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Programming Laboratory 1 : 
Simulating a Com mu nicat ions 
Channel 

Objective 

In this lab, you will simulate a BPSK communication sys- 
tem and a coded system with a Hamming code employing 
hard-input decoding rules. 

Background 

Reading: Sections 1.5, 1.7, 1.9. 
In the case of BPSK, an exact expression for the prob- 

ability of error is available, (1.25). However, in many more 
interesting communication systems, a closed form expres- 
sion for the probability of error is not available or is difficult 
to compute. Results must be therefore obtained by simula- 
tion of the system. 

One of the great strengths of the signal-space viewpoint 
is that probability of error simulations can be made based 
only on points in the signal space. In other words, it suffices 
to simulate random variables as in the matched filter output 
(1.12), rather than creating the continuous-time functions as 
in (1.10). (However, for other kinds of questions, a simu- 
lation of the continuous-time function might be necessary. 
For example, if you are simulating the effect of synchro- 
nization, timing jitter, delay, or fading, simulating the time 
signal is probably necessary.) 

A framework for simulating a communication system 
from the signal space point of view for the purpose of com- 
puting the probability of error is as follows: 

Algorithm 1.2 Outline for simulating digital communica- 
tions 

I Initialization: Store the points in the signal constellation. 

z FOR each signal-to-noise ratio y = Eb/No:  
3 Compute No = E b / y  and o2 = No/2. 
4 no: 

Fix Eb (typically Eb = 1). 
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Generate some random bit@) (the “transmitted” bits) 
according to the bit probabilities 
Map the bit@) into the signal constellation 
(e.g.,BPSK or 8-PSK) to create signal s 
Generate a Gaussian random vector n (noise) with 
variance m2 = No12 in each signal direction. 
Add the noise to the signal to create the matched filter output 
signal r = s+ n. 
Perform a detection on the symbol 
(e.g., find closest point in signal constellation to r) 
From the detected symbol, determine the detected bits 
Compare detected bits with the transmitted bits 
Accumulate the number of bits in error 

1 3  UNTIL at least N hit errors have been counted. 
14 The estimated urobabilitv of error at this SNR is 

pe Ft: number of errors counted 
number of bits generated 

isEnd FOR 

As a general rule, the more errors N you count, the 
smaller will be the variance of your estimate of the prob- 
ability of error. However, the bigger N is, the longer the 
simulation will take to run. For example, if the probabil- 
ity of error is near at some particular value of SNR, 
around one million bits must be generated before you can 
expect an error. If you choose N = 100, then 100 million 
bits must be generated to estimate the probability of error, 
for just that one point on the plot! 

Use of Coding in Conjunction with the BSC 

For an (n, k )  code having rate R = k / n  transmitted with 
energy per bit equal to Eb, the energy per coded bit is 
Ec = EbR. It is convenient to fix the coded energy per 
bit in the simulation. To simulate the BSC channel with 
coding, the following outline can be used. 

Algorithm 1.3 Outline for simulating (n, k)-coded digital 
communications 

I Initialization: Store the points in the signal constellation. 

z FOR each signal-to-noise ratio y = Eb/No:  
3 Compute No = E , / ( R y )  and g2 = No/2.  
4 Compute the BSC crossover probability p = Q(-). 
5 DO: 
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12 UNTIL at least N bit errors have been counted. 
13 The estimated probability of error is 

pe ~ number of errors counted 
number of bits generated 

Fix Ec (typically Ec = 1). Compute R .  

Generate a block of k “transmitted” input bits 
and accumulate the number of bits generated 
Encode the input bits to n codeword bits 
Pass the n bits through the BSC 
(Ep each bit with probability p )  
Run the n bits through the decoder to produce k output bits 
Compare the decoded output bits with the input bits 
Accumulate the number of bits in error 

14End FOR 

The encoding and decoding operations depend on the 
kind of code used. In this lab, you will use codes which are 
among the simplest possible, the Hamming codes. 

