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General Model of a Communication System
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A coded system on an 
additive white Gaussian noise channel

Introduction Discrete Memory Channel (DMC)
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AWGN (Additive White Gaussian Noise) Channel
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- , where E is the signal energy per channel bit.

, where si is the transmitted 
bit, ri is the received bit, and ni is a noise sample 
of a Gaussian process with single-sided noise 
power per hertz N0 .
The variance of ni is N0/2 and the signal-to-noise 
ratio (SNR) for the channel is E/N0 .
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Binary Symmetric Channel
BSC is characterized by a probability p of 
bit error such that the probability p of a 
transmitted bit 0 being received as a 1 is 
the same as that of a transmitted 1 being 
received as a 0.
When BPSK modulation is used on an AWGN 
channel with optimum coherent detection 
and binary output quantization 
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Probability of error for BPSK signaling

Probability of bit error (p)

E/N0 (dB)
Introduction
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Hard-decision decoding
The output of the matched filter for each 
signaling interval is quantized in two levels, 
denoted as 0 and 1.
e.g. algebraic decodings :using algebraic 
structures of the codes
A hard decision of a received signal results in 
a loss of information, which degrades 
performance

Introduction
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Soft-decision decoding
If the outputs of the matched filter are unquantized
or quantized in more than two levels, we say that the 
demodulator makes soft decisions. A sequence of 
soft-decision outputs of the matched filter is 
referred to as a soft-decision received sequence. 
Decoding by processing this soft-decision received 
sequence is called soft decision decoding.
The decoder uses the additional information 
contained in the unquantized (or multilevel quantized) 
received samples to recover the transmitted 
codewords, soft-decision decoding provides better 
error performance than hard-decision decoding.

Introduction
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In general, soft-decision maximum likelihood 
decoding (MLD) of a code has about 3 dB of 
coding gain over algebraic decoding of the 
code; however, soft-decision decoding is much 
harder to implement than algebraic decoding 
and requires more computational complexity.
These decoding algorithms can be classified 
into two major categories:
– Reliability-based (or probabilistic)
– Code structure-based

Introduction



13

Code rate R=k/n
Coding gain : the reduction in the Eb/N0
required to achieve a specific bit error 
probability (rate) (BER) for a coded 
communication system compared to an 
uncoded system.
Coding threshold : There always exists an 
Eb/N0 below which the code loses its 
effectiveness and actually makes the 
situation worse.
Eb : the signal energy per information bit

Eb = E / R
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Bit-error performance of a coded communication 
system with the (23,12) Golay code
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Error Control Strategies
Forward Error Correction (FEC)
– one-way system

o e.g. magnetic tape storage system
o deep-space communication system

Automatic Repeat Request (ARQ)
– error detection and retransmission
– two-way system

o e.g. telephone channel
– types 

o stop-and wait ARQ
o continuous ARQ

e.g. go-back-N ARQ ; select-repeat ARQ
Introduction
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Block codes 
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Definition : An linear block code C = (n,k) is a k-dimensional
subspace of GF(q) , i.e.

Hamming distance d(x,y) is the number of places in which they 
differ.
minimum distance of C is the hamming distance of the pair of 
codewords with smallest hamming distance, i.e. d* = min 
d(xi,xj), xi,xj ∈ C, i≠ j.
Binary Block Code (n,k)
– divide the information sequence into message blocks of k 

information bits each.
o i.e.  u=(u1,u2,…,uk) message
o v=(v1,v2,…,vn) codeword

– Memoryless
– combinational logic circuit

(1) , , ,
(2) ( ), .

x y C x y C
a GF q a x C

∀ ∈ + ∈
∀ ∈ ⋅ ∈

Block codes
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Encoder
。。。 。。。

K bits n bits

♁ ♁ ♁

u0 u1 u2 u3

v0 v1 v2

Input u (1011)

1 (u0,u2,u3) 0 (u0,u1,u2) 0 (u1,u2,u3)

To channel

v 100 1011

Block codes
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Hamming Code with  k = 4  n = 7  d*=3

