Computer Science and Information Engineering National Chi Nan University

The Principle and Application of Secret Sharing

Dr．Justie Su－Tzu Juan

Lecture 1．Overview of Cryptography

§1．2 Contemporary Cryptography（2）

Slides for a Course Based on the Text
近代密碼學及其鷹用
by 賴溪松，韓亮，張真誠

Key Distribution System

- Def：Key Distribution System（or Protocol），KDS（金錀分配協定）
- Conference－Key Distribution System，CKDS（會議金鍽分配系統）
- Trusted－Key Distribution Center，TKDC（可信賴的金錀分配中心）
－Key generation ：E，D

－Key distribution ：

Known－ Plaintext Attack
（1） $\mathrm{E}_{K i c}\left(I D_{i}, I D_{j}\right)$

$$
\text { (2) } \mathbf{E}_{K_{k}}\left(Z_{j}=I D_{j} \| r_{i j}\right)
$$

（2） $\mathrm{E}_{K_{i c}}\left(Z_{i}=I D_{i} \| r_{i j}\right.$
（3） $\mathrm{E}_{r_{j}}(M)$

Public－Key Distribution System

－Public－Key Distribution System，PKDS（公開金錀分配系統）for sending messages is a framework which allows one party to securely send a message to a second party without the need to exchange or distribute encryption keys．
－Ex：Using exponentiation function．
Key generation ：All participants known big prime p ，and primitive root g ．
Key distribution ：

（5）Calculate
$z_{j i}=y_{i}^{x_{j}} \bmod p$
（3）Randomly select x_{j}

Three－Pass Protocol

－A three－pass protocol（三遍通訊協定）
－Ex：Using exponentiation function．
Key generation ：All participants known big prime p ，and primitive root g ，and each participant U_{i} has their own secret key x_{i} and $x_{i}^{-1}\left(\right.$ that is，$\left.x_{i} x_{i}^{-1} \equiv 1 \bmod (p-1)\right)$ ．

Key distribution ：

ElGamal Encryption System

－The ElGamal eprer asymmetric ke Cannot use based on the r the same r ！
－Ex：Using 6 Key gener： participant U_{i}

Known－ Plaintext
stem（ElGamal 公開金錀密 orithm for public－key cr， ey exchange， 1982. on．
？ants known big prime p ，and primitive root g ，and each Attack－secret key x_{i} and public the Public－key $y_{i}=g^{x_{i}} \bmod p$ ．

Key distributio

（1）Randomly select r Find $C_{1}=g^{r} \bmod p$ ，

$$
C_{2}=M y_{j}^{r} \bmod p
$$

Computer Science and Information Engineering National Chi Nan University

The Principle and Application of Secret Sharing

Dr．Justie Su－Tzu Juan

Lecture 2．Fundamental and Technology of Cryptography

§2．1 Introduction to Number Theory

Slides for a Course Based on the Text
1．密碼學與網路安全by 王旭正，柯宏叡
2．Discrete \＆Combinatorial Mathematics（5 ${ }^{\text {th }}$ Edition）
by Ralph P．Grimaldi
（c）Spring 2023，Justie Su－Tzu Juan

Introduction to Number Theory

－Thm 2．1：Modular Arithmetic（模數運算）
（1）$(x+y) \bmod n=[(x \bmod n)+(y \bmod n)] \bmod n$
（2）$(x-y) \bmod n=[(x \bmod n)-(y \bmod n)] \bmod n$
（3）$(x \times y) \bmod n=[(x \bmod n) \times(y \bmod n)] \bmod n$
－$\underline{\text { Ex：}}:[75 \times(68+3)] \bmod 37=[75 \times 71] \bmod 37=5325 \bmod 37=34$
$[(75 \times 68)+(75 \times 3)] \bmod 37=[(75 \times 68) \bmod 37+(75 \times 3) \bmod 37] \bmod 37$
$=[(75 \bmod 37 \times 68 \bmod 37) \bmod 37+(75 \bmod 37 \times 3 \bmod 37) \bmod 37] \bmod 37$
$=[(1 \times 31) \bmod 37+(1 \times 3) \bmod 37] \bmod 37$
$=(31+3) \bmod 37$
$=34$

