Computer Science and Information Engineering National Chi Nan University **The Principle and Application of Secret Sharing** Dr. Justie Su-Tzu Juan

Lecture 1. Overview of Cryptography

§ 1.2 Contemporary Cryptography (2)

Slides for a Course Based on the Text 近代密碼學及其應用 by 賴溪松、韓亮、張真誠

Key Distribution System

- Def: Key Distribution System (or Protocol), KDS (金鑰分配協定)
 - Conference-Key Distribution System, CKDS (會議金鑰分配系統)
 - Trusted-Key Distribution Center, TKDC (可信賴的金鑰分配中心)

Public-Key Distribution System

- Public-Key Distribution System, PKDS (公開金鑰分配系統) for sending messages is a framework which allows one party to securely send a message to a second party without the need to exchange or distribute encryption keys.
 - <u>**Ex</u>**: Using exponentiation function.</u>

Key generation : All participants known big prime *p*, and primitive root *g*.

Key distribution :

 U_{i} One-way function with (1) Randomly (2) $y_i = g^{x_i} \mod p$ commutative select x_i (3) Randomly select x_i (4) $y_i = g^{x_j} \mod p$ (5) Calculate (5) Calculate $z_{ii} = y_i^{x_j} \mod p$ $z_{ii} = y_i^{x_i} \mod p$ 3 (6) $E_{7,0}(M)$

Three-Pass Protocol

- A three-pass protocol (三遍通訊協定)
 - **<u>Ex</u>**: Using exponentiation function.

<u>Key generation</u> : All participants known big prime *p*, and primitive root *g*, and each participant U_i has their own secret key x_i and x_i^{-1} (that is, $x_i x_i^{-1} \equiv 1 \mod (p-1)$).

Key distribution : U_j U_j OPC (XOR-operation)
can not be
used here.(1) $y_1 = M^{x_i} \mod p$ $(2) y_2 = y_1^{x_j} \mod p$ $M = y_3^{x_j^{-1}} \mod p$

EIGamal Encryption System

Computer Science and Information Engineering National Chi Nan University **The Principle and Application of Secret Sharing** Dr. Justie Su-Tzu Juan

Lecture 2. Fundamental and Technology of Cryptography

2.1 Introduction to Number Theory

Slides for a Course Based on the Text 亦確認的解放之合い工作工、词字常

1. 密碼學與網路安全 by 王旭正、柯宏叡

2. Discrete & Combinatorial Mathematics (5th Edition)

by Ralph P. Grimaldi

(c) Spring 2023, Justie Su-Tzu Juan

• Thm 2.1: Modular Arithmetic (模數運算) (1) $(x + y) \mod n = [(x \mod n) + (y \mod n)] \mod n$ (2) $(x - y) \mod n = [(x \mod n) - (y \mod n)] \mod n$ (3) $(x \times y) \mod n = [(x \mod n) \times (y \mod n)] \mod n$ - **Ex**: $[75 \times (68 + 3)] \mod 37 = [75 \times 71] \mod 37 = 5325 \mod 37 = 34$ $[(75 \times 68) + (75 \times 3)] \mod 37 = [(75 \times 68) \mod 37 + (75 \times 3) \mod 37] \mod 37$ $= [(75 \mod 37 \times 68 \mod 37) \mod 37 + (75 \mod 37 \times 3 \mod 37) \mod 37] \mod 37$ $= [(1 \times 31) \mod 37 + (1 \times 3) \mod 37] \mod 37$ $= (31 + 3) \mod 37$ = 34

Def 14.7: $n \in \mathbb{Z}^+$, n > 1, $\forall a, b \in \mathbb{Z}$,

a is congruent to (同餘) *b* modulo $n \Leftrightarrow a \equiv b \pmod{n} \Leftrightarrow a \equiv_n b$ if $n|(a - b) \iff a = b + kn$ for some $k \in \mathbb{Z}$)

Ex 14.12: $17 \equiv 2 \pmod{5}$; $-7 \equiv -49 \pmod{6}$; $11 \equiv -5 \pmod{8}$.

