
Lab 1: Simulating a Communications Channel 53

Programming Laboratory 1 :
Simulating a Com mu nicat ions
Channel

Objective

In this lab, you will simulate a BPSK communication sys-
tem and a coded system with a Hamming code employing
hard-input decoding rules.

Background

Reading: Sections 1.5, 1.7, 1.9.
In the case of BPSK, an exact expression for the prob-

ability of error is available, (1.25). However, in many more
interesting communication systems, a closed form expres-
sion for the probability of error is not available or is difficult
to compute. Results must be therefore obtained by simula-
tion of the system.

One of the great strengths of the signal-space viewpoint
is that probability of error simulations can be made based
only on points in the signal space. In other words, it suffices
to simulate random variables as in the matched filter output
(1.12), rather than creating the continuous-time functions as
in (1.10). (However, for other kinds of questions, a simu-
lation of the continuous-time function might be necessary.
For example, if you are simulating the effect of synchro-
nization, timing jitter, delay, or fading, simulating the time
signal is probably necessary.)

A framework for simulating a communication system
from the signal space point of view for the purpose of com-
puting the probability of error is as follows:

Algorithm 1.2 Outline for simulating digital communica-
tions

I Initialization: Store the points in the signal constellation.

z FOR each signal-to-noise ratio y = Eb/No:
3 Compute No = E b / y and o2 = No/2.
4 no:

Fix Eb (typically Eb = 1).

5

6

7

8

9

10

I 1

12

- - .

Generate some random bit@) (the “transmitted” bits)
according to the bit probabilities
Map the bit@) into the signal constellation
(e.g.,BPSK or 8-PSK) to create signal s
Generate a Gaussian random vector n (noise) with
variance m2 = No12 in each signal direction.
Add the noise to the signal to create the matched filter output
signal r = s+ n.
Perform a detection on the symbol
(e.g., find closest point in signal constellation to r)
From the detected symbol, determine the detected bits
Compare detected bits with the transmitted bits
Accumulate the number of bits in error

1 3 UNTIL at least N hit errors have been counted.
14 The estimated urobabilitv of error at this SNR is

pe Ft: number of errors counted
number of bits generated

isEnd FOR

As a general rule, the more errors N you count, the
smaller will be the variance of your estimate of the prob-
ability of error. However, the bigger N is, the longer the
simulation will take to run. For example, if the probabil-
ity of error is near at some particular value of SNR,
around one million bits must be generated before you can
expect an error. If you choose N = 100, then 100 million
bits must be generated to estimate the probability of error,
for just that one point on the plot!

Use of Coding in Conjunction with the BSC

For an (n, k) code having rate R = k / n transmitted with
energy per bit equal to Eb, the energy per coded bit is
Ec = EbR. It is convenient to fix the coded energy per
bit in the simulation. To simulate the BSC channel with
coding, the following outline can be used.

Algorithm 1.3 Outline for simulating (n, k)-coded digital
communications

I Initialization: Store the points in the signal constellation.

z FOR each signal-to-noise ratio y = Eb/No:
3 Compute No = E , / (R y) and g2 = No/2.
4 Compute the BSC crossover probability p = Q(-).
5 DO:
6

7

8

9

10

I I

12 UNTIL at least N bit errors have been counted.
13 The estimated probability of error is

pe ~ number of errors counted
number of bits generated

Fix Ec (typically Ec = 1). Compute R .

Generate a block of k “transmitted” input bits
and accumulate the number of bits generated
Encode the input bits to n codeword bits
Pass the n bits through the BSC
(Ep each bit with probability p)
Run the n bits through the decoder to produce k output bits
Compare the decoded output bits with the input bits
Accumulate the number of bits in error

14End FOR

The encoding and decoding operations depend on the
kind of code used. In this lab, you will use codes which are
among the simplest possible, the Hamming codes.

