Computer Science and Information Engineering National Chi Nan University **The Principle and Application of Secret Sharing** Dr. Justie Su-Tzu Juan

Lecture 7. Visual Cryptography with Various Functions § 7.1 RG-based Multi-VSS Scheme Slides for a Course Based on Joy Jo-Yi Chang and Justie Su-Tzu Juan^{*}, "Multi-VSS Scheme by Shifting Random Grids," Proc. of World Academy of Science, Engineering and Technology, Vol. 65, Tokyo, Japan, May 29-30, 2012. pp. 1277-1283.

• Random Grid (RG) based VSS

- O. Kafri, and E. Keren, "Encryption of pictures and shapes by random grids," *Optics Letters*, vol. 12, no. 6, 1987, pp. 377-379.
- Three encryption algorithms for black and white images:

```
Generate a random grid: share_1
For any pixel in secret image
if (image.pixel = 1)
share_2.pixel = 1 - share_1.pixel
else
share_2.pixel = share_1.pixel
```

```
Generate a random grid: share<sub>1</sub>
For any pixel in secret image
if (image.pixel = 1)
share<sub>2</sub>.pixel = random (0, 1)
else
share<sub>2</sub>.pixel = share<sub>1</sub>.pixel
```

```
Generate a random grid: share_1
For any pixel in secret image
if (image.pixel = 1)
share_2.pixel = 1 - share_1.pixel
else
share_2.pixel = random (0, 1)
```

KK1

KK2

KK3

• <u>Def</u>: Random Grid (RG) based VSS

- Three encryption algorithms for black and white images.
- KK1:

S	Probability	G_1	<i>G</i> ₂	$G_1 \oplus G_2$	$T(G_1 \otimes G_2)$	
	1/2				1⁄2	
	1/2					
	1/2				0	
	1/2				U	

S: secret; G_1 : share 1; G_2 : share 2; \otimes : or; $T(G_1 \otimes G_2)$: Transmittance

• <u>Def</u>: Random Grid (RG) based VSS

- Three encryption algorithms for black and white images.
- KK1:

RG-based Multi-VSS Scheme by Rotating

- T.-H. Chen, K.-H. Tsao, and K.-C. Wei, "Multiple-image encryption by rotating random grids," in Proceedings of ISDA, vol. 3, 2008, pp. 252-256.

RG-based Multi-VSS Scheme by Rotating

• RG-based Multi-VSS Scheme by Rotating (512 × 512)

(c) Spring 2023, Justie Su-Tzu Juan

The drawbacks of RG-based Multi-VSS Scheme by Rotating

- Secret image must be square.
- Distortion = 1 / 4 is large.

<u>Def.</u> The Quantity of *Distortion* of Algorithm *A*, *D*(*A*):

 $D(A) = \frac{\text{pixels not be encrypted in } A}{\text{all pixels of secret images in } A}$

RG-based Multi-VSS Scheme by Rotating

- T. H. Chen and K. H. Tsao, (2011) "Yet another multiple-image encryption by rotating random grids," *Journal of Signal Processing*, Vol.92, pp. 2229-2237, 2012.

RG-based Multi-VSS Scheme by Shifting

 Joy Jo-Yi Chang and Justie Su-Tzu Juan^{*}, "Multi-VSS Scheme by Shifting Random Grids," Proc. of WASET, Vol. 65, Tokyo, 2012. pp. 1277-1283.

(c) Spring 2023, Justie Su-Tzu Juan

• **RG-based Multi-VSS Scheme by Shifting (ex:** *p* = 4)

• **RG-based Multi-VSS Scheme by Shifting (ex:** *p* = 4)

(c) Spring 2023, Justie Su-Tzu Juan

• **RG-based Multi-VSS Scheme by Shifting (ex:** *p* = 4)

RG-based Multi-VSS Scheme by Shifting

(c) Spring 2023, Justie Su-Tzu Juan

RG-based Multi-VSS Scheme by Shifting

- Experimental result - Algorithm 1: Two secret images S_A and S_B with the size of 400×300 , p = 10.

