

§ 7.1 RG-based Multi-VSS Scheme

- Random Grid (RG) based VSS

- O. Kafri, and E. Keren, "Encryption of pictures and shapes by random grids," Optics Letters, vol. 12, no. 6, 1987, pp. 377-379.
- Three encryption algorithms for black and white images:

```
Generate a random grid: share \({ }_{1}\)
For any pixel in secret image
if (image.pixel = 1)
    share \(_{2} \cdot\) pixel \(=1-\) share \(_{1} \cdot\) pixel
else
    share \(_{2} \cdot\) pixel \(=\) share \(_{1}\). pixel
```

```
Generate a random grid: share}\mp@subsup{}{1}{
For any pixel in secret image
if (image.pixel = 1)
    share }2\cdot\mathrm{ pixel = random (0,1)
else
share \(_{2} \cdot\).pixel \(=\) share \(_{1} \cdot\).pixel
```

Generate a random grid: share ${ }_{1}$ For any pixel in secret image
if (image.pixel = 1) share $_{2} \cdot$ pixel $=1-$ share $_{1} \cdot$ pixel else
share $_{2} \cdot$.pixel $=\operatorname{random}(0,1)$

KK1

KK2
KK3

§ 7.1 RG-based Multi-VSS Scheme

- Def: Random Grid (RG) based VSS
- Three encryption algorithms for black and white images.
- KK1:

S	Probability	G_{1}	G_{2}	$G_{1} \oplus G_{2}$	$T\left(G_{1} \otimes G_{2}\right)$
\square	$1 / 2$	\square	\square	\square	$1 / 2$
	$1 / 2$	\square	\square	\square	
\square	$1 / 2$	\square	\square	\square	0
	$1 / 2$	\square	\square	\square	

S : secret; G_{1} : share $1 ; G_{2}$: share $2 ; \otimes$: or; $T\left(G_{1} \otimes G_{2}\right)$: Transmittance

§ 7.1 RG-based Multi-VSS Scheme

- Def: Random Grid (RG) based VSS
- Three encryption algorithms for black and white images.
- KK1:

§ 7.1 RG-based Multi-VSS Scheme

- RG-based Multi-VSS Scheme by Rotating
- T.-H. Chen, K.-H. Tsao, and K.-C. Wei, "Multiple-image encryption by rotating random grids," in Proceedings of ISDA, vol. 3, 2008, pp. 252-256.

§ 7.1 RG-based Multi-VSS Scheme

- RG-based Multi-VSS Scheme by Rotating

§ 7.1 RG-based Multi-VSS Scheme

- RG-based Multi-VSS Scheme by Rotating (512 $\times 512$)

(c) Spring 2023, Justie Su-Tzu Juan

(a)
(b)
(c)

§ 7.1 RG-based Multi-VSS Scheme

- The drawbacks of RG-based Multi-VSS Scheme by Rotating
- Secret image must be square.
- Distortion $=1 / 4$ is large .
- Def. The Quantity of Distortion of Algorithm $A, D(A)$:

$$
D(A)=\frac{\text { pixels not be encrypted in } A}{\text { all pixels of secret images in } A}
$$

§ 7.1 RG-based Multi-VSS Scheme

- RG-based Multi-VSS Scheme by Rotating
- T. H. Chen and K. H. Tsao, (2011) "Yet another multiple-image encryption by rotating random grids," Journal of Signal Processing, Vol.92, pp. 2229-2237, 2012.

§ 7.1 RG-based Multi-VSS Scheme

- RG-based Multi-VSS Scheme by Shifting
- Joy Jo-Yi Chang and Justie Su-Tzu Juan", "Multi-VSS Scheme by Shifting Random Grids," Proc. of WASET, Vol. 65, Tokyo, 2012. pp. 1277-1283.

