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Binary Convolutional Codes

1. A binary convolutional code is denoted by a three-tuple (n, k, m).

2. n output bits are generated whenever k input bits are received.

3. The current n outputs are linear combinations of the present k

input bits and the previous m × k input bits.

4. m designates the number of previous k-bit input blocks that

must be memorized in the encoder.

5. m is called the memory order of the convolutional code.
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Encoders for the Convolutional Codes

1. A binary convolutional encoder is conveniently structured as a

mechanism of shift registers and modulo-2 adders, where the

output bits are modular-2 additions of selective shift register

contents and present input bits.

2. n in the three-tuple notation is exactly the number of output

sequences in the encoder.

3. k is the number of input sequences (and hence, the encoder

consists of k shift registers).

4. m is the maximum length of the k shift registers (i.e., if the

number of stages of the jth shift register is Kj , then

m = max1≤j≤k Kj).

5. K =
∑k

j=1 Kj is the total memory in the encoder (K is

sometimes called the overall constraint lengths).

Graduate Institute of Communication Engineering, National Taipei University



Y. S. Han Introduction to Binary Convolutional Codes 3

6. The definition of constraint length of a convolutional code is

defined in several ways. The most popular one is m + 1.
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Encoder for the Binary (2, 1, 2) Convolutional Code

u is the information sequence and v is the corresponding code

sequence (codeword).
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u = (11101)

v1 = (1010011)

v2 = (1101001)

v = (11 01 10 01 00 10 11)
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Encoder for the Binary (3, 2, 2) Convolutional Code
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Z
ZZ~ cu2 = (11)

u1 = (10)

u = (11 01)

v1 = (1000)
v2 = (1100)

v3 = (0001)

v = (110 010 000 001)
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Impose Response and Convolution

Convolutional encoder

-

-

-

---uk

ui

u1 ...

...

-vn

-v1

-vj

...

...

1. The encoders of convolutional codes can be represented by linear

time-invariant (LTI) systems.
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2.

vj = u1 ∗ g
(1)
j + u2 ∗ g

(2)
j + · · · + uk ∗ g

(k)
j =

k
∑

i=1

ui ∗ g
(k)
j ,

where ∗ is the convolutional operation and g
(i)
j is the impulse

response of the ith input sequence with the response to the jth

output.

3. g
(i)
j can be found by stimulating the encoder with the discrete

impulse (1, 0, 0, . . .) at the ith input and by observing the jth

output when all other inputs are fed the zero sequence

(0, 0, 0, . . .).

4. The impulse responses are called generator sequences of the

encoder.
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Impulse Response for the Binary (2, 1, 2) Convolutional
Code
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u = (11101)

v1 = (1010011)

v2 = (1101001)

v = (11 01 10 01 00 10 11)

g1 = (1, 1, 1, 0, . . .) = (1, 1, 1), g2 = (1, 0, 1, 0, . . .) = (1, 0, 1)

v1 = (1, 1, 1, 0, 1) ∗ (1, 1, 1) = (1, 0, 1, 0, 0, 1, 1)

v2 = (1, 1, 1, 0, 1) ∗ (1, 0, 1) = (1, 1, 0, 1, 0, 0, 1)
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Impulse Response for the (3, 2, 2) Convolutional Code
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Z
ZZ~ cu2 = (11)

u1 = (10)

u = (11 01)

v1 = (1000)
v2 = (1100)

v3 = (0001)

v = (110 010 000 001)

g
(1)
1 = 4 (octal)= (1, 0, 0), g

(2)
1 = 0 (octal), g

(1)
2 = 0 (octal), g

(2)
2 = 4 (octal), g

(1)
3 = 2 (octal),

g
(2)
3 = 3 (octal)
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Generator Matrix in the Time Domain

1. The convolutional codes can be generated by a generator matrix

multiplied by the information sequences.

2. Let u1, u2, . . . , uk are the information sequences and

v1, v2, . . . , vn the output sequences.

