Pascal
ISO 7185:1990

This online copy of the unextended Pascal standard is provided only as an aid to standardization.
In the case of differences between this online version and the printed version, the printed version
takes precedence.

Do not modify this document. Do not include this document in another software product. You may
print this document for personal use only. Do not sell this document.

Use this information only for good; never for evil. Do not expose to fire. Do not operate heavy
equipment after reading, may cause drowsiness. Do not read under the influence of alcohol (although
there have been several unconfirmed reports that alcohol actually improves the readability). The
standard is written in English. If you have trouble understanding a particular section, read it again
and again and again... Sit up straight. Eat your vegatables. Do not mumble.

©ISO/IEC 1991

ISO/IEC 7185:1990(E)

ii

Acknowledgements

ISO/IEC 7185:1990(E)

The efforts are acknowledged of all those who contributed to the work of the BSI and ISO Pascal
working groups, and in particular:

Tony Addyman
Albrecht Biedl

Bob Brewer

Coen Bron

David Burnett-Hall
David Bustard
Barry Byrne

Klaus Daessler
Richard De Morgan
Norman Diamond
Bob Dietrich

Ken Edwards
Jacques Farré

Bill Findlay

Harris Hall
Carsten Hammer
Atholl Hay

Tony Hetherington
Steve Hobbs

Mel Jackson
Scott Jameson
David Jones
David Joslin
Katsuhiko Kakehi
Olivier Lecarme
Jim Miner

Wes Munsil

Bill Price

John Reagan
Mike Rees
Arthur Sale
Paula Schwartz
Barry Smith
John Souter
Manfred Stadel
Bob Tennent
Tom Turba
Eiiti Wada
Willem Wakker
David Watt
Jim Welsh
Brian Wichmann

The efforts are acknowledged of all those who contributed to the work of JPC, and in particular:

Michael Alexander
Jeffrey Allen

Ed Barkmeyer

W. Ashby Boaz
Jack Boudreaux

A. Winsor Brown
Jerry R. Brookshire
Tomas M. Burger
David S. Cargo
Richard J. Cichelli
Joe Cointment
Roger Cox

Jean Danver

Debra Deutsch

Bob Dietrich
Victor A. Folwarczny
G. G. Gustafson
Thomas Giventer
Hellmut Golde
David N. Gray
Paul Gregory
Michael Hagerty
Charles E. Haynes
Christopher Henrich

Steven Hobbs
Albert A. Hoffman
Robert Hutchins
Rosa C. Hwang
Scott Jameson
David Jones

Steen Jurs

Mel Kanner

John Kaufmann
Leslie Klein

Bruce Knobe
Dennis Kodimer
Ronald E. Kole
Alan A. Kortesoja
Edward Krall
Robert Lange
Rainer McCown
Jim Miner

Eugene N. Miya
Mark Molloy
William Neuhauser
Dennis Nicholson
Mark Overgaard
Ted C. Park

David L. Presberg
William C. Price
Bruce Ravenal
David L. Reese
David C. Robbins
Lynne Rosenthal
Tom Rudkin
Stephen C. Schwarm
Rick Shaw

Carol Sledge
Barry Smith
Rudeen S. Smith
Bill Stackhouse
Marius Troost
Thomas N. Turba
Prescott K. Turner
Howard Turtle
Robert Tuttle
Richard C. Vile, Jr
Larry B. Weber
David Weil
Thomas R. Wilcox
Thomas Wolfe
Harvey Wohlwend

iii

ISO/IEC 7185:1990(E)

Steven Hiebert Donald D. Peckham Kenneth M. Zemrowski
Ruth Higgins David Peercy
Charles Hill Robert C. B. Poon

(The above list is of people acknowledged in ANSI/TEEE770X3.97-1983.)

iv

ISO/IEC 7185:1990(E)

Introduction

This International Standard provides an unambiguous and machine independent definition of the
programming language Pascal. Its purpose is to facilitate portability of Pascal programs for use on
a wide variety of data processing systems.