Introduction to Number Theory

Def 14.7: $n \in Z^{+}, n>1, \forall a, b \in Z$, a is congruent to (同稌) b modulo $n \Leftrightarrow a \equiv b(\bmod n) \Leftrightarrow a \equiv_{n} b$ if $n \mid(a-b)(\Leftrightarrow a=b+k n$ for some $k \in Z)$

Ex 14.12: $17 \equiv 2(\bmod 5) ;-7 \equiv-49(\bmod 6) ; 11 \equiv-5(\bmod 8)$.
Thm 14.11: Congruence modulo n is an equivalence relation on Z. (reflexive, symmetric, transitive)

Introduction to Number Theory

$$
\left.\begin{array}{rl}
{[0]} & =\{\ldots,-2 n,-n, 0, n, 2 n, \ldots\}=\{0+n x \mid x \in Z\} \\
{[1]} & =\{\ldots,-2 n+1,-n+1,1, n+1,2 n+1, \ldots\} \\
{[2]} & =\{\ldots,-2 n+2,-n+2,2, n+2,2 n+2, \ldots\}=\{1+n x \mid x \in Z\} \\
:
\end{array}\right\}
$$

Def: $Z_{n} \equiv\{[0],[1], \ldots,[n-1]\}=\{0,1,2, \ldots, n-1\}$

$$
[a]+[b]=[a+b],[a] \cdot[b]=[a \cdot b]
$$

Def: Simplify, say $[a]$ as a.

Introduction to Number Theory

Def 14.1: (R, \oplus, \odot) is a ring, where
R : a nonempty set
$\oplus: R \times R \rightarrow R, \odot: R \times R \rightarrow R$: two closed binary operations and $\forall a, b, c \in R$ satisfied:
a) $a \oplus b=b \oplus a \quad$ Commutative Law of \oplus
b) $a \oplus(b \oplus c)=(a \oplus b) \oplus c \quad$ Associative Law of \oplus
c) $\exists z \in R$ s.t. $a \oplus z=z \oplus a=a \forall a \in R \quad$ Existence of an identity for \oplus
d) $\forall a \in R, \exists b \in R$ s.t. $a \oplus b=b \oplus a=z$ Existence of inverses under \oplus
e) $a \odot(b \odot c)=(a \odot b) \odot c$
f) $a \odot(b \oplus c)=(a \odot b) \oplus(a \odot c) \quad$ Distributive Laws of \odot over \oplus $(b \oplus c) \odot a=(b \odot a) \oplus(c \odot a)$

Introduction to Number Theory

Def 14.2: Let $(R,+, \cdot)$ be a ring:
a) If $a b=b a \forall a, b \in R$, then R is called a commutative ring.
b) If $\forall a, b \in R, a b=z \Rightarrow a=z$ or $b=z$, then R is said to have no proper divisors of zero.
c) If $\exists u \in R$ s.t. $u \neq z$ and $a u=u a=a \forall a \in R$, then call u a unity, or multiplicative identity of \boldsymbol{R}. Here R is called a ring with unity.

Introduction to Number Theory

Ex: In $Z_{5}=\{0,1,2,3,4\}$, define + and \cdot as Table (i), (ii)

Sol. Step 1: closed
(i)

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

(ii)

.	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Step 2: (a): (i) is symmetric.
(b), (e): 125 equalities must test.
(c): additive identity $=0$
(d): additive inverse: $-0=0,-1=4,-2=3,-3=2,-4=1$

Step 3: (ii) is symmetric
Step 4: (f): 125 equalities must test.
Step 5: unity = 1
(c) Spring 2023, Justie Su-Tzu Juan

Introduction to Number Theory

Def 14.3: R be a ring with unity u. If for $a \in R, \exists b \in R$ s.t. $a b=b a=u$, then
(1) b is called a multiplicative inverse of a, and
(2) a is called a unit of R.

