the above modulation property.
(d) Find the power spectral density (PSD), $P_{h_{1}}(f)$, of $h_{1}(t)$.
(e) Verify that $P_{h_{1}}=\int_{-\infty}^{\infty} P_{h_{1}}(f) d f$.
(f) We all know that in digital modulation, pulses are modulated by cosine functions. And, we know that the Fourier transform of a cosine function is the delta function,
why does such a modulated signal still have a bandwidth?
Solutions:
(a) $\frac{1}{T_{b}} \int_{0}^{T_{b}} h_{1}^{2}(t) d t=\frac{1}{2} \int_{0}^{2} 5 \cos ^{2}(200 \pi \mathrm{t}) d t=\frac{5}{2} \int_{0}^{2} \frac{1+\cos (400 \pi \mathrm{t})}{2} d t=\frac{5}{2}$
(b)

$$
\begin{aligned}
& \because x(t) \cos \left(2 \pi f_{0} t\right)=x(t) \frac{1}{2}\left(e^{j 2 \pi f_{0} t}+e^{-j 2 \pi f_{0} t}\right) \\
& F\left[x(t) e^{j 2 \pi f_{0} t}\right]=\int_{-\infty}^{\infty} x(t) e^{j 2 \pi f_{0} t} e^{-j 2 \pi f t} d t=\int_{-\infty}^{\infty} x(t) e^{-j 2 \pi\left(f-f_{0}\right) t} d t=X\left(f-f_{0}\right)
\end{aligned}
$$

Similarly, $F\left[x(t) e^{-j 2 \pi f_{0} t}\right]=X\left(f+f_{0}\right)$
$\therefore F\left[x(t) \cos \left(2 \pi f_{c} t\right)\right]=\frac{1}{2} X\left(f-f_{c}\right)+\frac{1}{2} X\left(f+f_{c}\right)$.
(c) Since $h_{1}(t)$ can be written as $h_{1}(t)=\sqrt{\frac{2 E_{b}}{T_{b}}} \Pi\left(\frac{t-T_{b} / 2}{T_{b}}\right) \cos \left(2 \pi f_{c} t\right)$, by the time shift property: $\quad F\left[x\left(t-t_{0}\right)\right]=e^{-j 2 \pi f t_{0}} X(f)$, we have

$$
F\left[\sqrt{\frac{2 E_{b}}{T_{b}}} \Pi\left(\frac{t-T_{b} / 2}{T_{b}}\right)\right]=\sqrt{\frac{2 E_{b}}{T_{b}}} \times T_{b} \operatorname{sinc}\left(T_{b} f\right) e^{-j \pi T_{b} f}=\sqrt{2 E_{b} T_{b}} \operatorname{sinc}\left(T_{b} f\right) e^{-j \pi T_{b} f}
$$

By the modulation property, we have

$$
\begin{aligned}
H_{1}(f) & =\sqrt{\frac{E_{b} T_{b}}{2}} \operatorname{sinc}\left(T_{b}\left(f-f_{c}\right)\right) e^{-j \pi T_{b}\left(f-f_{c}\right)}+\sqrt{\frac{E_{b} T_{b}}{2}} \operatorname{sinc}\left(T_{b}\left(f+f_{c}\right)\right) e^{-j \pi T_{b}\left(f+f_{c}\right)} \\
& =\sqrt{5} \operatorname{sinc}(2(f-100)) e^{-j \pi 2(f-100)}+\sqrt{5} \operatorname{sinc}\left(2\left(f+f_{c}\right)\right) e^{-j \pi 2(f+100)}
\end{aligned}
$$

(d)

$$
\begin{aligned}
P_{h_{1}}(f) & =\frac{1}{T_{b}}\left|H_{1}(f)\right|^{2}=\frac{E_{b}}{2} \operatorname{sinc}^{2}\left(T_{b}\left(f-f_{c}\right)\right)+\frac{E_{b}}{2} \operatorname{sinc}^{2}\left(T_{b}\left(f+f_{c}\right)\right) \\
& =\frac{5}{2} \operatorname{sinc}^{2}(2(f-100))+\frac{5}{2} \operatorname{sinc}^{2}(2(f+100)) .
\end{aligned}
$$