3. Arrange the information sequences as

u = (u1,0, u2,0, . . . , uk,0, u1,1, u2,1, . . . , uk,1,

. . . , u1,ℓ, u2,ℓ, . . . , uk,ℓ, . . .)

= (w0, w1, . . . , wℓ, . . .),
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and the output sequences as

v = (v1,0, v2,0, . . . , vn,0, v1,1, v2,1, . . . , vn,1,

. . . , v1,ℓ, v2,ℓ, . . . , vn,ℓ, . . .)

= (z0, z1, . . . , zℓ, . . .)

4. v is called a codeword or code sequence.

5. The relation between v and u can characterized as

v = u · G,

where G is the generator matrix of the code.
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6. The generator matrix is

G =

















G0 G1 G2 · · · Gm

G0 G1 · · · Gm−1 Gm

G0 · · · Gm−2 Gm−1 Gm

. . .
. . .

















,

with the k × n submatrices

Gℓ =

















g
(1)
1,ℓ g

(1)
2,ℓ · · · g

(1)
n,ℓ

g
(2)
1,ℓ g

(2)
2,ℓ · · · g

(2)
n,ℓ

...
...

...

g
(k)
1,ℓ g

(k)
2,ℓ · · · g

(k)
n,ℓ

















.

7. The element g
(i)
j,ℓ , for i ∈ [1, k] and j ∈ [1, n], are the impulse
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response of the ith input with respect to jth output:

g
(i)
j = (g

(i)
j,0, g

(i)
j,1, . . . , g

(i)
j,ℓ , . . . , g

(i)
j,m).
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Generator Matrix of the Binary (2, 1, 2) Convolutional
Code
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u = (11101)

v1 = (1010011)

v2 = (1101001)

v = (11 01 10 01 00 10 11)
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v = u · G

= (1, 1, 1, 0, 1) ·





















11 10 11

11 10 11

11 10 11

11 10 11

11 10 11





















= (11, 01, 10, 01, 00, 10, 11)
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Generator Matrix of the Binary (3, 2, 2) Convolutional
Code
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ZZ~ cu2 = (11)

u1 = (10)

u = (11 01)

v1 = (1000)
v2 = (1100)

v3 = (0001)

v = (110 010 000 001)

g
(1)
1 = 4 (octal)= (1, 0, 0), g

(2)
1 = 0 (octal), g

(1)
2 = 0 (octal), g

(2)
2 = 4
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(octal), g
(1)
3 = 2 (octal), g

(2)
3 = 3 (octal)

v = u · G

= (11, 01) ·















100 001 000

010 001 001

100 001 000

010 001 001















= (110, 010, 000, 001)
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Generator Matrix in the Z Domain

1. According to the Z transform,

ui ⊸ Ui(D) =
∞
∑

t=0

ui,tD
t

vj ⊸ Vj(D) =
∞
∑

t=0

vj,tD
t

g
(i)
j ⊸ Gi,j(D) =

∞
∑

t=0

g
(i)
j,tD

t

2. The convolutional relation of the Z transform

Z{u ∗ g} = U(D)G(D) is used to transform the convolution of

input sequences and generator sequences to a multiplication in

the Z domain.

3. Vj(D) =
∑k

i=1 Ui(D) · Gi,j(D).
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4. We can write the above equations into a matrix multiplication:

V (D) = U (D) · G(D),

where

U (D) = (U1(D), U2(D), . . . , Uk(D))

V (D) = (V1(D), V2(D), . . . , Vn(D))

G(D) =









Gi,j
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Generator Matrix of the Binary (2, 1, 2) Convolutional
Code
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u = (11101)

v1 = (1010011)

v2 = (1101001)

v = (11 01 10 01 00 10 11)
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g1 = (1, 1, 1, 0, . . .) = (1, 1, 1),

g2 = (1, 0, 1, 0, . . .) = (1, 0, 1)