Language history

The computer programming language Pascal was designed by Professor Niklaus Wirth to satisfy two
principal aims

a) to make available a language suitable for teaching programming as a systematic discipline
based on certain fundamental concepts clearly and naturally reflected by the language;

b) to define a language whose implementations could be both reliable and efficient on then-
available computers.

However, it has become apparent that Pascal has attributes that go far beyond these original goals.
It is now being increasingly used commercially in the writing of both system and application software.
This International Standard is primarily a consequence of the growing commercial interest in Pascal
and the need to promote the portability of Pascal programs between data processing systems.

In drafting this International Standard the continued stability of Pascal has been a prime objective.
However, apart from changes to clarify the specification, two major changes have been introduced.

a) The syntax used to specify procedural and functional parameters has been changed to require
the use of a procedure or function heading, as appropriate (see 6.6.3.1); this change was
introduced to overcome a language insecurity.

b) A fifth kind of parameter, the conformant-array-parameter, has been introduced (see 6.6.3.7).
With this kind of parameter, the required bounds of the index-type of an actual-parameter
are not fixed, but are restricted to a specified range of values.

Project history

In 1977, a working group was formed within the British Standards Institution (BSI) to produce a
standard for the programming language Pascal. This group produced several working drafts, the
first draft for public comment being widely published early in 1979. In 1978, BSI’s proposal that
Pascal be added to ISO’s program of work was accepted, and the ISO Pascal Working Group (then
designated ISO/TC97/SC5/WG4) was formed in 1979. The Pascal standard was to be published
by BSI on behalf of ISO, and this British Standard referenced by the International Standard.

In the USA, in the fall of 1978, application was made to the IEEE Standards Board by the ITEEE
Computer Society to authorize project 770 (Pascal). After approval, the first meeting was held in
January 1979.

In December of 1978, X3J9 convened as a result of a SPARC (Standards Planning and Requirements
Committee) resolution to form a US TAG (Technical Advisory Group) for the ISO Pascal
standardization effort initiated by the UK. These efforts were performed under X3 project 317.

ISO/IEC 7185:1990(E)

In agreement with TEEE representatives, in February of 1979, an X3 resolution combined the X3J9
and P770 committees into a single committee called the Joint X3J9/TEEE-P770 Pascal Standards
Committee. (Throughout, the term JPC refers to this committee.) The first meeting as JPC was
held in April 1979.

The resolution to form JPC clarified the dual function of the single joint committee to produce a
dpANS and a proposed IEEE Pascal standard, identical in content.

ANSI/TEEE770X3.97-1983, American National Standard Pascal Computer Programming Language,
was approved by the IEEE Standards Board on September 17, 1981, and by the American
National Standards Institute on December 16, 1982. British Standard BS6192, Specification for
Computer programming language Pascal, was published in 1982, and International Standard 7185
(incorporating BS6192 by reference) was approved by ISO on December 1, 1983. Differences between
the ANSI and ISO standards are detailed in the Foreword of ANSI/TEEE770X3.97-1983.

In 1985, the ISO Pascal Working Group (then designated ISO/TC97/SC22/WG2, now ISO/IEC
JTC1/S5C22/WG2) was reconvened after a long break. An Interpretations Subgroup was formed,
to interpret doubtful or ambiguous portions of the Pascal standards. As a result of the work
of this subgroup, and also of the work on the Extended Pascal standard being produced by
WG2 and JPC, BS6192/1SO7185 was revised and corrected during 1988/89; it is expected that
ANSI/IEEE770X3.97-1983 will be replaced by the revised ISO 7185.

The major revisions to BS6192:1982 to produce the new ISO 7185 are:
a) resolution of the differences with ANSI/TEEE770X3.97-1983;

b) relaxation of the syntax of real numbers, to allow “digit sequences” rather than “unsigned
integers” for the various components;

¢) in the handling of “end-of-line characters” in text files;

d) in the handling of run-time errors.

vi

INTERNATIONAL STANDARD ISO/IEC 7185:1990(E)

Information technology — Programming
languages — Pascal

1 Scope
1.1

This International Standard specifies the semantics and syntax of the computer programming
language Pascal by specifying requirements for a processor and for a conforming program. Two
levels of compliance are defined for both processors and programs.