Since for linear codes the codeword is irrelevant, the
simulation can be somewhat simplified by assuming that
the input bits are all zero, so that the codeword is also all
zero. For the Hamming code, the simulation can be arranged
as follows:

54 A Context for Error Correction Coding

Algorithm 1.4 Outline for simulating (n, k) Hamming-
coded digital communications

I Fix Ec (typically Ec = 1). Compute R .
z FOR each signal-to-noise ratio y = E b / N o :
3 Compute No = E c / (R y) and o2 = N a p .
4 Compute the BSC crossover probability p = Q(m).
5 DO:
6

7

8

9

1 0

1 I

12 UNTIL at least N bit errors have been counted.
1 3 Compute the probability of error.
14End FOR

Generate r as a vector of n random bits which are 1
with probability p
Increment the number of bits generated by k.
compute the syndrome s = rHT.
Ifs # 0, determine the error location based on the column
of H which is equal to s and complement that bit of r
Count the number of decoded bits (out of k) in r which
match the all-zero message bits
Accumulate the number of bits in error.

The coding gain for a coded system is the difference
in the SNR required between uncoded and coded systems
achieving the same probability of error. Usually the coding
gain is expressed in dF3 .

Assignment

Preliminary Exercises Show that if X is a random vari-
able with mean 0 and variance 1 then

Y = a X + b

is a random variable with mean b and variance a2.

Programming Part

BPSK Simulation

1) Write a program that will simulate a BPSK communi-
cation system with unequal prior bit probabilities. Using
your program, create data from which to plot the probabil-
ity of bit error obtained from your simulation for SNRs in
the range from 0 to 10 dB, for the three cases that Po = 0.5
(in which case your plot should look much like Figure 1. lo),
PO = 0.25, and Po = 0.1. Decide on an appropriate value
of N .
2) Prepare data from which to plot the theoretical proba-
bility of error (1.24) for the same three values of Po. (You
may want to combine these first two programs into a single
program.)
3) Plot the simulated probability of error on the same axes
as the theoretical probability of error. The plots should
have Eb/NO in dF3 as the horizontal axis and the probabil-
ity as the vertical axis, plotted on a logarithmic scale (e.g.,
semilogy in Matlab).

4) Compare the theoretical and simulated results. Com-
ment on the accuracy of the simulation and the amount of
time it took to run the simulation. Comment on the impor-
tance of theoretical models (where it is possible to obtain
them).
5) Plot the probability of error for Po = 0.1, Po = 0.25
and PO = 0.5 on the same axes. Compare them and com-
ment.
8-PSK Simulation
1) Write a program that will simulate an 8-PSK communi-
cation system with equal prior bit probabilities. Use a signal
constellation in which the points are numbered in Gray code
order. Make your program so that you can estimate both the
symbol error probability and the bit error probability. De-
cide on an appropriate value of N .
2) Prepare data from which to plot the bound on the prob-
ability of symbol error Ps using (1.26) and probability of
bit error Pb using (1.27).
3) Plot the simulated probability of symbol error and bit
error on the same axes as the bounds on the probabilities of
error.
4) Compare the theoretical and simulated results. Com-
ment on the accuracy of the bound compared to the simula-
tion and the amount of time it took to run the simulation.
Coded BPSK Simulation

1) Write a program that will simulate performance of the
(7,4) Hamming code over a BSC channel with channel
crossover probability p = Q (d a) and plot the prob-
ability of error as a function of Eb/NO in dB. On the same
plot, plot the theoretical probability of error for uncoded
BPSK transmission. Identify what the coding gain is for a
probability of error Pb =
2) Repeat this for a (15, 11) Hamming code. (See page 97
and equations (3.6) and (3.4))

Resources and implementation Suggestlons

A unit Gaussian random variable has mean zero and
variance 1. Given a unit Gaussian random variable, using
the preliminary exercise, it is straightforward to generate a
Gaussian random variable with any desired variance.

The function gran provides a unit Gaussian random
variable, generated using the Box-Muller transformation of
two uniform random variables. The function granil re-
turns two unit Gaussian random variables. This is useful
for simulations in two-dimensional signal constellations.
0 There is nothing in this lab that makes the use of C++ im-
perative, as opposed to C. However, you may find it useful
to use C++ in the following ways:

Create an AWGN class to represent a 1-D or 2-D channel.
0 Create a BSC class.