<u>Thm 14.11</u>: Congruence modulo *n* is an equivalence relation on Z. (reflexive, symmetric, transitive)

$$[0] = \{..., -2n, -n, 0, n, 2n, ...\} = \{0 + nx \mid x \in Z\}$$

$$[1] = \{..., -2n + 1, -n + 1, 1, n + 1, 2n + 1, ...\} = \{1 + nx \mid x \in Z\}$$

$$[2] = \{..., -2n + 2, -n + 2, 2, n + 2, 2n + 2, ...\} = \{2 + nx \mid x \in Z\}$$

$$:$$

$$[n - 1] = \{..., -n - 1, -1, n - 1, 2n - 1, 3n - 1, ...\} = \{(n - 1) + nx \mid x \in Z\}$$

$$ef: \mathbb{Z}_{n} = \{[0], [1], ..., [n - 1]\} = \{0, 1, 2, ..., n - 1\}$$

$$[a] + [b] = [a + b], [a] \cdot [b] = [a \cdot b]$$

<u>**Def</u>: Simplify, say [a] as a.</u>**

Def 14.1: (R, \oplus, \odot) is a ring, where **R**: a nonempty set $\oplus: R \times R \to R, \ \odot: R \times R \to R:$ two closed binary operations and $\forall a, b, c \in R$ satisfied: a) $a \oplus b = b \oplus a$ Commutative Law of \oplus **b**) $a \oplus (b \oplus c) = (a \oplus b) \oplus c$ Associative Law of ⊕ c) $\exists z \in R$ s.t. $a \oplus z = z \oplus a = a \forall a \in R$ Existence of an identity for \oplus d) $\forall a \in R, \exists b \in R \text{ s.t. } a \oplus b = b \oplus a = z \text{ Existence of inverses under } \oplus$ e) $a \odot (b \odot c) = (a \odot b) \odot c$ Associative Law of \odot f) $a \odot (b \oplus c) = (a \odot b) \oplus (a \odot c)$ Distributive Laws of \odot over \oplus $(b \oplus c) \odot a = (b \odot a) \oplus (c \odot a)$

Def 14.2: Let $(R, +, \cdot)$ be a ring:

- a) If $ab = ba \forall a, b \in R$, then R is called a commutative ring.
- b) If $\forall a, b \in R, ab = z \Rightarrow a = z$ or b = z, then *R* is said to have no

proper divisors of zero.

c) If $\exists u \in R$ s.t. $u \neq z$ and $au = ua = a \forall a \in R$, then call u a unity, or multiplicative identity of R. Here R is called a ring with unity.

Ex: In $Z_5 = \{0, 1, 2, 3, 4\}$, define + and \cdot as Table (i), (ii)

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

	•	0	1	2	3	4
	0	0	0	0	0	0
	1	0	1	2	3	4
	2	0	2	4	1	3
	3	0	3	1	4	2
i)	4	0	4	3	2	1

 Step 1: closed
 (i) 4 4 0 1

 Step 2: (a): (i) is symmetric.

Sol.

(b), (e): 125 equalities must test.

(c): additive identity = 0

(d): additive inverse: -0 = 0, -1 = 4, -2 = 3, -3 = 2, -4 = 1

(i

Step 3: (ii) is symmetric

Step 4: (f): 125 equalities must test.

Step 5: unity = 1

(c) Spring 2023, Justie Su-Tzu Juan

Def 14.3: *R* be a ring with unity *u*. If for *a* ∈ *R*, ∃ *b* ∈ *R* s.t. *ab* = *ba* = *u*, then
① *b* is called a multiplicative inverse of *a*, and
② *a* is called a unit of *R*.

<u>Note</u>: The multiplicative inverse are unique, say a^{-1} .

<u>Def</u>: Let *R* be a commutative ring with unity, Then a) *R* is called an **integral domain** if *R* has no proper divisors of zero.

b) *R* is called a field if every nonzero element of *R* is a unit.