1.2

This International Standard does not specify

a) the size or complexity of a program and its data that will exceed the capacity of any specific
data processing system or the capacity of a particular processor, nor the actions to be taken
when the corresponding limits are exceeded;

b) the minimal requirements of a data processing system that is capable of supporting an implementation
of a processor for Pascal,

c¢) the method of activating the program-block or the set of commands used to control the
environment in which a Pascal program is transformed and executed;

d) the mechanism by which programs written in Pascal are transformed for use by a data
processing system;

) the method for reporting errors or warnings;

f) the typographical representation of a program published for human reading.

2 Normative reference

The following standard contains provisions which, through reference in this text, constitute provisions
of this International Standard. At the time of publication, the edition indicated was valid. All
standards are subject to revision, and parties to agreements based on this International Standard
are encouraged to investigate the possibility of applying the most recent edition of the standard listed
below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 646:1983, Information processing—ISO 7-bit coded character set for information interchange.

ISO/IEC 7185:1990(E)

3 Definitions

For the purposes of this International Standard, the following definitions apply.

NOTE — To draw attention to language concepts, some terms are printed in italics on their first mention
or at their defining occurrence(s) in this International Standard.

3.1 Error

A violation by a program of the requirements of this International Standard that a processor is
permitted to leave undetected.

NOTES

1 If it is possible to construct a program in which the violation or non-violation of this International Standard
requires knowledge of the data read by the program or the implementation definition of implementation-
defined features, then violation of that requirement is classified as an error. Processors may report on such
violations of the requirement without such knowledge, but there always remain some cases that require
execution, simulated execution, or proof procedures with the required knowledge. Requirements that can
be verified without such knowledge are not classified as errors.

2 Processors should attempt the detection of as many errors as possible, and to as complete a degree as
possible. Permission to omit detection is provided for implementations in which the detection would be an
excessive burden.

3.2 Extension

A modification to clause 6 of the requirements of this International Standard that does not invalidate
any program complying with this International Standard, as defined by 5.2, except by prohibiting
the use of one or more particular spellings of identifiers (see 6.1.2 and 6.1.3).

3.3 Implementation-defined

Possibly differing between processors, but defined for any particular processor.

3.4 Implementation-dependent

Possibly differing between processors and not necessarily defined for any particular processor.

3.5 Processor

A system or mechanism that accepts a program as input, prepares it for execution, and executes the
process so defined with data to produce results.

NOTE — A processor may consist of an interpreter, a compiler and run-time system, or another mechanism,
together with an associated host computing machine and operating system, or another mechanism for
achieving the same effect. A compiler in itself, for example, does not constitute a processor.

ISO/IEC 7185:1990(E)

Table 1 — Metalanguage symbols

Metasymbol Meaning

= Shall be defined to be

> Shall have as an alternative definition
| Alternatively

. End of definition

[x] 0 or 1 instance of x

{x} 0 or more instances of x

(x| y) Grouping: either of x or y

‘xyz’ The terminal symbol xyz

meta-identifier | A nonterminal symbol

4 Definitional conventions

The metalanguage used in this International Standard to specify the syntax of the constructs is
based on Backus-Naur Form. The notation has been modified from the original to permit greater
convenience of description and to allow for iterative productions to replace recursive ones. Table 1
lists the meanings of the various metasymbols. Further specification of the constructs is given by
prose and, in some cases, by equivalent program fragments. Any identifier that is defined in clause
6 as a required identifier shall denote the corresponding required entity by its occurrence in such
a program fragment. In all other respects, any such program fragment is bound by any pertinent
requirement of this International Standard.

A meta-identifier shall be a sequence of letters and hyphens beginning with a letter.

A sequence of terminal and nonterminal symbols in a production implies the concatenation of the
text that they ultimately represent. Within 6.1 this concatenation is direct; no characters shall
intervene. In all other parts of this International Standard the concatenation is in accordance with
the rules set out in 6.1.

The characters required to form Pascal programs shall be those implicitly required to form the tokens
and separators defined in 6.1.