(e)

$$
\begin{aligned}
\int_{-\infty}^{\infty} P_{h_{1}}(f) d f & =\int_{-\infty}^{\infty}\left[\frac{5}{2} \operatorname{sinc}^{2}(2(f-100))+\frac{5}{2} \operatorname{sinc}^{2}(2(f+100))\right] d f \\
& =\frac{5}{2} \times \frac{1}{2} \int_{-\infty}^{\infty} \operatorname{sinc}^{2} x d x+\frac{5}{2} \times \frac{1}{2} \int_{-\infty}^{\infty} \operatorname{sinc}^{2} x d x=\frac{5}{2}
\end{aligned}
$$

(f) It is the width of the pulse which determines the bandwidth, not the frequency of the cosine function.
4. (10\%) (Quadriphase-Shift Keying; QPSK) For the first signal interval, the four types of transmitted signal are expressed as:

$$
s_{i}(t)=\sqrt{\frac{2 E}{T}} \cos \left(2 \pi f_{c} t-(2 i-1) \frac{\pi}{4}\right) \text { for } 1 \leq i \leq 4 \text { and } 0 \leq t \leq T
$$

Suppose $E=5, T=0.001 \mathrm{sec}$, and $f_{c}=10000 \mathrm{~Hz}$. Find the power of the signal $s(t)=s_{2}(t)-s_{3}(t), 0 \leq t \leq 0.001$.

Solutions:

Let $\mathrm{B}=\left\{\varphi_{1}(\mathrm{t}), \varphi_{1}(\mathrm{t})\right\}$ be the basis, where
$\varphi_{1}(t)=\sqrt{\frac{2}{T}} \cos \left(2 \pi f_{c} t\right)$ and $\varphi_{2}(t)=\sqrt{\frac{2}{T}} \sin \left(2 \pi f_{c} t\right), 0 \leq t \leq T$.
$\left\langle s_{2}(\mathrm{t})\right\rangle_{B}=\left(\frac{-\sqrt{2 E}}{2}, \frac{\sqrt{2 E}}{2}\right),\left\langle s_{3}(\mathrm{t})\right\rangle_{B}=\left(\frac{-\sqrt{2 E}}{2}, \frac{-\sqrt{2 E}}{2}\right)$
$\left\langle s_{2}(\mathrm{t})-s_{3}(\mathrm{t})\right\rangle_{B}=\left(\frac{-\sqrt{2 E}}{2}, \frac{\sqrt{2 E}}{2}\right)-\left(\frac{-\sqrt{2 E}}{2}, \frac{-\sqrt{2 E}}{2}\right)=(0, \sqrt{2 E})$
The power of $s_{2}(\mathrm{t})-s_{3}(\mathrm{t})$ is:
$\left.<s_{2}(\mathrm{t})-s_{3}(\mathrm{t}), s_{2}(\mathrm{t})-s_{3}(\mathrm{t})\right\rangle=\left\|s_{2}(\mathrm{t})-s_{3}(\mathrm{t})\right\|^{2}=\|(0, \sqrt{2 E})\|^{2}=2 E=10$.
Note that each of the four types of transmitted signal has power of 5.

$$
\begin{aligned}
& \int_{0}^{0.001} 10000 \cos ^{2}\left(20000 \pi t-\frac{\pi}{4}\right) d t=5 \\
& \int_{0}^{0.001} 10000 \cos ^{2}\left(20000 \pi t-\frac{3 \pi}{4}\right) d t=5 \\
& \int_{0}^{0.001} 10000 \cos ^{2}\left(20000 \pi t-\frac{5 \pi}{4}\right) d t=5 \\
& \int_{0}^{0.001} 10000 \cos ^{2}\left(20000 \pi t-\frac{7 \pi}{4}\right) d t=5
\end{aligned}
$$