Ex: In $Z_5 = \{0, 1, 2, 3, 4\}, 1^{-1} = 1, 2^{-1} = 3, 3^{-1} = 2, 4^{-1} = 4; 1, 2, 3, 4$ are units of Z_5 . Z_5 is an integral domain and field.

<u>Thm 14.12</u>: $\forall n \in \mathbb{Z}^+, n > 1, (\mathbb{Z}_n, +, \cdot)$ is a commutative ring with unity 1 and additive identity 0.

<u>Thm 14.13</u>: Z_n is a field. $\Leftrightarrow n$ is a prime.

<u>Thm 14.14</u>: In Z_n , [*a*] is a unit. \Leftrightarrow gcd(*n*, *a*) = 1.

<u>Ex</u>: In Z_{10} , who are units? Sol. The units are $\{1, 3, 7, 9\}$

Ex 14.13: Find [25]⁻¹ in Z₇₂. Sol. : $gcd(25, 72) = 1 \implies 72 = 2(25) + 22$, 25 = 1(22) + 3, 22 = 7(3) + 1. $\Rightarrow 1 = 22 - 7(3) = 22 - 7(25 - 22) = -7(25) + 8(22)$ = -7(25) + 8[72 - 2(25)] = 8(72) - 23(25) $\therefore 1 = 8(72) - 23(25)$ \Rightarrow 1 \equiv (-23)(25) (mod 72) $\Rightarrow 1 \equiv (72 - 23)(25) \pmod{72}$ so [1] = [49][25] and $[25]^{-1} = [49]$ in \mathbb{Z}_{72}

Thm 2.2: Euler's totient function (歐拉函數)For $n \in \mathbb{Z}^+$, $n \ge 2$, Let $\phi(n) = |\{m \in \mathbb{Z}^+ \mid \gcd(m, n) = 1, 1 \le m < n\}|$ $\phi(n) = n \prod_{p|n, p \text{ is a prime}} (1 - (1/p))$ $(\phi(n) = \prod_{i=1, t} p_i^{e_i - 1}(p_i - 1), \text{ where } n = p_1^{e_1} p_2^{e_2} \dots p_t^{e_t}.)$

Ex: Let $n = 36 = 2^2 3^2$, find $\phi(n)$. Sol. $\phi(36) = 2^{(2-1)} \cdot (2-1) \cdot 3^{(2-1)} \cdot (3-1) = 2 \cdot 1 \cdot 3 \cdot 2 = 12$.

Def 16.1:

G: a nonempty set; •: a binary operation of G then (G, •) is called a group ≡
① ∀ a, b ∈ G, a • b ∈ G (Closure of G under •)
② ∀ a, b, c ∈ G, a • (b • c) = (a • b) • c (The Associative Property)
③ ∃ e ∈ G, s.t. a • e = e • a = a, ∀ a ∈ G (The Existence of an Identity)
④ ∀ a ∈ G, ∃ b ∈ G s.t. a • b = b • a = e (Existence of Inverses)
If ⑤ ∀ a, b ∈ G, a • b = b • a hold, then G is called a commutative (or abelian) group.

<u>Note</u>: ① If $(R, +, \cdot)$ is a ring ⇒ (R, +) is an abelian group. ② If $(F, +, \cdot)$ is a field ⇒ (F, +) is an abelian group. (F^*, \cdot) is an abelian group, where $F^* = F - \{0\}$, 0: the zero element of $(F, +, \cdot)$. $\forall a, b, c \in F, a \cdot (b + c) = a \cdot b + a \cdot c$ <u>Ex 16.2</u>: ① $\forall n \in Z^+, n > 1, (Z_n, +)$ is an abelian group.

2 If *p* is a prime, (\mathbb{Z}_p^*, \cdot) is an abelian group. $(\mathbb{Z}_p^* = \mathbb{Z}_p - \{[0]\})$

<u>Def 16.2</u>: • \forall group *G*, the number of elements in *G* = order of *G*, denoted by |G|.