Use of the words of, in, containing, and closest-containing, when expressing a relationship between
terminal or nonterminal symbols, shall have the following meanings

—the x of a y: refers to the x occurring directly in a production defining y;
—the x in a y: is synonymous with ‘the x of a y’;
—a y containing an x: refers to any y from which an x is directly or indirectly derived;

—the y closest-containing an x: that y containing an x and not containing another y containing
that x.

These syntactic conventions are used in clause 6 to specify certain syntactic requirements and also
the contexts within which certain semantic specifications apply.

In addition to the normal English rules for hyphenation, hyphenation is used in this International

ISO/IEC 7185:1990(E)

Standard to form compound words that represent meta-identifiers, semantic terms, or both. All
meta-identifiers that contain more than one word are written as a unit with hyphens joining the
parts. Semantic terms ending in “type” and “variable” are also written as one hyphenated unit.
Semantic terms representing compound ideas are likewise written as hyphenated units, e.g., digit-
value, activation-point, assignment-compatible, and identifying-value.

NOTES are included in this International Standard only for purposes of clarification, and aid in the
use of the standard. NOTES are informative only and are not a part of the International Standard.

Examples in this International Standard are equivalent to NOTES.

5 Compliance

There are two levels of compliance, level 0 and level 1. Level 0 does not include conformant-array-
parameters. Level 1 does include conformant-array-parameters.

5.1 Processors
A processor complying with the requirements of this International Standard shall

a) if it complies at level 0, accept all the features of the language specified in clause 6, except for
6.6.3.6 e), 6.6.3.7, and 6.6.3.8, with the meanings defined in clause 6;

b) if it complies at level 1, accept all the features of the language specified in clause 6 with the
meanings defined in clause 6;

¢) not require the inclusion of substitute or additional language elements in a program in order
to accomplish a feature of the language that is specified in clause 6;

d) be accompanied by a document that provides a definition of all implementation-defined features;

e) be able to determine whether or not the program violates any requirements of this International
Standard, where such a violation is not designated an error, report the result of this determination
to the user of the processor before the execution of the program-block, if any, and shall prevent
execution of the program-block, if any;

f) treat each violation that is designated an error in at least one of the following ways

1) there shall be a statement in an accompanying document that the error is not reported,
and a note referencing each such statement shall appear in a separate section of the
accompanying document;

2) the processor shall report the error or the possibility of the error during preparation of
the program for execution and in the event of such a report shall be able to continue
further processing and shall be able to refuse execution of the program-block;

3) the processor shall report the error during execution of the program;

and if an error is reported during execution of the program, the processor shall terminate
execution; if an error occurs within a statement, the execution of that statement shall not be

ISO/IEC 7185:1990(E)

completed;

NOTE — 1 This means that processing will continue up to or beyond execution of the program at
the option of the user.

g) be accompanied by a document that separately describes any features accepted by the processor
that are prohibited or not specified in clause 6: such extensions shall be described as being
‘extensions to Pascal as specified by ISO/TEC 7185’

h) be able to process, in a manner similar to that specified for errors, any use of any such extension;

i) be able to process, in a manner similar to that specified for errors, any use of an implementation-
dependent feature.

NOTE — 2 The phrase ‘be able to’ is used in 5.1 to permit the implementation of a switch with which the
user may control the reporting.

A processor that purports to comply, wholly or partially, with the requirements of this International
Standard shall do so only in the following terms. A compliance statement shall be produced
by the processor as a consequence of using the processor or shall be included in accompanying
documentation. If the processor complies in all respects with the requirements of this International
Standard, the compliance statement shall be

(This processor) complies with the requirements of level {(number) of ISO/TEC 7185.

If the processor complies with some but not all of the requirements of this International Standard
then it shall not use the above statement, but shall instead use the following compliance statement

(This processor) complies with the requirements of level (number) of ISO/TEC 7185, with the
following exceptions: {(followed by a reference to, or a complete list of, the requirements of the
International Standard with which the processor does not comply).

In both cases the text (This processor) shall be replaced by an unambiguous name identifying the
processor, and the text (number) shall be replaced by the appropriate level number.

NOTE — 3 Processors that do not comply fully with the requirements of the International Standard are
not required to give full details of their failures to comply in the compliance statement; a brief reference
to accompanying documentation that contains a complete list in sufficient detail to identify the defects is
sufficient.