§ 7.1 RG-based Multi-VSS Scheme

- RG-based Multi-VSS Scheme by Shifting (ex: $p=4$)

(c) Spring 2023, Justie Su-Tzu Juan

§ 7.1 RG-based Multi-VSS Scheme

- RG-based Multi-VSS Scheme by Shifting (ex: $\boldsymbol{p}=4$)

§ 7.1 RG-based Multi-VSS Scheme

- RG-based Multi-VSS Scheme by Shifting (ex: $\boldsymbol{p}=4$)

(c) Spring 2023, Justie Su-Tzu Juan

§ 7.1 RG-based Multi-VSS Scheme

- RG-based Multi-VSS Scheme by Shifting (ex: $\boldsymbol{p}=4$)

§ 7.1 RG-based Multi-VSS Scheme

- RG-based Multi-VSS Scheme by Shifting

§7.1 RG-based Multi-VSS Scheme

- RG-based Multi-VSS Scheme by Shifting
- Experimental result - Algorithm 1: Two secret images S_{A} and S_{B} with the size of $400 \times 300, p=10$.

§ 7.1 RG-based Multi-VSS Scheme

- RG-based Multi-VSS Scheme by Shifting
- Experimental result - Algorithm 2: Two secret images S_{A} and S_{B} with the size of $400 \times 300, p=50$.

§ 7.1 RG-based Multi-VSS Scheme

- RG-based Multi-VSS Scheme by Shifting
- Experimental result - Algorithm 3: Two secret images S_{A} and S_{B} with the size of $500 \times 500, p=50$.

(c) Spring 2023, Justie Su-Tzu Juan

§ 7.1 RG-based Multi-VSS Scheme

- Comparison

	Chen et al [ISC 2008]	Chen et .al [ISDA 2008]	Alg. 1,2	Alg. 3
Data Quantity	1.75	2	2	$(2-1 / p)$
Distortion	0	$1 / 4$	$1 / 2 p$	0
Any Rectangle	Yes	No	Yes	Yes

$>$ T.-H. Chen, G.-Z. Wei, and K.-X. Taso, "An multi-secret image scheme by using random grids," in Proceedings of 18 th Information Security Conference, Hualien, May 29-30, 2008.
$>$ T.-H. Chen, K.-H. Tsao, and K.-C. Wei, "Multiple-image encryption by rotating random grids," in Proceedings of The 8th International Conference on Intelligent System Design and Applications (ISDA 2008), vol. 3, 2008, pp. 252-256.

§ 7.1 RG-based Multi-VSS Scheme

- RG-based Multi-VSS Scheme by Shifting
- Joy Jo-Yi Chang, Bo-Yuan Huang and Justie Su-Tzu Juan", "A New Visual MultiSecrets Sharing Scheme by Random Grids," Cryptography, Vol. 2, Iss. 3, 2018, 24.

§ 7.1 RG-based Multi-VSS Scheme

- RG-based Multi-VSS Scheme by Shifting
- Ex: $n=3$, randomly select $A=0,1$, or 2 . (for encrypting $\left(S_{0}, S_{1}\right),\left(S_{1}, S_{2}\right)$, or $\left(S_{2}, S_{0}\right)$)
- If $A=0$:

§ 7.1 RG-based Multi-VSS Scheme

- RG-based Multi-VSS Scheme by Shifting
- Ex: $n=3$, randomly select $A=0,1$, or 2 . (for encrypting $\left(S_{0}, S_{1}\right),\left(S_{1}, S_{2}\right)$, or $\left(S_{2}, S_{0}\right)$)
- If $A=1$:

§ 7.1 RG-based Multi-VSS Scheme

- RG-based Multi-VSS Scheme by Shifting
- Ex: $n=3$, randomly select $A=0,1$, or 2 . (for encrypting $\left(S_{0}, S_{1}\right),\left(S_{1}, S_{2}\right)$, or $\left(S_{2}, S_{0}\right)$)
- If $A=2$:

S_{3}

- $\operatorname{GCD}(p, n-1)=1 \quad S_{1}$

G_{1}

\boldsymbol{G}_{1}

$\boldsymbol{G}_{\mathbf{2}}$

§ 7.1 RG-based Multi-VSS Scheme

- RG-based Multi-VSS Scheme by Shifting

(a)

(b)

(c)

(e)

(f)
- Experimental result $1: n=4$ secret images with the size of $540 \times 540, p=10$.