Ex 16.3: $\forall n \in \mathbb{Z}^+$, $|(\mathbb{Z}_n, +)| = n$, while $|(\mathbb{Z}_p^*, \cdot)| = p - 1 \forall$ prime *p*.

Note: ① $\forall n \in \mathbb{Z}^+, n > 1$, if $U_n = \{a \in (\mathbb{Z}_n, +, \cdot) \mid a \text{ is a unit}\}$ $= \{a \in \mathbb{Z}^+ \mid 1 \le a \le n - 1 \text{ and } \gcd(a, n) = 1\}$ then (U_n, \cdot) is an abelian group under the multiplication modulo n. ② (U_n, \cdot) is called the group of unit for the ring $(\mathbb{Z}_n, +, \cdot)$ ③ $|U_n| = \phi(n) = |\{a \in \mathbb{Z}^+ \mid 1 \le a \le n - 1 \text{ and } \gcd(a, n) = 1\}|$ $= n \cdot \prod_{p \mid n} (1 - 1/p)$

E	Ex 16.4: In $(Z_9, +, \cdot)$, let $U_9 = \{a \in Z_9 \mid a \text{ is a unit in } Z_9\}$							
	$= \{a \in \mathbb{Z}_9 \mid a^{-1} \text{ exists}\} = \{1, 2, 4, 5, 7, 8\}$							
								$= \{ a \in \mathbb{Z}^+ \mid 1 \le a \le 8 \text{ and } \gcd(a, 9) = 1 \}$
		1	2	1	5	7	8	$ \Rightarrow U_9 = \phi(9) = 9(1 - 1/3) = 6$
	•	T	4	4	5	/	ð	$\Rightarrow \oplus U_9$ is closed under the multiplication modulo 9.
	1	1	2	4	5	7	8	
	2	2	4	8	1	5	7	② 1 is the identity element.
	4	4	8	7	2	1	5	③ each element has an inverse in U_9 .
	5	5	1	2	7	8	4	$(: (Z_9, +, \cdot))$ is a ring $\Rightarrow (U_9, \cdot)$ is associative under \cdot
	7	7	5	1	8	4	2	i.e. $\forall a, b, c \in U_9, a \cdot (b \cdot c) = (a \cdot b) \cdot c$
	8	8	7	5	4	2	1	$\Rightarrow (U_9, \cdot) \text{ is an (abelian) group of order 6.}$

<u>Def 16.4</u>: (*G*, \circ) and (*H*, *) are groups, *f*: *G* \rightarrow *H* is called a (group) homomorphism if $\forall a, b \in G, f(a \circ b) = f(a) * f(b)$

<u>Def 16.5</u>: If $f: (G, \circ) \to (H, *)$ is a homomorphism, f is called an isomorphism if it is 1-1 and onto, and G, H are said to be isomorphic groups.

<u>Def</u>: If every element of *G* is a power of *i*, then we say that *i* generates *G*. Denoted by $G = \langle i \rangle$.

<u>Def 16.6</u>: A group *G* is called cyclic if $\exists x \in G$ s.t. $G = \langle x \rangle$, i.e. $\forall a \in G, a = x^n$ for some $n \in \mathbb{Z}$.

Ex 16.13: (a) $H = (\mathbb{Z}_4, +)$ is cyclic. (`.' the operation is addition.) Sol.

- $1 \cdot [3] = [3], 2 \cdot [3] = [3] + [3] = [2]$ (.:. multiples instead of powers)
- $3 \cdot [3] = [1], 4 \cdot [3] = [0] \Longrightarrow H = \langle [3] \rangle (= \langle [1] \rangle)$

i.e. [1], [3] generate *H*.

Ex 16.13: (b) $(U_9) = (\{1, 2, 4, 5, 7, 8\}, \cdot)$ in Ex16.4 is cyclic. Sol. $2^1 = 2, 2^2 = 4, 2^3 = 8, 2^4 = 7, 2^5 = 5, 2^6 = 1$ $\therefore U_9 = \langle 2 \rangle$ $\therefore 5^1 = 5, 5^2 = 7, 5^3 = 8, 5^4 = 4, 5^5 = 2, 5^6 = 1$ $\therefore U_9 = \langle 5 \rangle$ Ever $T = (T^*)$ is evalue.