5.2 Programs
A program conforming with the requirements of this International Standard shall

a) if it conforms at level 0, use only those features of the language specified in clause 6, except
for 6.6.3.6 €), 6.6.3.7, and 6.6.3.8;

b) if it conforms at level 1, use only those features of the language specified in clause 6; and

¢) not rely on any particular interpretation of implementation-dependent features.

NOTES

ISO/IEC 7185:1990(E)

1 A program that complies with the requirements of this International Standard may rely on particular
implementation-defined values or features.

2 The requirements for conforming programs and compliant processors do not require that the results
produced by a conforming program are always the same when processed by a compliant processor. They
may be the same, or they may differ, depending on the program. A simple program to illustrate this is

program x(output); begin writeln(maxint) end.

6 Requirements

6.1 Lexical tokens

NOTE — The syntax given in this subclause describes the formation of lexical tokens from characters and
the separation of these tokens and therefore does not adhere to the same rules as the syntax in the rest of
this International Standard.

6.1.1 General

The lexical tokens used to construct Pascal programs are classified into special-symbols, identifiers,
directives, unsigned-numbers, labels, and character-strings. The representation of any letter (upper
case or lower case, differences of font, etc.) occurring anywhere outside of a character-string (see
6.1.7) shall be insignificant in that occurrence to the meaning of the program.

letter — |£b7 |£C7 |£d7 |£e7 |£f7 |£g7 |£h7 |£i7 |£j7
| Lk? |£|7 |£ |£n7 |£07 |£p7 |£q7 |£r7 |£S7 |£t7
o Wy |

digit — 407 |£17 |£27 |£37 |£47 |£57 |£67 |£77 |£87 |£97

6.1.2 Special-symbols

The special-symbols are tokens having special meanings and are used to delimit the syntactic units
of the language.

SpeCial—SymbOl — (_"_7 | (_0 | ok | (/7 | £:7 | £<7 | £>7 | ([7 | (]7
| 4-7 | [| 4:7 | [| (/]\7 | ((7 | ()7
| <> | <= | >=" | 4= | <) | word-symbol
word-symbol = ‘and’ | ‘array’ | ‘begin’ | ‘case’ | ‘const’ | ‘div’
| ‘do’ | ‘downto’ | ‘else’ | ‘end’ | “file’ | ‘for’
| ‘“function’ | ‘goto’ | ‘if | ‘in’ | ‘label’ | ‘mod’
| “nil | ‘not’ | ‘of | ‘or’ | ‘packed’ | ‘procedure’
| ‘program’ | ‘record’ | ‘repeat’ | ‘set’ | ‘then’
| | ‘type’ | ‘until’ | ‘var’ | ‘while’ | ‘with’

ISO/IEC 7185:1990(E)

6.1.3 Identifiers

Identifiers can be of any length. The spelling of an identifier shall be composed from all its constituent
characters taken in textual order, without regard for the case of letters. No identifier shall have the
same spelling as any word-symbol. Identifiers that are specified to be required shall have special
significance (see 6.2.2.10 and 6.10).

identifier = letter { letter | digit } .

Eramples:
X
time
readinteger
WG4
AlterHeatSetting
InquireWorkstationTransformation
InquireWorkstationIdentification

6.1.4 Directives

A directive shall only occur in a procedure-declaration or a function-declaration. The only directive
shall be the required directive forward (see 6.6.1 and 6.6.2). No directive shall have the same
spelling as any word-symbol.

directive = letter { letter | digit } .

NOTE — Many processors provide, as an extension, the directive external, which is used to specify that the
procedure-block or function-block corresponding to that procedure-heading or function-heading is external
to the program-block. Usually it is in a library in a form to be input to, or that has been produced by, the
processor.

