Computer Science and Information Engineering National Chi Nan University The Principle and Application of Secret Sharing Dr. Justie Su-Tzu Juan

Lecture 3. Secret Sharing Scheme with Various Functions

3.1 Verification and Detection

Slides for a Course Based on

1. P. Feldman, "*A practical scheme for non-interactive verifiable secret sharing*", in **Proceedings of 28th Foundations of Computer Science, pp.427-437, 1987.**

2. 近代密碼學及其應用by 賴溪松、韓亮、張真誠

• The drawbacks of Shamir's (*t*, *n*)-threshold scheme:

- Can't check validity of the shares from D
- Can't verify validity of shares from other participants
- Verification: all participants can not check validity of the shares from the dealer. (V)
- **Detection:** participants can not verify validity of the shares from other participants. (**D**)

• <u>Def</u>:

- 1. p and q: large primes such that p divides q 1.
- 2. Z_p : a finite field with p elements.
- 3. g: an element of order p of multiplicative group Z_q^* .
- 4. *D*: dealer; $P = \{P_1, P_2, ..., P_n\}$; *K*: secret key.

• Feldman's scheme (1987):

– Distribution:

Step 1. *D* publish *n* distinct nonzero elements $x_1, x_2, ..., x_n \in_{\mathbf{r}} Z_p$. Step 2. *D* chooses t - 1 elements $a_1, a_2, ..., a_{t-1} \in_{\mathbf{r}} Z_p$ and construct $f(x) = a_{t-1}x^{t-1} + ... + a_2x^2 + a_1x^1 + K \pmod{p}$. Step 3. *D* distributes the share $S_i = f(x_i)$ to P_i . Step 4. *D* publishes *g*, $g^K \pmod{q}$, $g^{a_1} \pmod{q}$, ..., $g^{a_{t-1}} \pmod{q}$.

• <u>Note</u>: The number of publish data: t + 3. (p, q, g)

- Feldman's scheme (1987):
 - Checking (for Participant P_i):
 - 1. Verify the authenticity of S_i :

 $g^{S_{i}} = ? (g^{a_{t-1}})^{x_{i}^{t-1}} (g^{a_{t-2}})^{x_{i}^{t-2}} \dots (g^{a_{1}})^{x_{i}} (g^{K}) (\text{mod } q).$ 2. Detect the shares of S_{j} for any $1 \le j \le n$ by checking: $g^{S_{j}} = ? (g^{a_{t-1}})^{x_{j}^{t-1}} (g^{a_{t-2}})^{x_{j}^{t-2}} \dots (g^{a_{1}})^{x_{j}} (g^{K}) (\text{mod } q).$

• Feldman's scheme (1987):

- **<u>Ex</u>:** K = 13, (t, n) = (3, 5), p = 17, $f(x) = 13 + 10x + 2x^2 \pmod{17}$, and IDi = Iq = 103, $g = 8 \ (8^{17} = 1 \mod 103)$:
- Distribution:
 - $S_1 = f(1) = 8$; $S_2 = f(2) = 7$; $S_3 = f(3) = 10$; $S_4 = f(4) = 0$; $S_5 = f(5) = 11$.
- Publish:
 - g = 8, $g^{K} \pmod{q} = 30$, $g^{a_1} \pmod{q} = 93$, $g^{a_2} \pmod{q} = 64$.
- Checking S₁ (for anyone):
 - $g^{S_i} \pmod{q} = 8^8 \pmod{103} = 61.$
 - $(g^{a_2})^{x_1^2}(g^{a_1})^{x_1}(g^K) \pmod{q} = 64^1 \cdot 93^1 \cdot 30 \pmod{103} = 61.$

• **Rabin's scheme (1994) and LHC (2002):**

– Distribution:

Step 1. *D* distributes the share S_i to P_i by any scheme. Step 2. For any $1 \le i \ne j \le n$, *D* select $X_{i,j}$ and $Y_{i,j} \in_{\mathbf{r}} Z_p$ and calculate $Z_{i,j}$ such that $S_i = X_{i,j} + Y_{i,j} \cdot Z_{i,j} \pmod{p}$. Step 3. *D* distributes the checked keys $Z_{i,j}$, $(X_{j,i}, Y_{j,i})$ to P_i for $1 \le j \le n$ and $j \ne i$.