Ex: $T = (\mathbb{Z}_5^*, \cdot)$ is cycle: Sol. $2^1 = 2, 2^2 = 4, 2^3 = 3, 2^4 = 1$. 2 generate *T*.

<u>Def</u>: Given a group *G*, let $a \in G$, the set $S = \{a^k \mid k \in Z\}$ is called the subgroup generated by *a* and is designated by $\langle a \rangle$.

Ex 16.14: Define $f: (U_9, \cdot) \to (\mathbb{Z}_6, +) (= (\mathbb{Z}_{\phi(n)}, +))$ as follows: $f(1) = [0], f(2) = [1], f(4) = [2], f(8) = f(2^3) = [3], f(5) = f(2^5) = [5], f(7) = f(2^4) = [4].$ i.e. $\forall a \in U_9 = \langle 2 \rangle$, say $a = 2^k$, for some $0 \le k \le 5$ then define $f(a) = f(2^k) = [k]$ f is isomorphism and (U_9, \cdot) and $(\mathbb{Z}_6, +)$ are isomorphic.

<u>Def 16.7</u>: If G is a group and $a \in G$,

(1) $\mathbf{a}(a) \equiv |\langle a \rangle|$, the order of $\langle a \rangle$.

② If $|\langle a \rangle|$ is infinite, we say that *a* has infinite order.

<u>Remark</u>: ① If $|\langle a \rangle| = 1$, then a = e.

- ② If |⟨a⟩| is finite, and a ≠ e, then ⟨a⟩ = {a, a², ..., aⁿ}, where n be the smallest positive integer s.t. aⁿ = e.
- (a) can also be defined as the strate positive integer n s.t. $a^n = e^{24}$

```
Thm 16.6: Let a \in G with \mathfrak{s}(a) = n.

If k \in \mathbb{Z} and a^k = e, then n \mid k.

Proof.

\forall k \in \mathbb{Z}, \exists q \in \mathbb{Z}, r \in \mathbb{Z}^+ where 0 \le r < n s.t. k = qn + r

\therefore e = a^k = a^{qn+r} = (a^n)^q (a^r) = (e^q)(a^r) = a^r

If 0 < r < n, it contradict the definition of \mathfrak{s}(a) = n

\therefore r = 0 \Rightarrow k = qn.

i.e. n \mid k
```

<u>Thm 16.7</u>: Let *G* be a cyclic group.
(a) If |*G*| is infinite, then *G* is isomorphic to (Z, +)
(b) If |*G*| = *n*, where *n* > 1, then *G* is isomorphic to (Z_n, +)

Thm 16.9: Lagrange's Theorem

If G is a finite group of order n with H a subgroup of order m, then m divides n. (m|n)

<u>Corollary 16.1</u>: If *G* is finite group and $a \in G$ then $\mathfrak{G}(a) \mid |G|$.

<u>Corollary 16.2</u>: Every group of prime order is cyclic.

<u>Thm 2.3</u>: Fermat's Little Theorem (費馬小定理) If p is a prime, $a^p \equiv a \pmod{p}$ for each $a \in \mathbb{Z}$.

<u>Ex</u>: In (\mathbb{Z}_5^*, \cdot) , $2^5 \equiv 2 \pmod{5}$ (and $2^4 \equiv 1 \pmod{5}$).

Thm 2.4: Euler's (Generalization) Theorem (歐拉廣義定理) Foe each $n \in \mathbb{Z}^+$, n > 1, and each $a \in \mathbb{Z}$, if gcd(a, n) = 1, then $a^{\phi(n)} \equiv 1 \pmod{n}$.