Messages(u) Code words (v)
( 0 0 0 0 ) ( 0 0 0 0 0 0 0 )
( 1 0 0 0 ) ( 1 1 0 1 0 0 0 )
( 0 1 0 0 ) ( 0 1 1 0 1 0 0 )
( 1 1 0 0 ) ( 1 0 1 1 1 0 0 )
( 0 0 1 0 ) ( 1 1 1 0 0 1 0 )
( 1 0 1 0 ) ( 0 0 1 1 0 1 0 )
( 0 1 1 0 ) ( 1 0 0 0 1 1 0 )

( 1 1 1 0 ) ( 0 1 0 1 1 1 0 )

( 0 0 0 1 ) ( 1 0 1 0 0 0 1 )
( 1 0 0 1 ) ( 0 1 1 1 0 0 1 )
( 0 1 0 1 ) ( 1 1 0 0 1 0 1 )
( 1 1 0 1 ) ( 0 0 0 1 1 0 1 )
( 0 0 1 1 ) ( 0 1 0 0 0 1 1 )

( 1 0 1 1 ) ( 1 0 0 1 0 1 1 )
( 0 1 1 1 ) ( 0 0 1 0 1 1 1 )
( 1 1 1 1 ) ( 1 1 1 1 1 1 1 )

1 0 1 0 0 0 1
1 1 1 0 0 1 0
0 1 1 0 1 0 0

1 1 0 1 0 0 0

1 0 1 0 0 0 1
1 1 1 0 0 1 0
0 1 1 0 1 0 0

1 1 0 1 0 0 0

G=

4x7

v g0

v g1

v g2

0 0 1 0 1 1 1
0 1 0 1 1 1 0

1 0 0 1 0 1 1

0 0 1 0 1 1 1
0 1 0 1 1 1 0

1 0 0 1 0 1 1

H=

3x7

v g3

GHT=0

informationv = u×G=1▪g0 + 0▪g1 + 1▪g2 +1▪g3
parity-checkBlock codes
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Standard Arrray for an (n,k) linear code
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n-k + v2

k…e2
n-k + vi…e2

n-k + v2e2
n-k

el+1 + v2
k…el+1 + vi…el+1 + v2el+1
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decoding sphere
code 
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≤ t errors

> t errors

coset
leaders 2k x

2n-k (row)
Block codes



1 1 0 0 0 1

1 0 1 0 1 0

0 1 1 1 0 0

1 1 0 0 0 1

1 0 1 0 1 0

0 1 1 1 0 0

G =
0 0 1 1 1 0

0 1 0 1 0 1

1 0 0 0 1 1

0 0 1 1 1 0

0 1 0 1 0 1

1 0 0 0 1 1

H =

100011111111001001010010010101001110111000100100
000110011010101100110111110000101011011101000001
000101011001101111110100110011101000011110000010
000011011111101001110010110101101110011000000100
001111010011100101111110111001100010010100001000
010111001011111101100110100001111010001100010000
100111111011001101010110010001001010111100100000
000111011011101101110110110001101010011100000000

e.g. C=(6,3)

21

100011111111001001010010010101001110111000100100
000110011010101100110111110000101011011101000001
000101011001101111110100110011101000011110000010
000011011111101001110010110101101110011000000100
001111010011100101111110111001100010010100001000
010111001011111101100110100001111010001100010000
100111111011001101010110010001001010111100100000
000111011011101101110110110001101010011100000000

single error

vs
vi vj

(1,1,1)
(1,1,0)
(1,0,1)
(0,1,1)
(0,0,1)
(0,1,0)
(1,0,0)

(1,1,1)
(1,1,0)
(1,0,1)
(0,1,1)
(0,0,1)
(0,1,0)
(1,0,0)

Coset
leader

Syndrome
s

r xel

not correctable error patterncorrectable error pattern
r = vj + x = el + (vi +vj) = el + vs

noise = el+vi ,vi ≠ 0
erroneous decoding

(0,0,0)

s=rHT

Block codes



non-systematic
Encoding
v(x) = u(x)g(x)

1+x3+x5+x6 = (1+x+x2+x3)•g(x)1 0 0 1 0 1 1( 1 1 1 1 )

x+x5+x6 = (x+x2+x3)•g(x)0 1 0 0 0 1 1( 0 1 1 1 )