G1,1(D) = 1 + D + D2

G1,2(D) = 1 + D2

U1(D) = 1 + D + D2 + D4

V1(D) = 1 + D2 + D5 + D6

V2(D) = 1 + D + D3 + D6

Graduate Institute of Communication Engineering, National Taipei University
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Generator Matrix of the Binary (3, 2, 2) Convolutional
Code
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ZZ~ cu2 = (11)

u1 = (10)

u = (11 01)

v1 = (1000)

v2 = (1100)

v3 = (0001)

v = (110 010 000 001)

Graduate Institute of Communication Engineering, National Taipei University

ymhuang
Pencil

ymhuang
Pencil

ymhuang
Pencil

ymhuang
Pencil



Y. S. Han Introduction to Binary Convolutional Codes 23

g
(1)
1 = (1, 0, 0), g

(2)
1 = (0, 0, 0), g

(1)
2 = (0, 0, 0)

g
(2)
2 = (1, 0, 0), g

(1)
3 = (0, 1, 0), g

(2)
3 = (0, 1, 1)

G1,1(D) = 1, G1,2(D) = 0, G1,3(D) = D

G2,1(D) = 0, G2,2 = 1, G2,3(D) = D + D2

U1(D) = 1, U2(D) = 1 + D

V1(D) = 1, V2(D) = 1 + D, V3(D) = D3
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Termination

1. The effective code rate, Reffective, is defined as the average

number of input bits carried by an output bit.

2. In practice, the input sequences are with finite length.

3. In order to terminate a convolutional code, some bits are

appended onto the information sequence such that the shift

registers return to the zero.

4. Each of the k input sequences of length L bits is padded with m

zeros, and these k input sequences jointly induce n(L + m)

output bits.

5. The effective rate of the terminated convolutional code is now

Reffective =
kL

n(L + m)
= R

L

L + m
,
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where L
L+m

is called the fractional rate loss.

6. When L is large, Reffective ≈ R.

7. All examples presented are terminated convolutional codes.
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Truncation

1. The second option to terminate a convolutional code is to stop

for t > L no matter what contents of shift registers have.

2. The effective code rate is still R.

3. The generator matrix is clipped after the Lth column:

Gc
[L] =



































G0 G1 · · · Gm

G0 G1 · · · Gm

. . .
. . .

G0 Gm

. . .
...

G0 G1

G0



































,
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where Gc
[L] is an (k · L) × (n · L) matrix.

4. The drawback of truncation method is that the last few blocks of

information sequences are less protected.
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Generator Matrix of the Truncation Binary (2, 1, 2)
Convolutional Code
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u = (11101)

v1 = (10100)

v2 = (11010)

v = (11 01 10 01 00)
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v = u · Gc
[5]

= (1, 1, 1, 0, 1) ·





















11 10 11

11 10 11

11 10 11

11 10

11





















= (11, 01, 10, 01, 00)
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Generator Matrix of the Truncation Binary (3, 2, 2)
Convolutional Code
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ZZ~ cu2 = (11)

u1 = (10)

u = (11 01)

v1 = (10)

v2 = (11)

v3 = (00)

v = (110 010)
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v = u · Gc
[2]

= (11, 01) ·















100 001

010 001

100

010















= (110, 010)
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Tail Biting

1. The third possible method to generate finite code sequences is

called tail biting.

2. Tail biting is to start the convolutional encoder in the same

contents of all shift registers (state) where it will stop after the

input of L information blocks.

3. Equal protection of all information bits of the entire information

sequences is possible.

4. The effective rate of the code is still R.

5. The generator matrix has to be clipped after the Lth column and

Graduate Institute of Communication Engineering, National Taipei University
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manipulated as follows:

G̃
c

[L] =



































G0 G1 · · · Gm

G0 G1 · · · Gm

. . .
. . .

G0 Gm

Gm

. . .
...

