What is algorithm?

- A method that can be used by a computer for the solution of a problem.
- A sequence of computational steps that transform the input into the output.
- Examples of algorithms in the nature: DNA and cook book.
- The word "algorithm" comes from the name of a Persian author, Abu Ja'far Mohammed ibn Musa al Khowarizmi (c. 825 A.D.), who wrote a textbook on mathematics.
Why should we study algorithms?

- A good algorithm implemented on a slow computer may perform much better than a bad algorithm implemented on a fast computer.

<table>
<thead>
<tr>
<th>$f(n)$ \ n</th>
<th>10</th>
<th>10^2</th>
<th>10^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\log_2 n$</td>
<td>3.3</td>
<td>6.6</td>
<td>10</td>
</tr>
<tr>
<td>n</td>
<td>10</td>
<td>10^2</td>
<td>10^3</td>
</tr>
<tr>
<td>$n\log_2 n$</td>
<td>0.33×10^2</td>
<td>0.7×10^3</td>
<td>10^4</td>
</tr>
<tr>
<td>n^2</td>
<td>10^2</td>
<td>10^4</td>
<td>10^6</td>
</tr>
<tr>
<td>2^n</td>
<td>1024</td>
<td>1.3×10^3</td>
<td>$> 10^{100}$</td>
</tr>
<tr>
<td>$n!$</td>
<td>3^6</td>
<td>$> 10^{100}$</td>
<td>$> 10^{100}$</td>
</tr>
</tbody>
</table>

Minimal spanning tree problem

- Given a set of points, find a spanning tree with the shortest total length.
Minimal spanning tree problem

- **MST problem**: given a set of points, find a spanning tree with the shortest total length
- **Brute force method**: enumerate all possible spanning trees and select the best one among them
- Given \(n \) points, there are \(n^{n-2} \) possible spanning trees for them.

How to design a good algorithm?

- **Efficient or not?**
 (Efficient means short time and small space.)
- **Strategies of algorithms**:
 1. Greedy
 2. Divide & conquer
 3. Prune & search
 4. Dynamic programming
 5. Branch and bound
 6. Approximation
 7. Heuristics
Prim’s algorithm for MST

Input: A weighted and connected graph $G = (V, E)$.

Output: A minimum spanning tree of G.

1. Let x be any vertex in V;
 Let $X = \{x\}$ and $Y = V \setminus \{x\}$;
2. Select an edge (u, v) from E such that $u \in X$, $v \in Y$ and (u, v) has the smallest weight among edges between X and Y;
3. Connect u to v;
 Let $X = X \cup \{v\}$ and $Y = Y \setminus \{v\}$;
4. If Y is empty, terminate and the resulting tree is a minimal spanning tree; Otherwise, go to step 2;
Kruskal’s algorithm for MST

Input: A weighted and connected graph $G = (V, E)$.

Output: A minimum spanning tree of G.

1: $T = \emptyset$;

2: while T contains less than $n - 1$ edges do
 Choose an edge (v, w) from E of smallest weight;
 Delete (v, w) from E;
 if adding (v, w) does not create cycle in T then
 Add (v, w) to T;
 else
 Discard (v, w);
 end if
end while
How to measure time complexity of algorithm A?

1. Write a program for A and see how fast it runs.
 - Not suitable for many factors unrelated to A, such as the capability of programmer, the used language and compiler, operating system, CPU’s speed etc.

2. Choose the particular steps in A and determine the number of the needed steps
 - The particular steps are time-consuming operations, like comparison of data, movement of data, $+$, $-$, \ast, $/$ operations etc.