RG-based Multi-VSS Scheme by Shifting

- Experimental result - Algorithm 2: Two secret images S_A and S_B with the size of 400×300 , p = 50.

RG-based Multi-VSS Scheme by Shifting

- Experimental result - Algorithm 3: Two secret images S_A and S_B with the size of 500×500 , p = 50.

Comparison

Chen et .al [ISC 2008]		Chen et .al [ISDA 2008]	Alg. 1, 2	Alg. 3	
Data Quantity	1.75	2	2	(2 - 1/p)	
Distortion	0	1/4	1/2 <i>p</i>	0	
Any Rectangle	Yes	No	Yes	Yes	

T.-H. Chen, G.-Z. Wei, and K.-X. Taso, "An multi-secret image scheme by using random grids," in Proceedings of 18th Information Security Conference, Hualien, May 29-30, 2008.

T.-H. Chen, K.-H. Tsao, and K.-C. Wei, "Multiple-image encryption by rotating random grids," in Proceedings of The 8th International Conference on Intelligent System Design and Applications (ISDA 2008), vol. 3, 2008, pp. 252-256.

(c) Spring 2023, Justie Su-Tzu Juan

RG-based Multi-VSS Scheme by Shifting

– Joy Jo-Yi Chang, Bo-Yuan Huang and Justie Su-Tzu Juan^{*}, "A New Visual Multi-Secrets Sharing Scheme by Random Grids," *Cryptography*, Vol. 2, Iss. 3, 2018, 24.

RG-based Multi-VSS Scheme by Shifting

- <u>Ex</u>: n = 3, randomly select A = 0, 1, or 2. (for encrypting $(S_0, S_1), (S_1, S_2), \text{ or } (S_2, S_0)$)

(c) Spring 2023, Justie Su-Tzu Juan

RG-based Multi-VSS Scheme by Shifting

- <u>Ex</u>: n = 3, randomly select A = 0, 1, or 2. (for encrypting $(S_0, S_1), (S_1, S_2), \text{ or } (S_2, S_0)$)

(c) Spring 2023, Justie Su-Tzu Juan

RG-based Multi-VSS Scheme by Shifting

- <u>Ex</u>: n = 3, randomly select A = 0, 1, or 2. (for encrypting $(S_0, S_1), (S_1, S_2), \text{ or } (S_2, S_0)$)

(c) Spring 2023, Justie Su-Tzu Juan

RG-based Multi-VSS Scheme by Shifting

(b)

(a)

(c) Spring 2023, Justie Su-Tzu Juan

(c)

(d)

(e)

(f)

RG-based Multi-VSS Scheme by Shifting

- Experimental result 2: n = 5 secret images with the size of 540×540 , p = 9.

(c) Spring 2023, Justie Su-Tzu Juan

RG-based Multi-VSS Scheme by Shifting

- Experimental result 3: n = 6 secret images with the size of 540×540 , p = 27.

Comparison

Scheme	Number of Secret Images	Number of Shares	Quality Adjustable	Any Rectangle Secret Images	Direct Recovery Operation	
The proposed scheme	$s \ge 2$	2	Yes	Yes	Yes	
Reddy et al., 2016 [12]	$s \ge 2$	3s	No	Yes	No	
Tsao et al., 2015 [11]	$2^n - n - 1 \ge s \ge 1$	п	No	Yes	Yes	
Salehi et al., 2014 [10]	$s \ge 2$	п	No	Yes	Yes/No	
Chang et al., 2012 [9]	3	2	Yes	Yes	Yes	
Chen et al., 2012 [8]	4	2	No	No	Yes	
Chang et al., 2010 [7]	2	2	Yes	Yes	Yes	
Chen et al., 2008 [6]	2	2	No	No	Yes	

- Distortion = ((N-2)p + 1) / Np

• Analysis

$$\sigma = \frac{T(R[S_{i,0}]) - T(R[S_{i,1}])}{1 + T(R[S_{i,1}])} = \frac{4p - 2}{4Np + Np - 2p + 1} = \frac{2(2p - 1)}{5Np - 2p + 1} = \frac{2(2p - 1)}{(5N - 2)p + 1}$$