...
. . . G0 G1

G1 · · · Gm G0



































,

where G̃
c

[L] is an (k · L) × (n · L) matrix.
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Generator Matrix of the Tail Biting Binary (2, 1, 2)
Convolutional Code
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u = (11101)

v1 = (10100)

v2 = (11010)

v = (11 01 10 01 00)
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v = u · G̃
c

[5]

= (1, 1, 1, 0, 1) ·





















11 10 11

11 10 11

11 10 11

11 11 10

10 11 11





















= (01, 10, 10, 01, 00)
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Generator Matrix of the Tail Biting Binary (3, 2, 2)
Convolutional Code
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u1 = (10)

u = (11 01)

v1 = (10)

v2 = (11)

v3 = (00)

v = (110 010)
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v = u · G̃
c

[2]

= (11, 01) ·















100 001

010 001

001 100

001 010















= (111, 010)
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FIR and IIR systems

^
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u = (111)

v1 = (111)

v2 = (101)

v = (11 10 11)

1. All examples in previous slides are finite impulse response (FIR)

systems that are with finite impulse responses.

2. The above example is an infinite impulse response (IIR) system

that is with infinite impulse response.
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3. The generator sequences of the above example are

g
(1)
1 = (1)

g
(1)
2 = (1, 1, 1, 0, 1, 1, 0, 1, 1, 0, . . .).

4. The infinite sequence of g
(1)
2 is caused by the recursive structure

of the encoder.

5. By introducing the variable x, we have

xt = ut + xt−1 + xt−2

v2,t = xt + xt−2.

Accordingly, we can have the following difference equations:

v1,t = ut

v2,t + v2,t−1 + v2,t−2 = ut + ut−2
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6. We then apply the z transform to the second equation:

∞
X

t=0

v2,tD
t +

∞
X

t=0

v2,t−1D
t +

∞
X

t=0

v2,t−2D
t =

∞
X

t=0

utD
t +

∞
X

t=0

ut−2D
t
,

V2(D) + DV2(D) + D
2
V2(D) = U(D) + D

2
U(D).

7. The system function is then

V2(D) =
1 + D2

1 + D + D2
U(D) = G12(D)U(D).

8. The generator matrix is obtained:

G(D) =
(

1 1+D2

1+D+D2

)

.
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9.

V (D) = U (D) · G(D)

=
(

1 + D + D2
)

(

1 1+D2

1+D+D2

)

= (1 + D + D2 1 + D2)

10. The time diagram:

t σt σt+1 v1 v2

0 00 10 1 1

1 10 01 1 0

2 01 00 1 1

Graduate Institute of Communication Engineering, National Taipei University
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State Diagram

1. A convolutional encoder can be treated as a finite state machine.

2. The contents of the shift registers represent the states. The

output of a code block vt at time t depends on the current state

σt and the information block ut.

3. Each change of state σt → σt+1 is associated with the input of

an information block and the output of a code block.

4. The state diagram is obtained by drawing a graph. In this graph,

nodes are possible states and the state transitions are labelled

with the appropriate inputs and outputs (ut/vt). In this course

we only consider the convolutional encoder with state diagrams

that do not have parallel transitions.

5. The state of the encoder can be expressed as k-tuple of the

Graduate Institute of Communication Engineering, National Taipei University
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memory values:

σt = (u1,t−1 . . . u1,t−K1 , u2,t−1 . . . u2,t−K2 , . . . , uk,t−1 . . . uk,t−Kk
).

6. The state sequence is defined as

S = (σ0, σ1, . . . , σt, . . .),

where σ0 is the initial state of the encoder.

7. If no parallel transmissions exists then there is a one-to-one

correspondence between code sequences and state sequences.
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State Diagram: Example
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u = (11101)

v1 = (1010011)

v2 = (1101001)

v = (11 01 10 01 00 10 11)
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01

0/00
00

1/11

1/00

0/11

0/10

10
1/01

11
1/10

0/01
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Code Trees of convolutional codes

1. A code tree of a binary (n, k, m) convolutional code presents

every codeword as a path on a tree.

2. For input sequences of length L bits, the code tree consists of

(L + m + 1) levels. The single leftmost node at level 0 is called

the origin node.

3. At the first L levels, there are exactly 2k branches leaving each

node. For those nodes located at levels L through (L + m), only

one branch remains. The 2kL rightmost nodes at level (L + m)

are called the terminal nodes.