• Note: The number of extra data for each participant: 3(n-1).

- **Rabin's scheme (1994) and LHC (2002):**
 - Checking (for Participant P_i):

1. Detect the shares of S_j for any $1 \le j \le n$ by checking:

 $S_j = ? X_{j,i} + Y_{j,i} \cdot Z_{j,i} \pmod{p},$ where $X_{i,i}$, $Y_{j,i}$ from P_i ; $Z_{j,i}$ from P_j .

• <u>Note</u>: For P_j , $(S_j, Z_{j,i})$ can not help to obtain another point $(S_j^*, Z_{j,i}^*)$ such that $S_j^* = X_{j,i} + Y_{j,i} \cdot Z_{j,i}^* \pmod{p}$. It is equivalent to knowing only one point in a linear equation but not being able to find another point on the same line.

• **Rabin's scheme (1994) and LHC (2002):**

•

- **Ex:** K = 13, (t, n) = (3, 5), p = 17, $f(x) = 13 + 10x + 2x^2 \pmod{17}$, and IDi = I- **Distribution:**
 - $S_1 = f(1) = 8$; $S_2 = f(2) = 7$; $S_3 = f(3) = 10$; $S_4 = f(4) = 0$; $S_5 = f(5) = 11$.
 - For P_1 , D select $X_{2,1} = 4$, $X_{3,1}$, $X_{4,1}$, $X_{5,1}$ and $Y_{2,1} = 2$, $Y_{3,1}$, $Y_{4,1}$, $Y_{5,1}$ and calculate $Z_{1,2}, Z_{1,3}, Z_{1,4}, Z_{1,5}$, such that $S_1 = X_{1,j} + Y_{1,j} \cdot Z_{1,j} \pmod{13}$.
 - For P_2 , D select $X_{1,2}$, $X_{3,2}$, $X_{4,2}$, $X_{5,2}$ and $Y_{1,2}$, $Y_{3,2}$, $Y_{4,2}$, $Y_{5,2}$ and calculate $Z_{2,1}$, $Z_{2,3}$, $Z_{2,4}$, $Z_{2,5}$, such that $S_2 = X_{2,j} + Y_{2,j} \cdot Z_{2,j} \pmod{13}$.
 - Where *D* distributes the checked keys $(X_{2,1}, Y_{2,1}) = (4, 2)$ to P_1 ;

and distributes $Z_{2,1} = 10$ to P_2 ;

(c) Spring 2023, Justie Su-Tzu Juan

- Rabin's scheme (1994) and LHC (2002):
 <u>Ex</u>: K = 13, (t, n) = (3, 5), p = 17, f(x) = 13 + 10x + 2x² (mod 17), and IDi = I
 Distribution:
 - Where *D* distributes the checked keys $(X_{2,1}, Y_{2,1}) = (4, 2)$ to P_1 ; and distributes $Z_{2,1} = 10$ to P_2 ;
 - Checking S_2 for P_1 :
 - P_1 detect the shares of S_2 by checking:

 $S_2 = 7 \text{ (from } P_2)$ $X_{2,1} + Y_{2,1} \cdot Z_{2,1} = 4 + 2 \cdot 10 = 7 \text{ (mod 17)},$ where $X_{2,1}, Y_{2,1}$ from $P_1; Z_{2,1}$ from P_2 . Computer Science and Information Engineering National Chi Nan University **The Principle and Application of Secret Sharing** Dr. Justie Su-Tzu Juan

Lecture 3. Secret Sharing Scheme with Various Functions

3.2 Multi-Secret Sharing Scheme

Slides for a Course Based on

1. C.-C. Yang, T.-Y. Chang and M.-S. Hwang, "A (t, n) multi-secret sharing

scheme", Applied Mathematics and Computation, pp.483-490, 2004.

2. 近代密碼學及其應用 by 賴溪松、韓亮、張真誠

(c) Spring 2023, Justie Su-Tzu Juan

- The drawbacks of Shamir's (*t*, *n*)-threshold scheme:
 - Shares held by the participants are used only once.

- Multi-use: If we want to share a new secret, the dealer does not need to redistribute new shares to each participant. (M)
- Also called Multi-Secret Sharing Scheme (MSSS), Online SSS.