Note: The multiplicative inverse are unique, say \boldsymbol{a}^{-1}.

Def: Let R be a commutative ring with unity, Then
a) R is called an integral domain if R has no proper divisors of zero.
b) R is called a field if every nonzero element of R is a unit.

Ex: In $Z_{5}=\{0,1,2,3,4\}, 1^{-1}=1,2^{-1}=3,3^{-1}=2,4^{-1}=4 ; 1,2,3,4$ are units of Z_{5}. Z_{5} is an integral domain and field.

Introduction to Number Theory

Thm 14.12: $\forall n \in \mathrm{Z}^{+}, n>1,\left(\mathrm{Z}_{n},+, \cdot\right)$ is a commutative ring with unity 1 and additive identity 0 .

Thm 14.13: Z_{n} is a field. $\Leftrightarrow n$ is a prime.

Thm 14.14: $\operatorname{In} Z_{n},[a]$ is a unit. $\Leftrightarrow \operatorname{gcd}(n, a)=1$.

Ex: In \mathbf{Z}_{10}, who are units?
Sol. The units are $\{1,3,7,9\}$

Introduction to Number Theory

Ex 14.13: Find [25] ${ }^{-1}$ in Z_{72}.

Sol.

$$
\begin{aligned}
& \because \operatorname{gcd}(25,72)=1 \Rightarrow 72=2(25)+22, \\
& \qquad 25=1(22)+3, \\
& 22=7(3)+1 . \\
& \Rightarrow 1=22-7(3)=22-7(25-22)=-7(25)+8(22) \\
& \quad=-7(25)+8[72-2(25)]=8(72)-23(25) \\
& \because 1=8(72)-23(25) \\
& \Rightarrow 1 \equiv(-23)(25)(\bmod 72) \\
& \Rightarrow 1 \equiv(72-23)(25)(\bmod 72) \\
& \text { so }[1]=[49][25] \text { and }[25]^{-1}=[49] \text { in } Z_{72}
\end{aligned}
$$

Introduction to Number Theory

Thm 2．2：Euler＇s totient function（歐拉函數）
For $n \in Z^{+}, n \geq 2$ ，Let $\phi(n)=\left|\left\{m \in Z^{+} \mid \operatorname{gcd}(m, n)=1,1 \leq m<n\right\}\right|$

$$
\begin{aligned}
& \phi(n)=n \Pi_{p \mid n, p \text { is a prime }}(1-(1 / p)) \\
& \left(\phi(n)=\Pi_{i=1, t} p_{i}^{e_{i}-1}\left(p_{i}-1\right), \text { where } n=p_{1}{ }^{e_{1}} p_{2}{ }^{e_{2}} \ldots p_{t}^{e_{t}}\right)
\end{aligned}
$$

Sol．$\phi(36)=2^{(2-1)} \cdot(2-1) \cdot 3^{(2-1)} \cdot(3-1)=2 \cdot 1 \cdot 3 \cdot 2=12$ ．

Introduction to Number Theory

Def 16.1:

- G : a nonempty set; ○ : a binary operation of G then (G, \circ) is called a group \equiv
(1) $\forall a, b \in G, a \circ b \in G \quad$ (Closure of G under \circ)
(2) $\forall a, b, c \in G, a \circ(b \circ c)=(a \circ b) \circ c \quad$ (The Associative Property)
(3) $\exists e \in G$, s.t. $a \circ e=e \circ a=a, \forall a \in G$
(4) $\forall a \in G, \exists b \in G$ s.t. $a \circ b=b \circ a=e$
(The Existence of an Identity)
(Existence of Inverses)
- If (5) $\forall a, b \in G, a \circ b=b \circ a$ hold, then
G is called a commutative (or abelian) group.