(a)

(b)
(c)

(e)

(d)

(f)

§ 7.1 RG-based Multi-VSS Scheme

- RG-based Multi-VSS Scheme by Shifting
- Experimental result 2: $n=5$ secret images with the size of $540 \times 540, p=9$.

(a)
(e)

(b)
(f)

(c)

(d)

(g)

§ 7.1 RG-based Multi-VSS Scheme

- RG-based Multi-VSS Scheme by Shifting
- Experimental result 3: $n=6$ secret images with the size of $540 \times 540, p=27$.

(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)
(c) Spring 2023, Justie Su-Tzu Juan

§ 7.1 RG-based Multi-VSS Scheme

- Comparison

Scheme	Number of Secret Images	Number of Shares	Quality Adjustable	Any Rectangle Secret Images	Direct Recovery Operation
The proposed scheme	$s \geq 2$	2	Yes	Yes	Yes
Reddy et al., 2016 [12]	$s \geq 2$	$3 s$	No	Yes	No
Tsao et al., 2015 [11]	$2^{n}-n-1 \geq s \geq 1$	n	No	Yes	Yes
Salehi et al., 2014 [10]	$s \geq 2$	n	No	Yes	Yes/No
Chang et al., 2012[9]	3	2	Yes	Yes	Yes
Chen et al., 2012 [8]	4	2	No	No	Yes
Chang et al., 2010 [7]	2	2	Yes	Yes	Yes
Chen et al., 2008 [6]	2	2	No	No	Yes

- Distortion $=((N-2) p+1) / N p$

- Analysis

$$
\sigma=\frac{T\left(R\left[S_{i, 0}\right]\right)-T\left(R\left[S_{i, 1}\right]\right)}{1+T\left(R\left[S_{i, 1}\right]\right)}=\frac{4 p-2}{4 N p+N p-2 p+1}=\frac{2(2 p-1)}{5 N p-2 p+1}=\frac{2(2 p-1)}{(5 N-2) p+1}
$$

Outline

－INTRODUCTION
－RELATED WORKS
－Random Grid Encryption Algorithm
－The MTVSS Scheme
－The FTVSS Scheme
－THE PROPOSED SCHEME
－The Main Idea and Algorithm
－The Experimental Results
－ANALYSIS AND COMPARISON
－CONCLUSIONS

Introduction（1／2）

－In 1987，Kafri and Keren proposed the visual secret sharing schemes（VSSS for short）．
－In 1995，Noar and Shamir proposed visual cryptography （VC for short），which is a way to encrypt one secret image and it can be decoded by human vision without any calculation．

	Encryption	$(k, n)-$ threshold	Pixel Expansion
Kafri and Keren	random gird	$(2,2)$	No
Noar and Shamir	code book	(k, n)	Yes

Introduction（2／2）

－In practical，a slight misalignment between the shares could dramatically degrade the visual quality of the reconstructed image．If the size of one－pixel which be printed on the transparencies is small，the alignment will be difficult．

share 1

share 2

Related Work（1／3）

－Random Grid Encryption Algorithm
In KK1：

Secret Image

Shift up
1 pixel

Share \boldsymbol{G}_{1}

Shift up
2 pixels

Share $\boldsymbol{G}_{\mathbf{2}}$

Shift up
3 pixels

Stack

Shift down－left 2 pixels

Related Work（2／3）

－The MTVSS Scheme
In 2004，Nakajima and Yamaguchi proposed：
－Shift－Tolerant
－Pixel Expansion

M．Nakajima and Y．Yamaguchi，＂Enhancing registration tolerance of extended visual cryptography for natural images，＂Journal of Electronic Imaging 13（3），pp．654－662（July 2004）．