- <u>Def</u>: Two-variable one-way hash function $(f_{hash}(r, s))$: In which *s* and *r* are two numbers, and $f_{hash}(r, s)$ will be a bit string with a fixed length. It has the following properties :
 - (1) Given r and s, it is easy to compute $f_{\text{hash}}(r, s)$.
 - (2) Given s and $f_{\text{hash}}(r, s)$, it is hard to compute r.
 - (3) Having no information of *s*, it is hard to compute $f_{\text{hash}}(r, s)$ for any *r*.
 - (4) Given *s*, it is hard to find two different values r_1 and r_2 such that $f_{\text{hash}}(r_1, s) = f_{\text{hash}}(r_2, s)$.
 - (5) Given *r* and $f_{\text{hash}}(r, s)$, it is hard to compute *s*.
 - (6) Given pairs of $(r_i, f_{\text{hash}}(r_i, s))$, it is hard to compute $f_{\text{hash}}(r', s)$ for $r' \neq r_i$.

- Yang et al.'s (*t*, *n*) multi-secret sharing scheme (2004):
 - Step 0. *D* randomly chooses *n* shares $s_1, s_2, ..., s_n$ and sends s_i to P_i .
 - Distribution (k secret $(K_1, K_2, ..., K_k)$):
 - If $k \leq t$

Step 1. Choose a prime *p* and construct (t - 1)th degree polynomial $g(x) \mod p$, where $0 < K_1, K_2, ..., K_k, a_1, a_2, ..., a_{t-k} < p$ as follows: $g(x) = K_1 + K_2 x^1 + ... + K_k x^{k-1} + a_1 x^k + a_2 x^{k+1} + ... + a_{t-k} x^{t-1} \pmod{p}$. Step 2. Compute $y_i = g(f_{hash}(r, s_i)) \mod p$ for i = 1, 2, ..., n. Step 3. Publish $(r, y_1, y_2, ..., y_n)$.

• **<u>Note</u>**: The number of publish data: n + 1.

- Yang et al.'s (*t*, *n*) multi-secret sharing scheme (2004):
 - Step 0. *D* randomly chooses *n* shares $s_1, s_2, ..., s_n$ and sends s_i to P_i .
 - Distribution (k secret $(K_1, K_2, ..., K_k)$):
 - If k > t

Step 1. Choose a prime *p* and construct (k - 1)th degree polynomial $g(x) \mod p$, where $0 < K_1, K_2, ..., K_k < p$ as follows: $g(x) = K_1 + K_2 x^1 + ... + K_k x^{k-1} \pmod{p}$. Step 2. Compute $y_i = g(f_{hash}(r, s_i)) \mod p$ for i = 1, 2, ..., n. Step 3. Compute $g(i) \mod p$ for i = 1, 2, ..., k - t. Step 4. Publish $(r, g(1), g(2), ..., g(k - t), y_1, y_2, ..., y_n)$.

• <u>Note</u>: The number of publish data: n + k - t + 1. (c) Spring 2023, Justie Su-Tzu Juan

• Yang et al.'s (*t*, *n*) multi-secret sharing scheme (2004):

- Reconstruction (Collect *t* pairs of $(f_{hash}(r, s_i), y_i)$, say $1 \le i \le t$ W.L.O.G.): • If $k \le t$

Step 1. Using Lagrange Interpolation Formula:

$$g(x) = \sum_{i=1}^{t} (y_i \prod_{j=1, j \neq i}^{t} \frac{x - f_{\text{hash}}(r, s_j)}{f_{\text{hash}}(r, s_i) - f_{\text{hash}}(r, s_j)}) \mod q$$

= $K_1 + K_2 x^1 + \dots + K_k x^{k-1} + a_1 x^k + a_2 x^{k+1} + \dots + a_{t-k} x^{t-1} \pmod{p}$
Step 2. Get k secrets (K₁, K₂, ..., K_k).

• Yang et al.'s (*t*, *n*) multi-secret sharing scheme (2004):

- Reconstruction (Collect *t* pairs of $(f_{hash}(r, s_i), y_i)$, say $1 \le i \le t$ W.L.O.G.): • If k > t

Step 1. Get (i, g(i)) for $1 \le i \le k - t$.