Introduction to Number Theory

Note: (1) If $(R,+, \cdot)$ is a ring $\Rightarrow(R,+)$ is an abelian group.
(2) If $(F,+, \cdot)$ is a field
$\Rightarrow(F,+)$ is an abelian group.
$\left(F^{*}, \cdot\right)$ is an abelian group, where $F^{*}=F-\{0\}$,
0 : the zero element of $(F,+, \cdot)$.
$\forall a, b, c \in F, a \cdot(b+c)=a \cdot b+a \cdot c$

Ex 16.2: (1) $\forall n \in \mathbb{Z}^{+}, n>1,\left(Z_{n},+\right)$ is an abelian group.
(2) If p is a prime, $\left(\mathrm{Z}_{p}{ }^{*}, \cdot\right)$ is an abelian group. $\left(\mathrm{Z}_{p}{ }^{*}=\mathrm{Z}_{p}-\{[0]\}\right)$

Introduction to Number Theory

Def 16.2: $\bullet \forall$ group G, the number of elements in $G \equiv$ order of G, denoted by $|G| \cdot$
$\underline{\text { Ex 16.3: } \forall n \in Z^{+},\left|\left(Z_{n},+\right)\right|=n \text {, while }\left|\left(Z_{p}^{*}, \cdot\right)\right|=p-1 \forall \text { prime } p . ~}$
Note: (1) $\forall n \in Z^{+}, n>1$, if $U_{n}=\left\{a \in\left(Z_{n},+, \cdot\right) \mid a\right.$ is a unit $\}$

$$
=\left\{a \in Z^{+} \mid 1 \leq a \leq n-1 \text { and } \operatorname{gcd}(a, n)=1\right\}
$$

then $\left(U_{n}, \cdot\right)$ is an abelian group under the multiplication modulo n.
(2) $\left(U_{n}, \cdot\right)$ is called the group of unit for the ring $\left(Z_{n},+, \cdot\right)$
(3) $\left|U_{n}\right|=\phi(n)\binom{=\mid\left\{a \in Z^{+} \mid 1 \leq a \leq n-1\right.$ and $\left.\operatorname{gcd}(a, n)=1\right\} \mid}{=n \cdot \prod_{p \mid n}(1-1 / p)}$

Introduction to Number Theory

Ex 16.4: In $\left(Z_{9},+, \cdot\right)$, let $U_{9}=\left\{a \in Z_{9} \mid a\right.$ is a unit in $\left.Z_{9}\right\}$

$$
\begin{aligned}
& =\left\{a \in Z_{9} \mid a^{-1} \text { exists }\right\}=\{1,2,4,5,7,8\} \\
& =\left\{a \in Z^{+} \mid 1 \leq a \leq 8 \text { and } \operatorname{gcd}(a, 9)=1\right\}
\end{aligned}
$$

\cdot	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{7}$	$\mathbf{8}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{5}$	7	$\mathbf{8}$
$\mathbf{2}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{8}$	$\mathbf{1}$	$\mathbf{5}$	7
$\mathbf{4}$	4	8	7	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{5}$
$\mathbf{5}$	$\mathbf{5}$	$\mathbf{1}$	$\mathbf{2}$	7	$\mathbf{8}$	4
$\mathbf{7}$	7	$\mathbf{5}$	$\mathbf{1}$	$\mathbf{8}$	4	$\mathbf{2}$
$\mathbf{8}$	$\mathbf{8}$	7	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{2}$	$\mathbf{1}$

$$
\Rightarrow\left|U_{9}\right|=\phi(9)=9(1-1 / 3)=6
$$

\Rightarrow (1) U_{9} is closed under the multiplication modulo 9 .
(2) 1 is the identity element.
(3) each element has an inverse in U_{9}.
(4) $\because\left(Z_{9},+, \cdot\right)$ is a ring $\Rightarrow\left(U_{9}, \cdot\right)$ is associative under.
i.e. $\forall a, b, c \in U_{9}, a \cdot(b \cdot c)=(a \cdot b) \cdot c$
$\Rightarrow\left(U_{9}, \cdot\right)$ is an (abelian) group of order 6.