1+x+x2+x3+x4+x5+x6 = (1+x2+x4)•g(x)1 1 1 1 1 1 1( 1 0 1 1 )

x2+x4+x5+x6 = (x2+x3)•g(x)0 0 1 0 1 1 1( 0 0 1 1 )

1+x2+x6 = (1+x+x3)•g(x)1 0 1 0 0 0 1( 1 1 0 1 )

x+x2+x3+x6 = (x+x3)•g(x)0 1 1 1 0 0 1( 0 1 0 1 )

1+x+x4+x6 = x3•g(x)1 1 0 0 1 0 1( 1 0 0 1 )

x3+x4+x6 = x3•g(x)0 0 0 1 1 0 1( 0 0 0 1 )

1+x4+x5 = (1+x+x2)•g(x)1 0 0 0 1 1 0( 1 1 1 0 )

x+x3+x4+x5 = (x+x2)•g(x)0 1 0 1 1 1 0( 0 1 1 0 )

1+x+x2+x5 = (1+x2)•g(x)1 1 1 0 0 1 0( 1 0 1 0 )

x2+x3+x5 = x2•g(x)0 0 1 1 0 1 0( 0 0 1 0 )

1+x2+x3+x4 = (1+x)•g(x)1 0 1 1 1 0 0( 1 1 0 0 )

x+x2+x4 = x•g(x)0 1 1 0 1 0 0( 0 1 0 0 )

1+x+x3 = 1•g(x)1 1 0 1 0 0 0( 1 0 0 0 )

0 = 0•g(x)0 0 0 0 0 0 0( 0 0 0 0 )

Code polynomialsCode VectorsMessages

A (7, 4) CYCLIC CODE GENERATED BY g(x) = 1+x+x3

22
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1+x+x2+x3+x4+x5+x6 = (1+x2+x5)•g(x)1 1 1 1 1 1 1( 1 1 1 1 )

x2+ x4+x5+x6 = (x2+x3)•g(x)0 0 1 0 1 1 1( 0 1 1 1 )

1+x3+x5+x6 = (1+x+x2+x3)•g(x)1 0 0 1 0 1 1( 1 0 1 1 )

x+x5+x6 = (x+x2+x3)•g(x)0 1 0 0 0 1 1( 0 0 1 1 )

x3+x4+x6 = x3•g(x)0 0 0 1 1 0 1( 1 1 0 1 )

1+x+x4+x6 = (1+x3)•g(x)1 1 0 0 1 0 1( 0 1 0 1 )

x+x2+x3+x6 = (x+x3 )•g(x)0 1 1 1 0 0 1( 1 0 0 1 )

1+x2+x6 = (1+x+x3)•g(x)1 0 1 0  0 0 1( 0 0 0 1 )

x+x3+x4+x5 = (x+x2)•g(x)0 1 0 1 1 1 0( 1 1 1 0 )

1+x4+x5 = (1+x+x2)•g(x)1 0 0 0 1 1 0( 0 1 1 0 )

x2+ x3+x5 = x2•g(x)0 0 1 1 0 1 0( 1 0 1 0 )

1+x+x2+x5 = (1+x2)•g(x)1 1 1 0 0 1 0( 0 0 1 0 )

1+x2+x3+x4 = (1+x)•g(x)1 0 1 1 1 0 0( 1 1 0 0 )

x+x2+x4 = x•g(x)0 1 1 0 1 0 0( 0 1 0 0 )

1+x+x3 = 1•g(x)1 1 0 1 0 0 0( 1 0 0 0 )

0 = 0•g(x)0 0 0 0 0 0 0( 0 0 0 0 )

Code polynomialsCode VectorsMessages

A (7, 4) CYCLIC CODE GENERATED BY g(x) = 1+x+x3

X3(x3+x2+1)

modulo 

X3+x+1

= 1

7-4

systematic

encoding

Block codes
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Consider the (7, 4) cyclic code generated by g(X) = 1 + X + X3. Suppose that 
the message u = (1 0 1 1) is to be encoded. As the message digits are 
shifted into the register, the contents in the register are as follows:

Input Register contents
0 0 0 (initial state)

1 1 1 0 (first shift)
1 1 0 1 (second shift)
0 1 0 0 (third shift)
1 1 0 0 (fourth shift)

After four shifts, the contents of the register are (1 0 0). Thus, the complete 
code vector is (1 0 0 1 0 1 1) and the code polynomial is 1 + X3 + X5 + X6.