Since for linear codes the codeword is irrelevant, the 
simulation can be somewhat simplified by assuming that 
the input bits are all zero, so that the codeword is also all 
zero. For the Hamming code, the simulation can be arranged 
as follows: 
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Algorithm 1.4 Outline for simulating (n, k )  Hamming- 
coded digital communications 

I Fix Ec (typically Ec = 1). Compute R .  
z FOR each signal-to-noise ratio y = E b / N o :  
3 Compute No = E c / ( R y )  and o2 = N a p .  
4 Compute the BSC crossover probability p = Q(m). 
5 DO: 
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12 UNTIL at least N bit errors have been counted. 
1 3  Compute the probability of error. 
14End FOR 

Generate r as a vector of n random bits which are 1 
with probability p 
Increment the number of bits generated by k. 
compute the syndrome s = rHT. 
Ifs # 0, determine the error location based on the column 
of H which is equal to s and complement that bit of r 
Count the number of decoded bits (out of k) in r which 
match the all-zero message bits 
Accumulate the number of bits in error. 

The coding gain for a coded system is the difference 
in the SNR required between uncoded and coded systems 
achieving the same probability of error. Usually the coding 
gain is expressed in dF3 . 

Assignment 

Preliminary Exercises Show that if X is a random vari- 
able with mean 0 and variance 1 then 

Y = a X + b  

is a random variable with mean b and variance a2.  

Programming Part 

BPSK Simulation 

1) Write a program that will simulate a BPSK communi- 
cation system with unequal prior bit probabilities. Using 
your program, create data from which to plot the probabil- 
ity of bit error obtained from your simulation for SNRs in 
the range from 0 to 10 dB, for the three cases that Po = 0.5 
(in which case your plot should look much like Figure 1. lo), 
PO = 0.25, and Po = 0.1. Decide on an appropriate value 
of N .  
2) Prepare data from which to plot the theoretical proba- 
bility of error (1.24) for the same three values of Po. (You 
may want to combine these first two programs into a single 
program.) 
3) Plot the simulated probability of error on the same axes 
as the theoretical probability of error. The plots should 
have Eb/NO in dF3 as the horizontal axis and the probabil- 
ity as the vertical axis, plotted on a logarithmic scale (e.g., 
semilogy in Matlab). 

4) Compare the theoretical and simulated results. Com- 
ment on the accuracy of the simulation and the amount of 
time it took to run the simulation. Comment on the impor- 
tance of theoretical models (where it is possible to obtain 
them). 
5) Plot the probability of error for Po = 0.1, Po = 0.25 
and PO = 0.5 on the same axes. Compare them and com- 
ment. 
8-PSK Simulation 
1) Write a program that will simulate an 8-PSK communi- 
cation system with equal prior bit probabilities. Use a signal 
constellation in which the points are numbered in Gray code 
order. Make your program so that you can estimate both the 
symbol error probability and the bit error probability. De- 
cide on an appropriate value of N .  
2) Prepare data from which to plot the bound on the prob- 
ability of symbol error Ps using (1.26) and probability of 
bit error Pb using (1.27). 
3) Plot the simulated probability of symbol error and bit 
error on the same axes as the bounds on the probabilities of 
error. 
4) Compare the theoretical and simulated results. Com- 
ment on the accuracy of the bound compared to the simula- 
tion and the amount of time it took to run the simulation. 
Coded BPSK Simulation 

1) Write a program that will simulate performance of the 
(7,4) Hamming code over a BSC channel with channel 
crossover probability p = Q ( d a )  and plot the prob- 
ability of error as a function of Eb/NO in dB. On the same 
plot, plot the theoretical probability of error for uncoded 
BPSK transmission. Identify what the coding gain is for a 
probability of error Pb = 
2) Repeat this for a (15, 11) Hamming code. (See page 97 
and equations (3.6) and (3.4)) 

Resources and implementation Suggestlons 

A unit Gaussian random variable has mean zero and 
variance 1. Given a unit Gaussian random variable, using 
the preliminary exercise, it is straightforward to generate a 
Gaussian random variable with any desired variance. 

The function gran  provides a unit Gaussian random 
variable, generated using the Box-Muller transformation of 
two uniform random variables. The function granil  re- 
turns two unit Gaussian random variables. This is useful 
for simulations in two-dimensional signal constellations. 
0 There is nothing in this lab that makes the use of C++ im- 
perative, as opposed to C. However, you may find it useful 
to use C++ in the following ways: 

Create an AWGN class to represent a 1-D or 2-D channel. 
0 Create a BSC class. 
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0 Create a Hamming code class to take care of encoding 
and decoding (as you learn more about coding algorithms, 
you may want to change how this is done). 
0 In the literature, points in two-dimensional signal con- 
stellations are frequently represented as points in the com- 
plex plane. You may find it convenient to do similarly, using 
the complex number capabilities that are present in C++. 