6.1.5 Numbers

An unsigned-integer shall denote in decimal notation a value of integer-type (see 6.4.2.2). An
unsigned-real shall denote in decimal notation a value of real-type (see 6.4.2.2). The letter ‘¢’
preceding a scale-factor shall mean times ten to the power of. The value denoted by an unsigned-
integer shall be in the closed interval 0 to maxint (see 6.4.2.2 and 6.7.2.2).

signed-number = signed-integer | signed-real .
signed-real = [sign | unsigned-real .

signed-integer = [sign] unsigned-integer .
unsigned-number = unsigned-integer | unsigned-real .
sign = ‘47 | ‘=

ISO/IEC 7185:1990(E)

unsigned-real = digit-sequence ‘.’ fractional-part [‘e’ scale-factor]
| digit-sequence ‘e’ scale-factor .

unsigned-integer = digit-sequence .
fractional-part = digit-sequence .
scale-factor = [sign | digit-sequence .

digit-sequence = digit { digit } .

ISO/IEC 7185:1990(E)

Eramples:
1e10
1
+100
-0.1
be-3
87.3bE+8

6.1.6 Labels

Labels shall be digit-sequences and shall be distinguished by their apparent integral values and shall
be in the closed interval 0 to 9999. The spelling of a label shall be its apparent integral value.

label = digit-sequence

6.1.7 Character-strings

A character-string containing a single string-element shall denote a value of the required char-type
(see 6.4.2.2). A character-string containing more than one string-element shall denote a value of
a string-type (see 6.4.3.2) with the same number of components as the character-string contains
string-elements. All character-strings with a given number of components shall possess the same
string-type.

There shall be an implementation-defined one-to-one correspondence between the set of alternatives
from which string-elements are drawn and a subset of the values of the required char-type. The
occurrence of a string-element in a character-string shall denote the occurrence of the corresponding
value of char-type.

o

character-string = ¢ string-element { string-element } 7 .

string-element = apostrophe-image | string-character .

(L)

apostrophe-image =

string-character = one-of-a-set-of-implementation-defined-characters .

NOTE — Conventionally, the apostrophe-image is regarded as a substitute for the apostrophe character,
which cannot be a string-character.

Eramples:
7A7
PR
?
2730
’Pascal’

>THIS IS A STRING’

ISO/IEC 7185:1990(E)

6.1.8 Token separators

Where a commentary shall be any sequence of characters and separations of lines, containing neither
} nor *), the construct

(" 1°(*") commentary (*)" |‘}")
shall be a comment if neither the { nor the (* occurs within a character-string or within a commentary.

NOTES

1 A comment may thus commence with { and end with *), or commence with (* and end with }.

2 The sequence (*) cannot occur in a commentary even though the sequence {) can.

Comments, spaces (except in character-strings), and the separations of consecutive lines shall be
considered to be token separators. Zero or more token separators can occur between any two
consecutive tokens, before the first token of a program text, or after the last token of the program
text. There shall be at least one separator between any pair of consecutive tokens made up of
identifiers, word-symbols, labels or unsigned-numbers. No separators shall occur within tokens.

6.1.9 Lexical alternatives

The representation for lexical tokens and separators given in 6.1.1 to 6.1.8, except for the character
sequences (* and *), shall constitute a reference representation for these tokens and separators.

To facilitate the use of Pascal on processors that do not support the reference representation, the
following alternatives have been defined. All processors that have the required characters in their
character set shall provide both the reference representations and the alternative representations,
and the corresponding tokens or separators shall not be distinguished. Provision of the reference
representations, and of the alterative token @, shall be implementation-defined.

The alternative representations for the tokens shall be

Reference token Alternative token
0 @
[(.
])

NOTE — 1 The character 1 that appears in some national variants of ISO 646 is regarded as identical to the
character ". In this International Standard, the character 1 has been used because of its greater visibility.

The comment-delimiting characters { and } shall be the reference representations, and (* and *)
respectively shall be alternative representations (see 6.1.8).

NOTE — 2 See also 1.2 f).