Introduction to Number Theory

Def 16.4: (G, \circ) and $(H, *)$ are groups, $f: G \rightarrow H$ is called a (group)
homomorphism if $\forall a, b \in G, f(a \circ b)=f(a) * f(b)$

Def 16.5: If $f:(G, \circ) \rightarrow(H, *)$ is a homomorphism, f is called an isomorphism if it is 1-1 and onto, and $\boldsymbol{G}, \boldsymbol{H}$ are said to be isomorphic groups.

Introduction to Number Theory

Def: If every element of \boldsymbol{G} is a power of \boldsymbol{i}, then we say that \boldsymbol{i} generates \boldsymbol{G}. Denoted by $G=\langle i\rangle$.

Def 16.6: A group G is called cyclic if $\exists x \in G$ s.t. $G=\langle x\rangle$,
i.e. $\forall a \in G, a=x^{n}$ for some $n \in Z$.

Ex 16.13: (a) $H=\left(Z_{4},+\right)$ is cyclic. (\because the operation is addition.)
Sol.

$$
\begin{aligned}
& 1 \cdot[3]=[3], 2 \cdot[3]=[3]+[3]=[2](\therefore \text { multiples instead of powers }) \\
& 3 \cdot[3]=[1], 4 \cdot[3]=[0] \Rightarrow H=\langle[3]\rangle(=\langle[1]\rangle) \\
& \quad \text { i.e. }[1],[3] \text { generate } H .
\end{aligned}
$$

Introduction to Number Theory

Ex 16.13: $(\mathrm{b})\left(\boldsymbol{U}_{\mathbf{9}}\right)=(\{\mathbf{1}, \mathbf{2}, 4,5,7,8\}, \cdot)$ in $\operatorname{Ex} 16.4$ is cyclic. Sol.

$$
\begin{array}{ll}
2^{1}=2,2^{2}=4,2^{3}=8,2^{4}=7,2^{5}=5,2^{6}=1 & \therefore U_{9}=\langle 2\rangle \\
\because 5^{1}=5,5^{2}=7,5^{3}=8,5^{4}=4,5^{5}=2,5^{6}=1 & \therefore U_{9}=\langle 5\rangle
\end{array}
$$

Ex: $T=\left(Z_{5}{ }^{*}, \cdot\right)$ is cycle:
Sol. $2^{1}=2,2^{2}=4,2^{3}=3,2^{4}=1$.
2 generate T.
Def: Given a group G, let $a \in G$, the set $S=\left\{a^{k} \mid k \in Z\right\}$ is called the subgroup generated by a and is designated by $\langle a\rangle$.

Introduction to Number Theory

Ex 16.14: Define $f:\left(U_{9}, \cdot\right) \rightarrow\left(Z_{6},+\right)\left(=\left(Z_{\phi(n)},+\right)\right)$ as follows:

$$
f(1)=[0], f(2)=[1], f(4)=[2], f(8)=f\left(2^{3}\right)=[3], f(5)=f\left(2^{5}\right)=[5], f(7)=f\left(2^{4}\right)=[4] .
$$

i.e. $\forall a \in U_{9}=\langle 2\rangle$, say $a=2^{k}$, for some $0 \leq k \leq 5$ then define $f(a)=f\left(2^{k}\right)=[k]$ f is isomorphism and $\left(U_{9}, \cdot\right)$ and $\left(Z_{6},+\right)$ are isomorphic.

Def 16.7: If G is a group and $a \in G$,
(1) $(a) \equiv|\langle a\rangle|$, the order of $\langle a\rangle$.
(2) If $|\langle a\rangle|$ is infinite, we say that a has infinite order.