Time complexity of algorithm A

- **Time complexity of an algorithm:**
 - Equal to number of operations in algorithm A
 - Usually represented by a function of the size of the input

- **Size of the input:**
 1. sorting: number of items
 2. graph problems: number of vertices and edges
 3. multiplying two integers: number of bits

- **Example:** For MST problem,
 Prim’s algorithm $= |V|^2$ time
 Kruskal’s algorithm $= |E| \log |E| + |V|$ time
O notation

\[O(g(n)) = \{ f(n) | \text{there exist positive constants } c \text{ and } n_0 \text{ such that } f(n) \leq cg(n) \text{ for all } n \geq n_0 \}. \]

The Basic Concepts of Algorithms

O notation

- \(O(g(n)) \) actually denotes a set of functions.
- \(f(n) = O(g(n)) \) indicates that \(f(n) \) is a member of \(O(g(n)) \).
- **Example:** Let \(f(n) = \frac{1}{2}n^2 - 3n \). Then
 1. \(f(n) = O(n^2) \) (✔)
 2. \(f(n) = O(n^3) \) (✔)
 3. \(f(n) = O(n) \) (✘)

"The running time of an algorithm \(\mathcal{A} \) is \(O(n^2) \)" means that the **worst-case running time of \(\mathcal{A} \) is** \(O(n^2) \).
Ω notation

\[\Omega(g(n)) = \{ f(n) \mid \text{there exist positive constants } c \text{ and } n_0 \text{ such that } f(n) \geq cg(n) \text{ for all } n \geq n_0 \} \]

Example: Let \(f(n) = \frac{1}{2}n^2 + 3n \). Then

1. \(f(n) = \Omega(n^2) \) (✔)
2. \(f(n) = \Omega(n^3) \) (✘)
3. \(f(n) = \Omega(n) \) (✔)
4. \(f(n) = \Omega(1) \) (✔)
Θ notation

Θ(g(n)) = \{ f(n) | \text{there exist positive constants } c_1, c_2 \text{ and } n_0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n) \text{ for all } n \geq n_0 \}.

The Basic Concepts of Algorithms p.1

Θ notation

- Θ(g(n)) actually denotes a set of functions.
- f(n) = Θ(g(n)) indicates that f(n) is a member of Θ(g(n)).
- Let f(n) = \frac{1}{2}n^2 - 3n. Then f(n) = Θ(n^2), but f(n) ≠ Θ(n) and f(n) ≠ Θ(n^3).
- **Skill**: ignore the lower-order terms and the coefficient of the highest-order term
- Any constant is denoted by Θ(1).
 (Any constant is a degree-0 polynomial, so it can be repressed as Θ(n^0) of Θ(1).)
The constant hidden in \mathcal{O} notation

Let A_1 and A_2 be two algorithms of solving the same problem and their time complexities be $\mathcal{O}(n)$ and $\mathcal{O}(n^3)$, respectively.

If we ask the same person to write two programs, say P_1 and P_2 respectively, for A_1 and A_2 under the same programming environment, would P_1 run faster than P_2?

- P_1 runs faster than P_2 when n is large.
- P_2 may run faster than P_1 when n is small.

(The constant hidden in \mathcal{O} notation cannot be ignored.)

Types of complexity of algorithm

Let $T(I)$ be the time complexity of an algorithm \mathcal{A} for instance I.

1. Best case: $\min\{T(I) : \text{for all } I\}$
2. Average case: $\sum\{T(I) \cdot \text{prob}(I) : \text{for all } I\}$
 - $\text{prob}(I)$: probability of the occurrence of I
3. Worst case: $\max\{T(I) : \text{for all } I\}$

Usually, we use \mathcal{O}-notation and Ω-notation to denote the upper bound (worst case) and lower bound (best case) of algorithm \mathcal{A}, respectively.
Insertion sorting algorithm

Input: \(x_1, x_2, \ldots, x_n \).

Output: The sorted sequence of \(x_1, x_2, \ldots, x_n \).