Step 2. Using Lagrange Interpolation Formula:

$$g(x) = \sum_{i=1}^{t} (y_i \prod_{l=1}^{k-t} \frac{x-l}{f_{\text{hash}}(r,s_i)-l} \prod_{j=1, j \neq i}^{t} \frac{x-f_{\text{hash}}(r,s_j)}{f_{\text{hash}}(r,s_i)-f_{\text{hash}}(r,s_j)}) + \sum_{i=1}^{k-t} (g(i) \prod_{j=1, j \neq i}^{k-t} \frac{x-j}{i-j} \prod_{l=1}^{t} \frac{x-f_{\text{hash}}(r,s_l)}{i-f_{\text{hash}}(r,s_l)}) \pmod{q} = K_1 + K_2 x^1 + \dots + K_k x^{k-1} \pmod{p}.$$

Step3. Get k secrets (K_1, K_2, \dots, K_k) .

• Yang et al.'s (*t*, *n*) multi-secret sharing scheme (2004):

- When the dealer shares a new secret, the dealer only need to publishes new $(r, y_1, y_2, ..., y_n)$ when $k \le t$, or $(r, g(1), g(2), ..., g(k - t), y_1, y_2, ..., y_n)$ when k > t. The dealer need not redistribute shares to each participant.

Observation: When k > 1, it is not perfect!

- Harn's (t, n) multi-secret sharing scheme (1995): Using DSA
 <u>Def</u>: by dealer D
 - 1. q: large prime > 800 bits.
 - 2. *p*: large prime > 160 bits such that *p* divides q 1. 3. $a_i \in Z_p^*$ for $0 \le i \le t - 1$, and $f(x) = a_{t-1}x^{t-1} + \dots + a_2x^2 + a_1x^1 + a_0 \pmod{p}$. 4. $g_i \in Z_p^*$ for $0 \le i \le k$ and $g_i = h_i^{(q-1)/p} \mod{q}$, for any integer h_i .

Note, g_i will be an generator with order p of multiplicative group Z_q^* . 5. Secret $K_i = g_i^{a_0} \mod q \ (= g_i^{f(0)} \mod q)$.

Harn's (t, n) multi-secret sharing scheme (1995): Using DSA
 – Distribution (secret K_i):

Step 1. Send $S_i = f(x_i)$ to P_i ; x_i is the ID of P_i , where $f(x) = a_{t-1}x^{t-1} + \ldots + a_2x^2 + a_1x^1 + a_0 \pmod{p}$. Step 2. D publish (t, k, p, q, g_i) .

<u>Note</u>: The number of publish data: 4 + k.

- Harn's (*t*, *n*) multi-secret sharing scheme (1995): Using DSA
 - **Reconstruction** (Collect *t* pairs of $(x_j, S_{i,j} = g_i^{S_j} \mod q)$, say $1 \le j \le t$ W.L.O.G.):

Step 1. Using Lagrange Interpolation Formula:

$$K_{i} = \prod_{j=1}^{t} S_{i,j}^{\prod_{l=1,l\neq j}^{t} \frac{-x_{j}}{x_{j}-x_{l}} \mod p} \mod q = g_{i}^{\sum_{j=1}^{t} S_{j} \prod_{l=1,l\neq j}^{t} \frac{-x_{j}}{x_{j}-x_{l}} \mod p} \mod q$$

 $= \boldsymbol{g}_i^{f(0)} \bmod q.$

- Harn's (*t*, *n*) multi-secret sharing scheme (1995): Using DSA
 - Analysis: Due to the security of DLP, handing over $S_{i,j} = g_i^{S_j} \mod q$ will not reveal any information about S_j ; at the same time, getting $K_i = g_i^{a_0} \mod q$ will not know any information about a_0 .

Computer Science and Information Engineering National Chi Nan University The Principle and Application of Secret Sharing Dr. Justie Su-Tzu Juan

Lecture 3. Secret Sharing Scheme with Various Functions

§ 3.3 No Dealer

Slides for a Course Based on *近代密碼學及其應用* by 賴溪松、韓亮、張真誠

• The drawbacks of Shamir's (*t*, *n*)-threshold scheme:

 In general business and large-scale secret sharing, it is very difficult to find a trustworthy person to be the dealer.

No dealer: Secret sharing scheme without dealer assistance.