Computer Science and Information Engineering National Chi Nan University The Principle and Application of Secret Sharing Dr. Justie Su-Tzu Juan

Lecture 7. Visual Cryptography with Various Functions § 7.2 Fault-Tolerant VSS Scheme Slides for a Course Based on Justie Su-Tzu Juan* and Yung-Chang Chen, "Extended Fault-Tolerant Visual Secret Sharing Scheme without Pixel Expansion," Proc. of Int. Conf. on Security and Management (SAM'18), Luxor, Las Vegas, Nevada, USA, 2018, pp. 61-67.

INTRODUCTION

- RELATED WORKS
 - Random Grid Encryption Algorithm
 - The MTVSS Scheme
 - The FTVSS Scheme

• THE PROPOSED SCHEME

- The Main Idea and Algorithm
- The Experimental Results
- ANALYSIS AND COMPARISON
- CONCLUSIONS

Introduction (1/2)

- In 1987, Kafri and Keren proposed the visual secret sharing schemes (VSSS for short).
- In 1995, Noar and Shamir proposed visual cryptography (VC for short), which is a way to encrypt one secret image and it can be decoded by human vision without any calculation.

	Encryption	(<i>k</i> , <i>n</i>)-	Pixel
		threshold	Expansion
Kafri and Keren	random gird	(2, 2)	No
Noar and Shamir	code book	(k, n)	Yes

30

In practical, a slight misalignment between the shares could dramatically degrade the visual quality of the reconstructed image. If the size of one-pixel which be printed on the transparencies is small, the alignment will be difficult.

share 1

share 2

Related Work (1/3)

Random Grid Encryption Algorithm

Related Work (2/3)

- The MTVSS Scheme
- In 2004, Nakajima and Yamaguchi proposed: •Shift-Tolerant
 - •Pixel Expansion

	case 1	case 2	case 3	case 4	case 5	case 6	case 7	case 8	case 9	case10	case11	case12
sheet 1												
sheet 2		÷		÷							÷	÷

M. Nakajima and Y. Yamaguchi, "Enhancing registration tolerance of extended visual cryptography for natural images," *Journal of Electronic Imaging* 13(3), pp. 654-662 (July 2004).

Related Work (3/3)

The Proposed Scheme –

The Main Idea and Algo

- Taking $n \times n$ grid as a unit, the in units, for n = 7.
- Counting the number of black and the secret image.
 300 Pixel
 - the black pixels > white pixels \Rightarrow
 - the black pixels < white pixels \Rightarrow

National Chi Nan Universitv

The Proposed Scheme – The Main Idea and Algorithm (2/2)

First share: rando we designed.

Second share: the Algorithm KK ac the same unit, and unit in the secret i

The Proposed Scheme – The Experimental Results (1/2)

ANALYSIS AND COMPARISON (1/7)

- The Transmittance for a white pixel in secret image =
 - (74 + 60 + 150 + 8) / 784
 - = 292 / 784
 - = 73/196.

ANALYSIS AND COMPARISON (2/7)

- The Transmittance for a white pixel in secret image = (26 + 36 + 26 + 12) / 784
 - = 100 / 784
 - = 25/196.

40_

ANALYSIS AND COMPARISON (3/7)

The transmittance analysis for stacking two units for n = 7, compare with for n = 5, and 6 (FTVSS).

<i>n</i> = 7	Stack	Shift 1 pixel	Shift 2 pixels	Shift 3 pixels
	1/2	73/196	62/196	53/196
•	0	25/196	37/196	45/196
<i>n</i> = 6	Stack	Shift 1 pixel	Shift 2 pixels	Shift 3 pixels
	1/2	50/144	42/144	38/144
•	0	25/144	36/144	33/144
<i>n</i> = 5	Stack	Shift 1 pixel	Shift 2 pixels	
	1/2	31/100	26/100	
	0	19/100	23/100	

ANALYSIS AND COMPARISON (4/7)

The transmittance analysis for stacking two resulting units for one pixel diagonal-shift for *n* = 7, compare with for *n* = 4, 5, and 6 (FTVSS).