4. As expected, a path from the single origin node to a terminal

node represents a codeword; therefore, it is named the code path

corresponding to the codeword.
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Trellises of Convolutional Codes

1. a code trellis as termed by Forney is a structure obtained from a

code tree by merging those nodes in the same state.

2. Recall that the state associated with a node is determined by the

associated shift-register contents.

3. For a binary (n, k, m) convolutional code, the number of states at

levels m through L is 2K , where K =
∑k

j=1 Kj and Kj is the

length of the jth shift register in the encoder; hence, there are

2K nodes on these levels.

4. Due to node merging, only one terminal node remains in a trellis.

5. Analogous to a code tree, a path from the single origin node to

the single terminal node in a trellis also mirrors a codeword.

Graduate Institute of Communication Engineering, National Taipei University



Y. S. Han Introduction to Binary Convolutional Codes 48
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Column Distance Function

1. Let v(a,b) = (va, va+1, . . . , vb) denote a portion of codeword v,

and abbreviate v(0,b) by v(b). The Hamming distance between

the first rn bits of codewords v and z is given by:

dH

(

v(rn−1), z(rn−1)

)

=
rn−1
∑

i=0

(vi + zi).

2. The Hamming weight of the first rn bits of codeword v thus

equals dH(v(rn−1),0(rn−1)), where 0 represents the all-zero

codeword.

3. The column distance function (CDF) dc(r) of a binary (n, k, m)

convolutional code is defined as the minimum Hamming distance

between the first rn bits of any two codewords whose first n bits
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are distinct, i.e.,

dc(r) = min
{

dH(v(rn−1), z(rn−1)) : v(n−1) 6= z(n−1) for v, z ∈ C
}

,

where C is the set of all codewords.

4. Function dc(r) is clearly nondecreasing in r.

5. Two cases of CDFs are of specific interest: r = m + 1 and r = ∞.

In the latter case, the input sequences are considered infinite in

length. Usually, dc(r) for an (n, k, m) convolutional code reaches

its largest value dc(∞) when r is a little beyond 5 × m; this

property facilitates the determination of dc(∞).

6. Terminologically, dc(m + 1) and dc(∞) (or dfree in general) are

called the minimum distance and the free distance of the

convolutional code, respectively.

7. When a sufficiently large codeword length is taken, and an
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optimal (i.e., maximum-likelihood) decoder is employed, the

error-correcting capability of a convolutional code is generally

characterized by dfree.

8. In case a decoder figures the transmitted bits only based on the

first n(m + 1) received bits (as in, for example, the majority-logic

decoding), dc(m + 1) can be used instead to characterize the code

error-correcting capability.

9. As for the sequential decoding algorithm that requires a rapid

initial growth of column distance functions, the decoding

computational complexity, defined as the number of metric

computations performed, is determined by the CDF of the code

being applied.
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Path Enumerators

1

2

2

00

W
10

W

W
11

W1

W
01

W

1. The power of the operator W corresponds to the Hamming

weight of the code block associated with the transition.
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2. We consider that all possible code sequences of the code start at

time t = 0 and state σ0 = (00), and run through an arbitrary

state sequence S = (σ0, σ1, . . .).

3. The Hamming weight of the code sequence

S = (00, 10, 11, 01, 00, 00, . . .)

is 6 since

W 2WWW 2 = W 6.

4. The calculation of the path enumerators is based on a subset of

the set of all possible code sequences.

5. All sequences of this subset leave the zero state at time t = 0 and

remain there after reaching it again.

6. The above sequences have the state sequences

S = (0, σ1, σ2, . . . , σℓ−1,0,0, . . .),
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with σt 6= 0 for t ∈ [1, ℓ − 1].

7. ℓ must be greater than m since the zero state cannot be reached

before m + 1 transitions.

8. A procedure from signal flow theory is used to calculate the path

enumerator.
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1. If the variables Xi for i ∈ [1, 3] are assigned to the nodes between

source and sink as shown in the figure then we have

X1 = X3 + W 2

X2 = WX1 + WX2

X3 = WX1 + WX2

and

T (W ) = W 2X3.