$\left\langle s_{1}(\mathrm{t})\right\rangle_{B}=\left(\frac{\sqrt{2 E}}{2}, \frac{\sqrt{2 E}}{2}\right),\left\langle s_{2}(\mathrm{t})\right\rangle_{B}=\left(\frac{-\sqrt{2 E}}{2}, \frac{\sqrt{2 E}}{2}\right)$
$\left\langle s_{3}(\mathrm{t})\right\rangle_{B}=\left(\frac{-\sqrt{2 E}}{2}, \frac{-\sqrt{2 E}}{2}\right),\left\langle s_{4}(\mathrm{t})\right\rangle_{B}=\left(\frac{\sqrt{2 E}}{2}, \frac{-\sqrt{2 E}}{2}\right)$
$\left\|s_{1}(\mathrm{t})\right\|^{2}=\left\|s_{2}(\mathrm{t})\right\|^{2}=\left\|s_{3}(\mathrm{t})\right\|^{2}=\left\|s_{4}(\mathrm{t})\right\|^{2}=E=5$.
5. (20\%) For a symbol(signal) interval of an OFDM system, suppose that the transmitted signal is represented by $s(t)=m_{0} \sqrt{2} \cos (2 \pi t)+m_{1} \sqrt{2} \cos (4 \pi t)+m_{2} \sqrt{2} \cos (6 \pi t)+m_{3} \sqrt{2} \cos (8 \pi t)$ for $0<t<1$, where $m_{i}=\left\{\begin{array}{c}1 \text { if input bit is } 1 \\ -1 \text { if input bit is } 0\end{array}\right.$.
(a) What's the data rate of the OFDM system?
(b) Show that: $\begin{aligned} & \langle\sqrt{2} \cos (2 \pi t), \sqrt{2} \cos (2 \pi t)\rangle \triangleq \int_{0}^{1} \sqrt{2} \cos (2 \pi t) \cos \sqrt{2}(2 \pi t) d t=1 \\ & \langle\sqrt{2} \cos (2 \pi t), \sqrt{2} \cos (4 \pi t)\rangle \triangleq \int_{0}^{1} \sqrt{2} \cos (2 \pi t) \sqrt{2} \cos (4 \pi t) d t=0\end{aligned}$.

Hint: $\cos (\alpha) \cos (\beta)=\frac{1}{2}[\cos (\alpha+\beta)+\cos (\alpha-\beta)]$
(c) Suppose the input bit sequence is " 1111 ", find and plot the transmitted signal $s_{16}(t)$.
(d) Find $\left\langle s_{16}(t), \sqrt{2} \cos (2 \pi t)\right\rangle$.

Solutions:

(a) 4 bits per second
(b)

$$
\begin{aligned}
& \langle\sqrt{2} \cos (2 \pi t), \sqrt{2} \cos (2 \pi t)\rangle \triangleq \int_{0}^{1} \sqrt{2} \cos (2 \pi t) \sqrt{2} \cos (2 \pi t) d t \\
& =2 \int_{0}^{1} \frac{1+\cos (4 \pi t)}{2} d t=2 \times \frac{1}{2}+\left.\frac{\cos (4 \pi t)}{4 \pi}\right|_{0} ^{1}=1 \\
& \langle\sqrt{2} \cos (2 \pi t), \sqrt{2} \cos (4 \pi t)\rangle \triangleq \int_{0}^{1} \sqrt{2} \cos (2 \pi t) \sqrt{2} \cos (4 \pi t) d t \\
& =\int_{0}^{1} \cos (6 \pi t) d t+\int_{0}^{1} \cos (2 \pi t) d t=\left.\frac{\sin (6 \pi t)}{6 \pi}\right|_{0} ^{1}+\left.\frac{\sin (2 \pi t)}{2 \pi}\right|_{0} ^{1}=0
\end{aligned}
$$

(c) $s_{16}(t)=\sqrt{2} \cos (2 \pi t)+\sqrt{2} \cos (4 \pi t)+\sqrt{2} \cos (6 \pi t)+\sqrt{2} \cos (8 \pi t)$ for $0<t<1$.

Input interpretation

```
plot \sqrt{ 2}{2}\operatorname{cos(2\pit)+\sqrt{}{2}}\operatorname{cos}(4\pit)+\sqrt{}{2}\operatorname{cos}(6\pit)+\sqrt{}{2}\operatorname{cos}(8\pit)\quadt=0\mathrm{ to }1
```

Plot:

Amplitude is scaled by $\sqrt{2}$
$<s_{16}(t), \sqrt{2} \cos (2 \pi t)>$
(d) $=<\sqrt{2} \cos (2 \pi t), \sqrt{2} \cos (2 \pi t)>+<\sqrt{2} \cos (4 \pi t), \sqrt{2} \cos (2 \pi t)>$
$+<\sqrt{2} \cos (6 \pi t), \sqrt{2} \cos (2 \pi t)>+<\sqrt{2} \cos (8 \pi t), \sqrt{2} \cos (2 \pi t)>$ for $0<t<1$
$=1+0+0+0=1$.