Remark: (1) If $|\langle a\rangle|=1$, then $a=e$.
(2) If $|\langle a\rangle|$ is finite, and $a \neq e$, then $\langle a\rangle=\left\{a, a^{2}, \ldots, a^{n}\right\}$, where n be the smallest positive integer s.t. $a^{n}=e$.
(3) © (a) can also be defined arsntmessmanlest prositive integer n s.t. $a^{n}=e$

Introduction to Number Theory

Thm 16.6: Let $a \in G$ with $\Theta(a)=n$. If $k \in \mathrm{Z}$ and $a^{k}=e$, then $n \mid k$.
Proof.
$\forall k \in \mathrm{Z}, \exists q \in \mathrm{Z}, r \in \mathrm{Z}^{+}$where $0 \leq r<n$ s.t. $k=q n+r$
$\therefore e=a^{k}=a^{q n+r}=\left(a^{n}\right)^{q}\left(a^{r}\right)=\left(e^{q}\right)\left(a^{r}\right)=a^{r}$
If $0<r<n$, it contradict the definition of $\Theta(a)=n$
$\therefore r=0 \Rightarrow k=q n . \quad$ i.e. $n \mid k$

Thm 16.7: Let G be a cyclic group.
(a) If $|G|$ is infinite, then G is isomorphic to $(\mathrm{Z},+)$
(b) If $|G|=n$, where $n>1$, then G is isomorphic to $\left(Z_{n},+\right)$

Introduction to Number Theory

Thm 16．9：Lagrange＇s Theorem
If \boldsymbol{G} is a finite group of order \boldsymbol{n} with \boldsymbol{H} a subgroup of order \boldsymbol{m} ，then \boldsymbol{m} divides \boldsymbol{n} ．（ $\boldsymbol{m} \mid \boldsymbol{n}$ ）
Corollary 16．1：If \boldsymbol{G} is finite group and $a \in G$ then ${ }_{\epsilon}(a)| | G \mid$.

Corollary 16．2：Every group of prime order is cyclic．

Thm 2．3：Fermat＇s Little Theorem（費馬小定理）
If p is a prime，$a^{p} \equiv a(\bmod p)$ for each $a \in \mathbb{Z}$ ．
Ex：In $\left(\mathrm{Z}_{5}{ }^{*}, \cdot\right), 2^{5} \equiv 2(\bmod 5)\left(\operatorname{and} 2^{4} \equiv 1(\bmod 5)\right)$.

Introduction to Number Theory

Thm 2．4：Euler＇s（Generalization）Theorem（歐拉廣義定理）
Foe each $n \in \mathbf{Z}^{+}, n>1$ ，and each $a \in Z$ ，if $\operatorname{gcd}(a, n)=1$ ，then $a^{\phi(n)} \equiv 1(\bmod n)$ ．
$\underline{\text { Ex：}} \operatorname{In}\left(U_{9}, \cdot\right), 4 \in U_{9}(4 \in \mathbb{Z}$ ，and $\operatorname{gcd}(4,9)=1)$ ，and $\phi(9)=6$ ， then $4^{\phi(n)}=4^{6} \equiv 1(\bmod 9)$ ．

Method：Check p is not a prime：Find integer a with $\operatorname{gcd}(a, p)=1$ ，if $a^{p-1} \bmod p \neq 1$ ， then p is not a prime．

Thm 17．13：A finite field \boldsymbol{F} has order $\boldsymbol{p}^{\boldsymbol{t}}$ ，where \boldsymbol{p} is a prime and $t \in \mathrm{Z}^{+}$．Also called GF $\left(p^{t}\right)$ ，Galois Field（有限場，高斯有限場）．