0 Since the horizontal axis of the probability of error plot is 
expressed as a ratio Eb/NO, there is some flexibility in how 
to proceed. Given a value of Eb/NO, you can either fix NO 
and determine Eb, or you can fix Eb and determine NO. An 
exampleofhow this can bedoneisin testrepcode. cc. 
0 The function ur an generates a uniform random number 
between 0 and 1. This can be used to generate a bit which 
is 1 with probability p .  
0 The Q function, used to compute the theoretical proba- 
bility of error, is implemented in the function qf. 

There are two basic approaches to generating the se- 
quence of bits in the simulation. One way is to generate and 
store a large array of bits (or their resulting signals) then 
processing them all together. This is effective in a language 
such as Matlab, where vectorized operations are faster than 
using for loops. The other way, and the way recommended 
here, is to generate each signal separately and to process it 
separately. This is recommended because it is not necessar- 
ily known in advance how many bits should be generated. 
The number of bits to be generated could be extremely large 
- in the millions or even billions when the probability of 
error is small enough. 

For the Hamming encoding and decoding opera- 
tion, vector/matrix multiply operations over GF(2) are 
required, such as c = mG. ( G F ( 2 )  is addi- 
tion/subtraction/multiplication/division modulo 2.) These 
could be done in the conventional way using nested for 
loops. However, for short binary codes, a computational 
simplification is possible. Write G in terms of its columns 
as 

Then the encoding process can be written as a series of vec- 
torhector products (inner products) 

G =  [g1 8 2  . . .  9.1 

= [mgl m g 2  ... m9.1. 

Let us consider the inner product operation: it consists of 
element-by-element multiplication, followed by a sum. 

Let rn be an integer variable, whose bits represent the 
elements of the message vector m. Also, let g[i] be an in- 
teger variable in C whose bits represent the elements of the 

column gk. Then the element-b element multi lication in- 
volved in the product m g k  cant; written simpyy using the 
bitwise-and operator & in C. How, then, to sum up the ele- 
ments of the resulting vector? One way, of course, is to use 
a for loop, such as: 

/ /  Compute c=m*G, where m is a bit-vector, 
/ /  and G is represented by g[i] 
c = 0; / /  set vector of bits to 0 
for(i = 0; i < n; i++) { 

mg = rn & g[i]; 
/ /  mod-2 multiplication 
/ /  of all elements 
bit surn=O ; 
for(j = 0, mask=l; j < n; j + + )  { 
/ /  mask selects a single bit 

if(mg & mask) { 

bit sum++ ; 
/ /  accumulate if the bit != 0 

I 
mask <<= 1; 
/ /  shift mask over by 1 bit 

I 
bitsum = bitsum % 2; / /  mod-2 sum 
c = c 1 bitsum*(l<<i); 
/ /  assign to vector of bits . . .  

1 

However, for sufficiently small codes (such as in this 
assignment) the inner for loop can be eliminated by pre- 
corn uting the sums. Consider table below. For a given 
numger rn, the last column provides the sum of all the bits 
in m, modulo 2. 

m mminary) E m  s [ m ] = C m  (mod2) 
0 oooo 0 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

0001 
0010 
001 1 
0100 
0101 
01 10 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

1 
1 
2 
1 
2 
2 
3 
1 
2 
2 
3 
2 
3 
3 
4 

1 
1 
0 
1 
0 
0 
1 
1 
0 
0 
1 
0 
1 
1 
0 

To use this in a program, precompute the table of bit 
sums, then use this to look up the result. An outline fol- 
lows : 

/ /  Compute the table s ,  having all 
/ /  the bit sums modulo 2 
/ /  ... 

/ /  Compute c=m*G, where 
/ /  m is a bit-vector, and 
/ /  G is represented by g[il 
c = 0; 
for(i = 0; i < n; i++) { 

c = c I s [ m  & g[ill*(l<<i); 
/ /  assign to vector of bits 

1 
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