= k

Encoder for the (7, 4) cyclic code generated by g(X) = 1 + X + X3

Message Xn-ku(X)

Gate

(1 0 1 1) Code word
Parity digits

Block codes
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Gate
Gate

Gate

Multiplexer

0 10

r(X)
Input Output

Buffer register
r’(X)

Decoding circuit for the (7, 4) cyclic code generated by
g(X) = 1 + X + X3.

Block codes



26

Convolutional Codes



Convolutional Code (n,k,m)
– u,v : two sequences of blocks
– memory order m
– sequential logic circuit

R = k/n code rate

Encoder
。。。 。。。

K bits n bits

previous
m

blocks

n and k (e.g. k=1, 
n=2) are usually 
small

(255,223), Reed-
Solomon code with 8-bit 
symbols

27Convolutional codes
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u=(…,m-1,m0,m1,…)
v=(…,C-1

(1), C-1
(2), C0

(1), C0
(2), 

C1
(1), C1

(2),…)

* (2,1,2) Convolutional code

let u=(1 1 0 1 0 0 0 …) 
v=(11,10,00,10,01,01,00,…)

♁

u v
…0001011

…0001011
…0001011

…0001011

…0001011
…0001011

…0001011

Convolutional codes
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Linear Time Invariant System
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Ci
(2)=∑gk

(2)▪mi-k=m♁mi-1♁mi-2
k

Ci
(1)=∑gk

(1)▪mi-k=mi
k

C(2) = m    g(2)

C(1) = m    g(1)

linear convolution

i

where g0
(1) = 1 , others = 0

g0
(2) = g1

(2) = g2
(2) = 1 , others = 0

Impulse response

Convolutional codes
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State diagram for a (2,1,2) encoder with g(1)=(111) g(2)=(101)

Convolutional codes
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Trellis diagram for a (2,1,2) 
encoder with input (11101)

Convolutional codes
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Maximum Likelihood Decoding
Given that r is received, the conditional error probability of 

the decoder is defined as 

ˆ( | ) ( | ).
The   of the decoder is given by

( ) ( | ) ( ),  where ( ) is the probability  

of the received sequence .
To minimize ( ), we must minimize ( | ) for all .

maxim

r

P E r P v v r
error probability

P E P E r P r p r

r
P E P E r r

≠

=

⇒

∑

( | ) ( )ize ( | ) ,                (1)
( )

ˆi.e.  is chosen as the most likely codeword given that  is received.

P r v P vP v r
P r

v r

=

Convolutional codes
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Suppose all information sequences, and hence all codewords, 
are equally likely, i.e. P(v) is the same for all v.
To maximize (1) is equivalent to maximizing P(r/v). For a  DMC,   

2 1

1 2

( | ) ( | ) log ( | ) log ( | )

max [log ( | ) ],

     where  is any real number and   is any positive real number.
 when 

Let ( | ) & ( , ) be the Hamming 
1  when 

i i i i
i i

i i
i

i i
i i

i i

P r v P r v P r v P r v

c p r v c

c c
p r v

P r v d r v
p r v

= ⇒ =

≈ +

≠⎧
= ⎨ − =⎩

∏ ∑

∑

distance

Then, log ( | ) ( , ) log [ ( , )]log(1 )
                            = ( , ) log( /1 ) log(1 )
       max log ( | ) min ( , ) when log( /1 ) 0 for p<1/2

P r v d r v p n d r v p
d r v p p n p

P r v d r v p p

= + − −
− + −

⇒ ≈ − <
Convolutional codes
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metric tables

rl

vl

01 02 12 11

0 10 8 5 0

1 0 5 8 10

rl

vl

01 02 12 11

0 -0.4 -0.52 -0.7 -1.0

1 -1.0 -0.7 -0.52 -0.4

log p( | )l lr v

2 1

1 2

[log p( | ) ]
with =1 and =17.3 

l lc r v c
c c

+

Convolutional codes
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Soft-decision decoding Viterbi algorithm for a (3,1,2) 

convolutional code with g(1)=(110) g(2)=(101) g(3)=(111)
Convolutional codes
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Hard-decision decoding Viterbi algorithm for a (3,1,2) 
convolutional code with g(1)=(110) g(2)=(101) g(3)=(111)