Computer Science and Information Engineering National Chi Nan University

The Principle and Application of Secret Sharing

Dr．Justie Su－Tzu Juan

Lecture 2．Fundamental and Technology of Cryptography

§2．2 Public－Key Cryptosystem－RSA

Slides for a Course Based on the Text
1．密碼學與網路安全by 王旭正，柯宏叡
2．Discrete \＆Combinatorial Mathematics（5 ${ }^{\text {th }}$ Edition）
by Ralph P．Grimaldi
（c）Spring 2023，Justie Su－Tzu Juan

Public-Key Cryptosystem - RSA

RSA: developed in the 1970s (and patented in 1983), by
Ronald Rivest, Adi Shamir, and Leonard Adleman
Ex 16.18: Given p, q : larger primes (> 100 digits)
let $n=p q, r=(p-1)(q-1)=\phi(n)$
choose an invertible element (unit) e in $\mathbf{Z}_{r}\left(=Z_{\phi(n)}\right.$, is isomorphic to $\left.U_{n}\right)$ (choose $e \operatorname{such}$ that $\operatorname{gcd}(e, r)=1)$
Encryption $E: Z_{n} \rightarrow Z_{n}: E(M)=M^{e} \bmod n=C(E x 14.16)$
Decryption $D: Z_{n} \rightarrow Z_{n}=$?
Sol.
Let $d=e^{-1}$ in $\mathbf{Z}_{r}($ use Euclidean algorithm (as in Ex 14.13))
Claim: $D(C)=C^{d} \bmod n=M$

Public-Key Cryptosystem - RSA

Sol. Let $d=e^{-1}$ in Z_{r} (use Euclidean algorithm (as in Ex 14.13))
Claim: $D(C)=C^{d} \bmod n=M$
Proof.
Since $d=e^{-1}$ in $\mathbb{Z}_{r} \Rightarrow e d \bmod \phi(n)=1$
$\Rightarrow e d=k \phi(n)+1$ for some $k \in Z$
Since only $p+q-1$ possibilities for failure, say M is a unit in Z_{n}
$\because\left(U_{n}, \cdot\right)$ forms an abelian group of order $\phi(n)$ (by Ex 16.4)
$\therefore M^{\phi(n)}=1$ (by $\S 16.3$ ex. 8)
$\Rightarrow C^{d}=M^{e d}(\bmod n)$, and $M^{e d}=M^{k \phi(n)+1}=\left(M^{\phi(n)}\right)^{k} M^{1} \equiv M(\bmod n)$
i.e. $M^{e d} \bmod n=M($ Euler's Thm. as $£ 16.3$ ex. 13)

Public-Key Cryptosystem - RSA

- Programming Homework \#1: (3/21) Implement the RSA.

Public-Key Cryptosystem - RSA

Ex 16.18: $p=61, q=127, n=p q=7747, r=(p-1)(q-1)=\phi(n)=7560$ choose an invertible element $e=17$ in $Z_{r}\left(=Z_{\phi(n)}\right)$ The plaintext = "INVEST IN BONDS"

1. Encryption :
$\begin{array}{lcccccccccccccccccccccccccc}\text { A } & \text { B } & \text { C } & \text { D } & \text { E } & \text { F } & \text { G } & \text { H } & \text { I } & \text { J } & \text { K } & \text { L } & \text { M } & \text { N } & \text { O } & \text { P } & \text { Q } & \text { R } & \text { S } & \text { T } & \text { U } & \text { V } & \text { W } & \text { X } & \text { Y } & \text { Z } \\ 00 & 01 & 02 & 03 & 04 & 05 & 06 & 07 & 08 & 09 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25\end{array}$
I N V E S T I I N B O N D S X
$\Rightarrow 0813210418190813011413031823$
$0813{ }^{17} \bmod 7747=2169$
$2104{ }^{17} \bmod 7747=0628 \quad 1819{ }^{17} \bmod 7747=5540$
$\mathbf{0 8 1 3}{ }^{17} \bmod 7747=2169 \quad 0114^{17} \bmod 7747=6560$
$1303{ }^{17} \bmod 7747=6401 \quad 1823{ }^{17} \bmod 7747=4829$
\Rightarrow Ciphertext = 2169062855402169656064014829