10

ISO/IEC 7185:1990(E)

6.2 Blocks, scopes, and activations
6.2.1 Blocks

A block closest-containing a label-declaration-part in which a label occurs shall closest-contain exactly
one statement in which that label occurs. The occurrence of a label in the label-declaration-part of
a block shall be its defining-point for the region that is the block. Each applied occurrence of that
label (see 6.2.2.8) shall be a label. Within an activation of the block, all applied occurrences of
that label shall denote the corresponding program-point in the algorithm of the activation at that
statement (see 6.2.3.2 b)).

block = label-declaration-part constant-definition-part type-definition-part
variable-declaration-part procedure-and-function-declaration-part
statement-part .

label-declaration-part = [‘label’ label { ¢’ label } ¢’]

constant-definition-part = [‘const’ constant-definition *;’ { constant-definition ‘> }]
type-definition-part = [‘type’ type-definition ‘;’ { type-definition ¢’ }]
variable-declaration-part = [‘var’ variable-declaration ¢;” { variable-declaration ;> }]

procedure-and-function-declaration-part = { (procedure-declaration
| function-declaration) ‘7 }

The statement-part shall specify the algorithmic actions to be executed upon an activation of the
block.

statement-part = compound-statement .

6.2.2 Scopes
6.2.2.1

Each identifier or label contained by the program-block shall have a defining-point.

6.2.2.2

Each defining-point shall have a region that is a part of the program text, and a scope that is a part
or all of that region.

6.2.2.3

The region of each defining-point is defined elsewhere (see 6.2.1, 6.2.2.10, 6.3, 6.4.1, 6.4.2.3,
6.4.3.3,6.5.1, 6.5.3.3,6.6.1, 6.6.2, 6.6.3.1, 6.8.3.10, 6.10).

11

ISO/IEC 7185:1990(E)

6.2.2.4

The scope of each defining-point shall be its region (including all regions enclosed by that region)
subject to 6.2.2.5 and 6.2.2.6.

6.2.2.5

When an identifier or label has a defining-point for region A and another identifier or label having
the same spelling has a defining-point for some region B enclosed by A, then region B and all regions
enclosed by B shall be excluded from the scope of the defining-point for region A.

6.2.2.6

The region that is the field-specifier of a field-designator shall be excluded from the enclosing scopes.

6.2.2.7

When an identifier or label has a defining-point for a region, another identifier or label with the
same spelling shall not have a defining-point for that region.

6.2.2.8

Within the scope of a defining-point of an identifier or label, each occurrence of an identifier or label
having the same spelling as the identifier or label of the defining-point shall be designated an applied
occurrence of the identifier or label of the defining-point, except for an occurrence that constituted
the defining-point; such an occurrence shall be designated a defining occurrence. No occurrence
outside that scope shall be an applied occurrence.

NOTE — Within the scope of a defining-point of an identifier or label, there are no applied occurrences of
an identifier or label that cannot be distinguished from it and have a defining-point for a region enclosing
that scope.

6.2.2.9

The defining-point of an identifier or label shall precede all applied occurrences of that identifier
or label contained by the program-block with one exception, namely that an identifier can have an
applied occurrence in the type-identifier of the domain-type of any new-pointer-types contained by
the type-definition-part containing the defining-point of the type-identifier.

6.2.2.10

Required identifiers that denote required values, types, procedures, and functions shall be used as if
their defining-points have a region enclosing the program (see 6.1.3, 6.3, 6.4.1, and 6.6.4.1).

NOTE — The required identifiers input and output are not included, since these denote variables.

12

ISO/IEC 7185:1990(E)

6.2.2.11

Whatever an identifier or label denotes at its defining-point shall be denoted at all applied occurrences
of that identifier or label.

NOTES

1 Within syntax definitions, an applied occurrence of an identifier is qualified (e.g., type-identifier), whereas
a use that constitutes a defining-point is not qualified.

2 It is intended that such qualification indicates the nature of the entity denoted by the applied occurrence:
e.g., a constant-identifier denotes a constant.
6.2.3 Activations

6.2.3.1

A procedure-identifier or function-identifier having a defining-point for a region that is a block within
the procedure-and-function-declaration-part of that block shall be designated local to that block.

6.2.3.2

The activation of a block shall contain

a) for the statement-part of the block, an algorithm, the completion of which shall terminate the
activation (see also 6.8.2.4);

b) for each defining-point of a label in the label-declaration-part of the block, a corresponding
program-point (see 6.2.1);

c) for each variable-identifier having a defining-point for the region that is the block, a