Lab 1: Simulating a Communications Channel 55

0 Create a Hamming code class to take care of encoding
and decoding (as you learn more about coding algorithms,
you may want to change how this is done).
0 In the literature, points in two-dimensional signal con-
stellations are frequently represented as points in the com-
plex plane. You may find it convenient to do similarly, using
the complex number capabilities that are present in C++.

0 Since the horizontal axis of the probability of error plot is
expressed as a ratio Eb/NO, there is some flexibility in how
to proceed. Given a value of Eb/NO, you can either fix NO
and determine Eb, or you can fix Eb and determine NO. An
exampleofhow this can bedoneisin testrepcode. cc.
0 The function ur an generates a uniform random number
between 0 and 1. This can be used to generate a bit which
is 1 with probability p .
0 The Q function, used to compute the theoretical proba-
bility of error, is implemented in the function qf.

There are two basic approaches to generating the se-
quence of bits in the simulation. One way is to generate and
store a large array of bits (or their resulting signals) then
processing them all together. This is effective in a language
such as Matlab, where vectorized operations are faster than
using for loops. The other way, and the way recommended
here, is to generate each signal separately and to process it
separately. This is recommended because it is not necessar-
ily known in advance how many bits should be generated.
The number of bits to be generated could be extremely large
- in the millions or even billions when the probability of
error is small enough.

For the Hamming encoding and decoding opera-
tion, vector/matrix multiply operations over GF(2) are
required, such as c = mG. (G F (2) is addi-
tion/subtraction/multiplication/division modulo 2.) These
could be done in the conventional way using nested for
loops. However, for short binary codes, a computational
simplification is possible. Write G in terms of its columns
as

Then the encoding process can be written as a series of vec-
torhector products (inner products)

G = [g1 8 2 . . . 9.1

= [mgl m g 2 ... m9.1.

Let us consider the inner product operation: it consists of
element-by-element multiplication, followed by a sum.

Let rn be an integer variable, whose bits represent the
elements of the message vector m. Also, let g[i] be an in-
teger variable in C whose bits represent the elements of the

column gk. Then the element-b element multi lication in-
volved in the product m g k cant; written simpyy using the
bitwise-and operator & in C. How, then, to sum up the ele-
ments of the resulting vector? One way, of course, is to use
a for loop, such as:

/ / Compute c=m*G, where m is a bit-vector,
/ / and G is represented by g[i]
c = 0; / / set vector of bits to 0
for(i = 0; i < n; i++) {

mg = rn & g[i];
/ / mod-2 multiplication
/ / of all elements
bit surn=O ;
for(j = 0, mask=l; j < n; j + +) {
/ / mask selects a single bit

if(mg & mask) {

bit sum++ ;
/ / accumulate if the bit != 0

I
mask <<= 1;
/ / shift mask over by 1 bit

I
bitsum = bitsum % 2; / / mod-2 sum
c = c 1 bitsum*(l<<i);
/ / assign to vector of bits . . .

1

However, for sufficiently small codes (such as in this
assignment) the inner for loop can be eliminated by pre-
corn uting the sums. Consider table below. For a given
numger rn, the last column provides the sum of all the bits
in m, modulo 2.

m mminary) E m s [m] = C m (mod2)
0 oooo 0 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0001
0010
001 1
0100
0101
01 10
0111
1000
1001
1010
1011
1100
1101
1110
1111

1
1
2
1
2
2
3
1
2
2
3
2
3
3
4

1
1
0
1
0
0
1
1
0
0
1
0
1
1
0

To use this in a program, precompute the table of bit
sums, then use this to look up the result. An outline fol-
lows :

/ / Compute the table s , having all
/ / the bit sums modulo 2
/ / ...

/ / Compute c=m*G, where
/ / m is a bit-vector, and
/ / G is represented by g[il
c = 0;
for(i = 0; i < n; i++) {

c = c I s [m & g[ill*(l<<i);
/ / assign to vector of bits

1

	Wiley.Error.Correction.Coding.ethods.and.Algorithms.May.2005 100.pdf
	Wiley.Error.Correction.Coding.ethods.and.Algorithms.May.2005 101
	Wiley.Error.Correction.Coding.ethods.and.Algorithms.May.2005 102