Diagonal-shift one pixel	<i>n</i> = 4	<i>n</i> = 5	<i>n</i> = 6	<i>n</i> = 7
	381/2048	721/3200	1189/4608	1893/6272
	173/2048	465/3200	422/4608	613/6272

Theorem 1. The proposed scheme are the fault-tolerant VSS scheme.

ANALYSIS AND COMPARISON (5/7)

Compare CI with MTVSS and FTVSS. (1/2)

ANALYSIS AND COMPARISON (6/7)

44

Compare CI with MTVSS and FTVSS. (2/2)

ANALYSIS AND COMPARISON (7/7)

If *n* is greater, will the performance of tolerance be better ?

(a) 15×15

(b) 7 × 7

CONCLUSIONS

- This paper presents a visual secret sharing scheme that are fault tolerant without pixel expansion; which is an extended scheme of FTVSS.
- This paper also discusses the limits of this technique.
- Future works:
 - Improving the existing algorithms.
 - Round sharp?
 - Design a (k, n)-threshold VSS scheme that addresses the misalignment problem without pixel expansion.

APPENDIX (1/2)

7 × 7		Shift 1 pixel	Shift 2 pixels	Shift 3 pixels	Diagonal shift one pixel	Diagonal shift two pixels
		73/196	62/196	53/196	3786/12544	2040/12544
		25/196	37/196	45/196	1226/12544	1656/12544
		69/196	58/196	51/196	3146/12544	2516/12544
		29/196	40/196	46/196	1866/12544	1108/12544
		69/196	54/196	47/196	3530/12544	1656/12544
		29/196	44/196	51/196	1482/12544	2040/12544

APPENDIX (2/2)

Computer Science and Information Engineering National Chi Nan University **The Principle and Application of Secret Sharing** Dr. Justie Su-Tzu Juan

Lecture 7. Visual Cryptography with Various Functions § 7.3 Meaningful VSS Scheme Slides for a Course Based on Bo-Yuan Huang and Justie Su-Tzu Juan^{*}, "A Meaningful Visual Multi-Secret Sharing Scheme by Random Grids," Proc. of GCEAS 2017, Okinawa Convention Center, Okinawa, Japan, July 25-27, 2017, pp. 244-255.

Image management ?

Suspicious ?

Meaningful VMSSS (MVMSSS)

Our main achievement

How we decrypt & encrypt ?

□ Shifting random grids

share₁

share₂

 $\Box \text{ For example } N = 3, p = 4$

First image Second Third $\frac{1}{p}$ $\frac{2}{p}$ share₁ share₂

)	1	2	3	4
2	1	2	3	4
	1	2	3	4
	-		U	•
	1	2	3	4
2	2	1	1	2

Э

How we make them meaningful?

□ Share₁(*a*, *b*) = C1(a, b) this two pixels are according to the □ Share₂(*c*, *d*) = C2(c, d) first pixels you randomly select

Experiment results (cont'd) (540×540 *p* **=10)**

Secret images

Shares

Camouflaged images

Restored images

Experiment results (cont'd) (540×540 *p* **=20)**

Secret images

Shares

Camouflaged images

Restored images

Experiment results (cont'd) (540×540 *p* **=10)**

Experiment results (cont'd) (540×540 *p* **=20)**

Camouflaged images

Restored images

Comparison

	Number of secret images	Meaningful shares	Quality of shares	Any secret rectangle images
The proposed scheme	More than 2	Yes	High	Yes
Chen et al. (2012)	4	No	Low	No (Square only)
Liu et al. (2015)	3	Yes	Low	No (Square only)
Chang et al. (2010)	More than 2	No	High	Yes

Conclusion

□ With the Meaningful Shares

- efficiency on image management
- more secure when transmission

□ With the Shifting Random Grid

- flexibility on the number of the secret images
- any rectangle secret image allowed