1. **for** \(j = 2 \) to \(n \) **do** /* Outer loop */
2. \(i = j - 1; \)
3. \(x = x_j; \)
4. **while** \(x < x_i \) and \(i > 0 \) **do** /* Inner loop */
5. \(x_{i+1} = x_i; \)
6. \(i = i - 1; \)
7. **end while**
8. \(x_{i+1} = x; \)
9. **end for**

An example of insertion sort

- Let the input sequence be 7, 5, 1, 4, 3, 2, 6.
- The process of insertion sorting is as follows.
 - \(7 \leftarrow 7, 5, 1, 4, 3, 2, 6 \) (Initial state)
 - \(5, 7 \leftarrow 5, 1, 4, 3, 2, 6 \)
 - \(1, 5, 7 \leftarrow 1, 4, 3, 2, 6 \)
 - \(1, 4, 5, 7 \leftarrow 4, 3, 2, 6 \)
 - \(1, 3, 4, 5, 7 \leftarrow 3, 2, 6 \)
 - \(1, 2, 3, 4, 5, 7 \leftarrow 2, 6 \)
 - \(1, 2, 3, 4, 5, 6, 7 \leftarrow 6 \) (Final state)
Complexity of insertion sorting

Use the number of data movements as the time complexity measurement: \(X = \sum_{j=2}^{n}(2 + d_i) \)

- Outer loop: \(x = x_j, \ x_{i+1} = x \) (always executed)
- Inner loop: \(x_{i+1} = x_i \) (not always executed)
 \(d_j = |\{x_i : x_i > x_j, 1 \leq i < j\}| \)
- Best Case: sorted sequence \((d_1 = \cdots = d_n = 0)\)
 \(X = 2(n - 1) = \mathcal{O}(n) \)
- Worst Case: reversely sorted sequence
 \((d_2 = 1, d_3 = 2, \cdots, d_n = n - 1)\)
 \(X = \frac{(n-1)(n+4)}{2} = \mathcal{O}(n^2) \)

Average Case:

\[\sum_{j=2}^{n} \frac{j+3}{2} = \frac{(n+8)(n-1)}{4} = \mathcal{O}(n^2) \]

Let \(x_1, \cdots, x_{j-1} \) be a sorted sequence and the next step is to insert \(x_j \).

- If \(x_j \) is the \(i \)th largest number among the \(j \) numbers, there will be \(i - 1 \) movements in the inner loop (2 movements in the outer loop).
- The probability that \(x_j \) is the \(i \)th largest among \(j \) numbers is \(\frac{1}{j} \).
- Therefore, the average number of movement is
 \[\frac{2+0}{j} + \frac{2+1}{j} + \cdots + \frac{2+j-1}{j} = \frac{j+3}{2}. \]
Polynomial/Exponential algorithms

- **Polynomial algorithm:**
 whose complexity is bound by $O(n^k)$,
 where n is the input size and k is a constant

- **Exponential algorithm:**
 whose complexity is bound by $O(k^n)$

- **Example:** For MST problem,
 - Prim and Kruskal’s methods: polynomial
 - Brute force method: exponential
 - Polynomial algorithms are better than exponential ones.

How to measure the difficulty of a problem \mathcal{P}?

- **Is problem \mathcal{P} solvable or not?**

- **If \mathcal{P} is solvable, the time-complexity of \mathcal{P} is**
 $\min\{T(\mathcal{A}) : \mathcal{A} \text{ is an algorithm of } \mathcal{P}\}$,
 where $T(\mathcal{A})$ is the time-complexity of \mathcal{A}.

- **Easy problem:** solvable in polynomial time
 - MST problem: greedy algorithm

- **Difficult problem:** impossibly find a polynomial time algorithm to solve it
 - Traveling salesperson problem: NP-complete
 - Halting problem: no algorithm
Upper/Lower bounds of problem

- **Upper bound of problem** P: the complexity of the best one among algorithms solving P

 - **Example**: The upper bound of MST problem is $\min\{\mathcal{O}(|V|^2), \mathcal{O}(|E| \log |E|)\}$.

- **Lower bound of** P: use mathematical method to proof that any algorithm for P must have at least time-complexity $f(n)$

 - **Example**: An trivial lower bound of MST problem is $\mathcal{O}(|V| + |E|)$.

How to know that an algorithm \mathcal{A} is optimal for a problem P?

- Is there any other better algorithm?

- \mathcal{A} is **optimal** if there is no other better algorithm.