Public-Key Cryptosystem - RSA

Ex 16.18: $p=61, q=127, n=p q=7747, r=(p-1)(q-1)=\phi(n)=7560$ choose an invertible element $e=17$ in $Z_{r}\left(=Z_{\phi(n)}\right)$ The plaintext = "INVEST IN BONDS"

2. Decryption :

let $d=e^{-1}$ in $Z_{7560}=3113$
Ciphertext = 2169062855402169656064014829
$2169^{3113} \bmod 7747=0813$
$0628^{3113} \bmod 7747=2104$
$\Rightarrow 0813210418190813011413031823$

| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
| :--- |
| 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |

0813210418190813011413031823
\Rightarrow I NV E S T I N B O N D S X
(c) Spring 2023, Justie Su-Tzu Juan

Public-Key Cryptosystem - RSA

Remark: 1. Public: (n, e), secret: (p, q, r, d)
2. Find $r \Leftrightarrow$ find $\boldsymbol{p}, \boldsymbol{q}$
3. Find p, q, prime factors of \boldsymbol{n} is hard, and this is what makes this system so much secure than the other.
4. More digits of $p, q \Rightarrow$ more secure.

Sol. (2.)
(\Leftarrow) trivial

$$
\begin{gathered}
(\Rightarrow) p+q=p q-(p-1)(q-1)+1=n-\phi(n)+1=n-r+1 \\
p-q=\sqrt{(p-q)^{2}}=\sqrt{(p-q)^{2}+4 p q-4 p q}=\sqrt{(p+q)^{2}-4 p q} \\
=\sqrt{(p+q)^{2}-4 n}=\sqrt{(n-r+1)^{2}-4 n} . \\
p=(1 / 2)\left[(n-r+1)+\sqrt{(n-r+1)^{2}-4 n}\right] \\
q=(1 / 2)\left[(n-r+1)-\sqrt{(n-r+1)^{2}-4 n}\right] .
\end{gathered}
$$

Public-Key Cryptosystem - RSA

Key Generation:

1. Select $p, q \quad$ (p and q both are prime)
2. Calculate $n=p q$
3. Calculate, $r=\phi(n)=(p-1)(q-1)$
4. Select integer e such that $\operatorname{gcd}(e, r)=1$
5. Calculate $d=e^{-1}$ in Z_{r}
6. Public $\{e, n\}$
7. Keep key $\{d\}$

Public-Key Cryptosystem - RSA

Encryption:

Input: Plaintext $\quad M<n$
Output: Ciphertext $\quad C=M^{e} \bmod n$

Decryption:

Input: Ciphertext C
Output: Plaintext $\quad M=C^{d} \bmod n$

RSA Signature Algorithm

Sign:

Input: Plaintext

$$
\begin{aligned}
& M<n \\
& S=M^{d} \bmod n
\end{aligned}
$$

Verify:
Input: Signature S
Output: Varification $\quad M=S^{e} \bmod n$

How to select the parameters in RSA

How to select \boldsymbol{n} :

1. p and q must be Strong Primes.
2. The difference between p and q must be large (more than a few bits).
3. $\operatorname{gcd}(p-1, q-1)$ must be small.
4. p and q should be so large that the decomposition factor N is computationally impossible

How to select e :

1. Can't be too small.
2. $\epsilon(e)=r=\phi(n)$.
3. $e^{-1}=d>n^{1 / 4}$.

How to select the parameters in RSA

Def: p is called a Strong Prime if

1. There are two big primes p_{1}, p_{2} such that $p_{1} \mid p-1$ and $p_{2} \mid p+1$.
2. There are four big primes $r_{1}, s_{2}, r_{2}, s_{2}$ such that $r_{1}\left|p_{1}-1, s_{1}\right| p_{1}+1$, $r_{2} \mid p_{2}-1$ and $s_{2} \mid p_{2}+1$.