Related Work（3／3）

Secret Image

Shift up
2 pixels

Share \boldsymbol{G}_{1}
 1 pixel

Shift down 2 pixels

Shift down－right 1 pixel

Share G_{2}

Shift left 1 pixel

Shift left 2 pixels

Shift up－left 1 pixel

proposed these schemes．

	5×5	Stack	Shift 1 pixel
	\square	1／2	$31 / 100$
Shift right 1 pixel		0	19／100
		Shift 2 pixels	Diagonal shift one pixel
Shift right 2 pixels	\square	26／100	$721 / 3200$
$15 y=4$		$23 / 100$	465／3200

Shift up－right 1 pixel

國立暨南國際大學
National Chi Nan University

The Proposed Scheme－

 The Main Idea and Algo－Taking $n \times n$ grid as a unit，the in units，for $n=7$ ．
－Counting the number of black and the secret image．
－the black pixels $>$ white pixels \Rightarrow
－the black pixels $<$ white pixels \Rightarrow

國立暨南國際大學
National Chi Nan University

The Proposed Scheme－ The Main Idea and Algorithm（2／2）

The Proposed Scheme－

 The Experimental Results（1／2）

Secret Image

Shift up
1 pixel

Shift up
2 pixels

Share G_{1}

Shift down 1 pixel

Shift down 2 pixels

Share \boldsymbol{G}_{2}

Shift left
2 pixels

Shift up
3 pixels

Shift down－left 1 pixel

Shift down－right 1 pixel

Shift down－right 2 pixel

Shift left 3 pixels

Shift up－left
1 pixel

Shift up－left 2 pixel

Shift right 3 pixels

Shift up－right 1 pixel

Shift up－right 2 pixel

Shift down
1 pixel

Shift down 2 pixels

Shift down 3 pixels

Shift down-left
1 pixel

Shift down-rig 1 pixel

Shift up-left 1 pixel

Stack

Shift right We u 1 pixel

Shift left 3 pixels

	2/21		
	6×6	Stack	Shift 1 pixel
	\square	1/2	50/144
		0	25/144
$\begin{aligned} & \text { Shiftright } \\ & 2 \text { pixels } \end{aligned}$		Shift 2 pixel	Shift 3 pixel
	\square	42/144	38/144
		36/144	33/144
Shift right 3 pixels		Diagonal shift one pixel	
	\square	1189/4608	
Shift up-right 1 pixel		422/4608	

ANALYSIS AND COMPARISON（1／7）

－The Transmittance for a white pixel in secret image $=$

$$
\begin{aligned}
& (74+60+150+8) / 784 \\
& =292 / 784 \\
& =73 / 196 .
\end{aligned}
$$

ANALYSIS AND COMPARISON（2／7）

－The Transmittance for a white pixel in secret image $=$

$$
\begin{aligned}
& (26+36+26+12) / 784 \\
& =100 / 784 \\
& =25 / 196 .
\end{aligned}
$$

ANALYSIS AND COMPARISON（3／7）

－The transmittance analysis for stacking two units for $n=7$ ，compare with for $n=5$ ，and 6 （FTVSS）．

$\boldsymbol{n = 7}$	Stack	Shift 1 pixel	Shift 2 pixels	Shift 3 pixels
\square	$1 / 2$	$73 / 196$	$62 / 196$	$53 / 196$
\square	0	$25 / 196$	$37 / 196$	$45 / 196$
$\boldsymbol{n = 6}$	Stack	Shift 1 pixel	Shift 2 pixels	Shift 3 pixels
\square	$1 / 2$	$50 / 144$	$42 / 144$	$38 / 144$
\square	0	$25 / 144$	$36 / 144$	$33 / 144$
$\boldsymbol{n = 5}$	Stack	Shift 1 pixel	Shift 2 pixels	
\square	$1 / 2$	$31 / 100$	$26 / 100$	
\square	0	$19 / 100$	$23 / 100$	

ANALYSIS AND COMPARISON（4／7）

－The transmittance analysis for stacking two resulting units for one pixel diagonal－shift for $n=7$ ，compare with for $n=4,5$ ，and 6 （FTVSS）．