- \mathcal{A} is **optimal** if the time-complexity of \mathcal{A} is equal to the lower bound of P.

 ![Diagram](Diagram.png)
Decision/Optimization problems

- **Decision problem**: the problem whose solution is simply "yes" or "no"
 - **Example**: Traveling salesperson decision problem: Given a set of points and a constant c, is there a tour starting from any point v_0 whose total length is less than c?

- **Optimization problem**: the problem of finding a solution whose value is optimal
 - **Example**: Traveling salesperson problem: Given a set of points, find a shortest tour which starts from any point v_0.

The optimization problems are more difficult than their corresponding decision problems.

- If we can solve the traveling salesperson problem, then we can solve the traveling salesperson decision problem, but not vice versa.
- If the traveling salesperson decision problem cannot be solved by polynomial algorithms, then we can conclude that the traveling salesperson problem cannot be solved by polynomial algorithms.
The Satisfiability Problem (SAT)

- Given a Boolean formula, determine whether this formula is satisfiable or not.

- Consider the following formula:

\[
(x_1 \lor x_2 \lor x_3) \\
\land (\neg x_1) \\
\land (\neg x_2)
\]

The following assignment makes the formula true.

\[
x_1 \leftarrow F \\
x_2 \leftarrow F \\
x_3 \leftarrow T
\]

Time-complexity of SAT problem

- If there are \(n \) variables, then there are \(2^n \) possible assignments for the SAT problem.

- Up to now, for the best available algorithms for the SAT problem, they cost exponential time in worst cases.

- Is there any possibility that the SAT problem can be solved in polynomial time?

- By the theory of NP-completeness, if the SAT problem can be solved in polynomial time, then all NP problems can be solved in polynomial time.
Nondeterministic algorithm

We may consider a nondeterministic algorithm as an algorithm consisting of two phases guessing and checking.

Given two numbers $x(1) = 7$ and $x(2) \neq 7$, determine if there is a number which equals 7.

Guessing: $i = \text{choice}(1,2)$;
Checking: if $x(i) = 7$ then SUCCESS else FAILURE.

Nondeterministic polynomial algorithm: a nondeterministic algorithm whose checking stage can be done in polynomial time

P and NP problems

P problem: a decision problem which can be solved by a polynomial algorithm, such as the MST decision problem and the longest common subsequence decision problem

NP problem: a decision problem which can be solved by a nondeterministic polynomial algorithm, such as the SAT problem and the traveling salesman decision problem

Every P problem must be an NP problem (i.e., $P \subseteq NP$).
P and NP problems

- Are all problems NP problems?
 - Halting problem: given an arbitrary program with an arbitrary input data, will the program terminate or not?
 - Halting problem is not an NP problem because it is undecidable.

- Are all NP problems P problems? (P = NP ?)
 - P ⊆ NP ? (yes)
 - P ⊇ NP ? (?): the SAT problem and the traveling salesperson decision problem can be solved in $O(2^n)$ and $O(n!)$ time, respectively.

NP-complete problem

- In discussing NP problems, we shall only discuss decision problems.

- Problem \mathcal{P}_1 reduces to problem \mathcal{P}_2 ($\mathcal{P}_1 \propto \mathcal{P}_2$):
 - \mathcal{P}_1 can be solved in polynomial time by using a polynomial time algorithm solving \mathcal{P}_2.
 - \mathcal{P}_2 is more difficult than \mathcal{P}_1.

- A problem \mathcal{P} is NP-complete if
 1. $\mathcal{P} \in \text{NP}$ and
 2. \mathcal{P} is NP-hard (every NP problem reduces to \mathcal{P}).

- The SAT problem was the first found NP-complete problem by Cook (1971).
Theory of NP-Completeness

- If any NP-complete problem can be solved in polynomial time, \(\text{NP} = \text{P} \).
- Up to now, no NP-complete problem has any worst case polynomial algorithm.

There are thousands of problems proved to be NP-complete problems.

If the decision version of an optimization problem is NP-complete, this optimization problem is called NP-hard.