2. Each Xi is obtained by adding up all branches that go into the

node.

3. The weights of the branches are multiplied by the variable and

are assigned to the original node.
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4. By solving the above equations, we have

T (W ) =
W 5

1 − 2W
= W 5 + 2W 6 + · · · + 2jW j+5 + · · · ,

where T (W ) is expanded in a series with positive powers of W .

5. In this series, the coefficients are equal to the number of code

sequences with corresponding weight. For example, there are 2j

code sequences with weight j + 5.

6. The power of the first member of this series corresponds to the

free distance of the code. In the previous example, it is 5.
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Systematic Matrix

1. An important subclass of convolutional codes is the systematic

codes, in which k out of n output sequences retain the values of

the k input sequences. In other words, these outputs are directly

connected to the k inputs in the encoder.

2. A generator matrix of a systematic code has the following

structure:

G(D) =

















1 G1,k+1(D) · · · G1,n(D)

1
...

...

. . .

1 Gk,k+1(D) Gk,n(D)

















= (Ik | R(D)),
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where Ik is the k × k identity matrix and R(D) is a k × (n − k)

matrix with rational elements.

3. The input sequences do not need to be equal to the first k output

sequences. Any permutation is allowed.
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Catastrophic Generator Matrix

1. A catastrophic matrix maps information sequences with infinite

Hamming weight to code sequences with finite Hamming weight.

2. For a catastrophic code, a finite number of transmission errors

can cause an infinite number of errors in the decoded information

sequence. Hence, theses codes should be avoided in practice.

3. It is easy to see that systematic generator matrices are never

catastrophic.

4. It can be shown that a loop in the state diagram that produces a

zero output for a non-zero input is a necessary and sufficient

condition for a catastrophic matrix. A loop is defined as a closed

path in the state diagram.

5. The (111) state has a loop associated with 1/00 in the following

example.
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Punctured Convolutional Codes

1. Punctured convolutional codes are derived from the mother code

by periodically deleting certain code bits in the code sequence of

the mother code:

(nm, km, mm)
P
−→ (np, kp, mp),

where P is an nm × kp/km puncturing matrix with elements

pij ∈ {0, 1}.

2. A 0 in P means the deletion of a bit and a 1 means that this

position is remained the same in the puncture sequence.

3. Let p = nmkp/km be the puncture period (the number of all

elements in P ) and w ≤ p be the number of 1 elements in P . It
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is clear that w = np. The rate of the puncture code is now

Rp =
kp

np

=
kmp

nm

1

w
=

p

w
Rm.

4. Since w ≤ p, we have Rm ≤ Rp.

5. w can not be too small in order to assure that Rp ≤ 1.

Graduate Institute of Communication Engineering, National Taipei University



Y. S. Han Introduction to Binary Convolutional Codes 64

Example of the Punctured Convolutional Code

1. Consider the (2, 1, 2) code with the generator matrix

G =











11 10 11

11 10 11

. . .
. . .











.

2. Let

P =





1 0 0 0 0 1

1 1 1 1 1 0





be the puncture matrix.

3. The code rate of the punctured code is
kp

np
= 6

7 .

4. If ℓth code bit is removed then the respective column of the
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generator matrix of the mother code must be deleted.
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5.

11 01 01 01 01 10 11 01 01 01 01 10 11 01

11 10 11

11 10 11

11 10 11

11 10 11

11 10 11

11 10 11

11 10 11

11 10 11

11 10 11

11 10 11

11 10 11

11 10 11
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6. We can obtain the generator matrix of the punctured code by

deleting those un-bold columns in the above matrix:

Gp =



















































1 1 0 1

1 0 1

1 0 1

1 0 1

1 1 1 1

1 1 0 1

1 1 0 1

1 0 1

1 0 1

. . .
. . .



















































.
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7. The above punctured code has mp = 1.

8. Punctured convolutional codes are very important in practical

applications, and are used in many areas.
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