- **Ingemarsson and Simmons**'s scheme: A (*t*, *n*) secret sharing scheme without the assistance of a trusted party (1991):
 - Distribution (secret K):

Step 1. Every participant P_i select a key K_i for himself. Step 2. Set secret key $K = K_1 + K_2 + ... + K_n$ Step 3. Every participant P_i : 3.1. Use (t, n - 1)-TS to construct

 $K_{i, 1}, K_{i, 2}, \dots, K_{i, i-1}, K_{i, i+1}, K_{i, n}$, for his key K_i . 3.2. Send $K_{i, j}$ to P_j .

- **Ingemarsson and Simmons**'s scheme: A (*t*, *n*) secret sharing scheme without the assistance of a trusted party (1991):
 - **Reconstruction** (Collect *t* pairs of $(K_i, K_{j,i})$, say $1 \le i \le t, t+1 \le j \le n$, W.L.O.G.):
 - Step 1. For $t + 1 \le j \le n$, reconstruct K_j by $K_{j, 1}, K_{j, 2}, ..., K_{j, t}$.

Step 2. Get key $K = K_1 + K_2 + ... + K_n$

- **Ingemarsson and Simmons**'s scheme: A (*t*, *n*) secret sharing scheme without the assistance of a trusted party (1991):
 - **<u>Ex</u>**: (t, n) = (2, 3)
 - Distribution:
 - $P_1 \text{ get } K_1, K_{2,1}, K_{3,1}$ $P_2 \text{ get } K_2, K_{1,2}, K_{3,2}$ $P_3 \text{ get } K_3, K_{1,3}, K_{2,3}$
 - Reconstruction by P_1 and P_2 :
 - P_1 and P_2 calculate K_3 by $K_{3,1}$ (from P_1) and $K_{3,2}$ (from P_2)
 - Get key $K = K_1 + K_2 + K_3$

Computer Science and Information Engineering National Chi Nan University **The Principle and Application of Secret Sharing** Dr. Justie Su-Tzu Juan

Lecture 4. The Geometric Approach for Sharing Secrets

§ 4.1 A (*k*, *n*)-Threshold Scheme Based on a Hyperspherical Function (HS-TS)

Slides for a Course Based on

T.-C. Wu and W.-H. He, "A geometric approach for sharing secrets",

Computer & Security, pp.135-145, 1995

(c) Spring 2023, Justie Su-Tzu Juan

§ 4.1 A (*k*, *n*)-Threshold Scheme Based on a Hyperspherical Function (HS-TS)

• <u>Def</u>:

- Let \mathscr{K} be the master key space and \mathscr{S} be the share space. The *information rate* of the secret sharing scheme is defined as $\log_2|\mathscr{K}| / \log_2|\mathscr{S}|$.
- A secret sharing scheme is *perfect* if any set of participants in the prohibited structure obtains no information regarding the secret.
- Secret sharing schemes are classified into the following types:
 - Type I: A secret sharing scheme for the *access structure* Γ : $\Delta = 2^P \Gamma$.
 - Type II: A secret sharing scheme for the *prohibited structure* Δ : $\Gamma = 2^P \Delta$.
 - Type III: A secret sharing scheme for the *mixed structure* (Γ, Δ) : $(\Gamma \cup \Delta) \subseteq 2^{P}$

§ 4.1 A (*k*, *n*)-Threshold Scheme Based on a Hyperspherical Function (HS-TS)

• Simple geometric properties: 15 $-1.(x_1, y_1), (x_2, y_2) - y = ax + b$ 10 a (2, *n*)-threshold scheme. -4 2 4 -5 -10 $-2.(x_1, y_1), (x_2, y_2), (x_3, y_3) - (x_1 - a_1)^2 + (x_2 - a_2)^2 = s$ 0.5 a (3, *n*) threshold scheme. -0.5 0.5 -0.5

§ 4.1 A (*k*, *n*)-Threshold Scheme Based on a Hyperspherical Function (HS-TS)

- Simple geometric properties:
 - $-3. (x_1, y_1), (x_2, y_2), (x_3, y_3), (x_4, y_4) (x_1 a_1)^2 + (x_2 a_2)^2 + (x_3 a_3)^2 = s$ a (4, *n*) threshold scheme.
 - 4. Extend 2 and 3 to k items:
 - Given any k points, which don't lie on (k 2)-dimensional space, can uniquely determine $(a_1, a_2, ..., a_{k-1})$ and s, such that:

$$\sum_{i=1}^{k-1} (x_i - a_i)^2 = s.$$

Device a (k, n) threshold scheme.