Diagonal－shift one pixel	$n=4$	$n=5$	$n=6$	$n=7$
\square	$381 / 2048$	$721 / 3200$	$1189 / 4608$	$1893 / 6272$
\square	$173 / 2048$	$465 / 3200$	$422 / 4608$	$613 / 6272$

－Theorem 1．The proposed scheme are the fault－tolerant VSS scheme．

ANALYSIS AND COMPARISON（5／7）

－Compare CI with MTVSS and FTVSS．（1／2）

National Chi Nan University

ANALYSIS AND COMPARISON（6／7）

－Compare CI with MTVSS and FTVSS．（2／2）

國立䭗南國祭大學
National Chi Nan University

ANALYSIS AND COMPARISON (7/7)

- If n is greater, will the performance of tolerance be better?

Secret Image

Shift up
1 pixel

Share G_{2}

Shift down
1 pixel

Secret Image

Shift up
1 pixel

Share G_{1}

Shift down 1 pixel

Share G_{2}

Shift left
1 pixel

Stack

(b) 7×7

CONCLUSIONS

－This paper presents a visual secret sharing scheme that are fault tolerant without pixel expansion；which is an extended scheme of FTVSS．
－This paper also discusses the limits of this technique．
－Future works：
－Improving the existing algorithms．
－Round sharp？
－Design a (k, n)－threshold VSS scheme that addresses the misalignment problem without pixel expansion．

APPENDIX (1/2)

7×7		Shift 1 pixel	Shift 2 pixels	Shift 3 pixels	Diagonal shift one pixel	Diagonal shift two pixels
		73/196	62/196	53/196	3786/12544	2040/12544
		25/196	37/196	45/196	1226/12544	1656/12544
		69/196	58/196	51/196	3146/12544	2516/12544
		29/196	40/196	46/196	1866/12544	1108/12544
		69/196	54/196	47/196	3530/12544	1656/12544
		29/196	44/196	51/196	1482/12544	2040/12544

APPENDIX（2／2）

Shift down－left Shift down－right
2 pixel

Shift down－left Shift down－right 2 pixels

2 pixels

Shift up－left

2 pixel

Shift up－left 2 pixels

Shift up－right 2 pixel

Shift up－right 2 pixels

Image management ?

Suspicious?

Meaningful VMSSS (MVMSSS)

How boring the images are!

Sender

Our main achievement

How we decrypt \& encrypt?

\square Shifting random grids
\square For example $N=3, p=4$

First image

Second

Third

How we make them meaningful?

$\square \operatorname{Share}_{1}(a, b)=C 1(a, b) \quad$ this two pixels are according to the
$\square \operatorname{Share}_{2}(c, d)=C 2(c, d)$ first pixels you randomly select

Liu et al., Computer Journal, 2015.

Experiment results (cont'd) $(540 \times 540 p=10)$

R1 R2 R3 R4

Secret images

Shares

Camouflaged images

Restored images

Experiment results (cont'd) $(540 \times 540 p=20)$

R1 R2R3R4
 Secret images

 Shares
 NC NU
 Camouflaged images

 Restored images

Experiment results (cont'd) $(540 \times 540 p=10)$

Secret images

Camouflaged images

Restored images

Experiment results (cont'd) $(540 \times 540 p=20)$

Camouflaged images

Restored images

Comparison

	Number of secret images	Meaningful shares	Quality of shares	Any secret rectangle images
The proposed scheme	More than 2	Yes	High	Yes
Chen et al. (2012)	4	No	Low	No (Square only)
Liu et al. (2015)	3	Yes	Low	No (Square only)
Chang et al. $(\mathbf{2 0 1 0})$	More than 2	No	High	Yes 20

Conclusion

\square With the Meaningful Shares

- efficiency on image management
\square more secure when transmission
\square With the Shifting Random Grid
- flexibility on the number of the secret images
\square any rectangle secret image allowed