Convolutional codes
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Turbo coding



Turbo coding 39
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Of all practical error correction methods known to date, 
turbo codes andlow-density parity-check codes come closest 
to approaching the Shannon limit, the theoretical limit of 
maximum information transfer rate over a noisy channel.
Turbo codes make it possible to increase data rate without 
increasing the power of a transmission, or they can be used 
to decrease the amount of power used to transmit at a 
certain data rate. Its main drawbacks are the relative high 
decoding complexity and a relatively high latency, which 
makes it unsuitable for some applications. For satellite use, 
this is not of great concern, since the transmission distance 
itself introduces latency due to the limited speed of lights.
Prior to Turbo codes, because practical implementations of 
LDPCs had not been developed, the most widespread 
technique that approached the Shannon limit combined 
Reed-Solomon error correction with Viterbi-decoded short 
constraint length convolutional codes, also known as RSV 
codes. 

* Extracted from Wikipedia, the free encyclopedia

Turbo coding
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Joint source-channel coding
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When using entropy coding over a noisy channel, it 
is customary to protect the highly vulnerable 

bitstream with error correcting code. However, a 
technique which utilizes the residual redundancy at 

the output of the source coder to provide  error 
protection for entropy coded systems is feasible.

Real world source coding algorithms usually leave a 
certain amount of redundancy within the coded bit 

stream. Shannon [1948] already mentioned that this 
redundancy can be exploited at the receiver side to 
achieve a higher robustness against channel errors

C. Guillemot and P. Christ,”Joint source-channel 
coding as an element of a QOS framework for ‘4G’
wireless multimedia,” Computer Communication, 
vol. 27,pp. 762-779,2004.
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Trellis structure for VLEC codes

The trellis diagram for the 
VLEC code C1

symbol codeword
A
B
C

C1= 000
C2= 0110
C3 =1011

Joint source/channel coding
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Example

transmitted codeword sequence：000 0110 
received vector y = 000 1110
n : number of total bits (n=7)
d(a,b):hamming distance between a and b
Mi: the metric of the surviving path at state 
si

Joint source/channel coding
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Modified Viterbi decoding 
algorithm (cont.)

Current state s0

M0 = 0, 

M3 = 0

M4 = 3 2

m3 = d ( 1011, 0001 ) = 2

m2 = d ( 0110, 0001 ) = 3

S0 S4

S3

m1 = d ( 000, 000 ) = 0
y=0001110

Joint source/channel coding



M6 = 3

M4 = 2

M3 = 0

M7 = 1

Current state s3

Modified Viterbi decoding 
algorithm (cont.)

m1 = d ( 000, 111 ) = 3

S0 S4

S3

m2 = d ( 0110, 1110 ) = 1

S6

S7

m3 = d ( 1011, 1110 ) = 2

y=0001110

46Joint source/channel coding



000
M6 = 3

M4 = 2

M7 = 1

M3 = 0

Current state s4

Modified Viterbi decoding 
algorithm (cont.)

m1 = d ( 000, 110 ) = 2

S0 S4

S3

S6

S7

y=0001110

0110

47Joint source/channel coding
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Modified Viterbi decoding 
algorithm (cont.)

Current state s6

Current state s7 stop  (# of transmitted bits is 
known)

so decoded as  : S0 S3 S7

( ie. 000 0110 )

A B

Joint source/channel coding



49Average codeword length=7.71 Average codeword length=4.2054

Code rate 
5/7.71 ≈
0.6485
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*Here, it don’t have the assumption that all source 

symbols (i.e. all codewords) are equally likely

(7,4)

Code rate 
(5/4.2054)*4/7≈0.6794

Levenshtein distance (minimum number of symbol insertions, 
deletions, and substitutions)/number of symbols transmitted
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Conclusions

Joint source-channel coding as an element of a 
QOS framework for ‘4G’ wireless multimedia
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