<u>Ex</u>: In (U_9, \cdot) , $4 \in U_9$ ($4 \in \mathbb{Z}$, and gcd(4, 9) = 1), and $\phi(9) = 6$, then $4^{\phi(n)} = 4^6 \equiv 1 \pmod{9}$.

Method: Check *p* is not a prime: Find integer *a* with gcd(a, p) = 1, if $a^{p-1} \mod p \neq 1$, then *p* is not a prime.

<u>Thm 17.13</u>: A finite field *F* has order p^t , where *p* is a prime and $t \in \mathbb{Z}^+$. Also called GF(p^t), Galois Field (有限場, 高斯有限場).

Computer Science and Information Engineering National Chi Nan University **The Principle and Application of Secret Sharing** Dr. Justie Su-Tzu Juan

Lecture 2. Fundamental and Technology of Cryptography

2.2 Public-Key Cryptosystem - RSA

Slides for a Course Based on the Text 1. 密碼學與網路安全 by 王旭正、柯宏叡

2. Discrete & Combinatorial Mathematics (5th Edition)

by Ralph P. Grimaldi

(c) Spring 2023, Justie Su-Tzu Juan

RSA: developed in the 1970s (and patented in 1983), by **Ronald Rivest, Adi Shamir, and Leonard Adleman** Ex 16.18: Given p, q: larger primes (> 100 digits) let n = pq, $r = (p - 1)(q - 1) = \phi(n)$ choose an invertible element (unit) *e* in Z_r (= $Z_{d(n)}$, is isomorphic to U_n) (choose *e* such that gcd(e, r) = 1) Encryption $E : \mathbb{Z}_n \to \mathbb{Z}_n : E(M) = M^e \mod n = C$ (Ex 14.16) **Decryption** $D: \mathbb{Z}_n \to \mathbb{Z}_n = ?$

Sol.

Let $d = e^{-1}$ in \mathbb{Z}_r (use Euclidean algorithm (as in Ex 14.13)) <u>Claim:</u> $D(C) = C^d \mod n = M$

Sol. Let $d = e^{-1}$ in \mathbb{Z}_r (use Euclidean algorithm (as in Ex 14.13)) Claim: $D(C) = C^d \mod n = M$ **Proof.** Since $d = e^{-1}$ in $\mathbb{Z}_r \Longrightarrow ed \mod \phi(n) = 1$ $\Rightarrow ed = k\phi(n) + 1$ for some $k \in \mathbb{Z}$ Since only p + q - 1 possibilities for failure, say M is a unit in \mathbb{Z}_{p} (U_n, \cdot) forms an abelian group of order $\phi(n)$ (by Ex 16.4) :. $M^{\phi(n)} = 1$ (by §16.3 ex. 8) $\Rightarrow C^d = M^{ed} \pmod{n}$, and $M^{ed} = M^{k \phi(n)+1} = (M^{\phi(n)})^k M^1 \equiv M \pmod{n}$ i.e. $M^{ed} \mod n = M$ (Euler's Thm. as §16.3 ex. 13)

• **Programming Homework #1**: (3/21) Implement the RSA.

Ex 16.18: p = 61, q = 127, n = pq = 7747, $r = (p - 1)(q - 1) = \phi(n) = 7560$ choose an invertible element e = 17 in $Z_r (= Z_{\phi(n)})$ The plaintext = "INVEST IN BONDS" 1. Encryption : A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 I N V E S T I N B O N D S X ⇒08 13 21 04 18 19 08 13 01 14 13 03 18 23

 $0813^{17} \mod 7747 = 2169$

 $2104^{17} \mod 7747 = 0628 \qquad 1819^{17} \mod 7747 = 5540$

 $0813^{17} \bmod 7747 = 2169 \qquad 0114^{17} \bmod 7747 = 6560$

 $1303^{17} \bmod 7747 = 6401 \qquad 1823^{17} \bmod 7747 = 4829$

⇒ Ciphertext = 2169 0628 5540 2169 6560 6401 4829

```
Ex 16.18: p = 61, q = 127, n = pq = 7747, r = (p - 1)(q - 1) = \phi(n) = 7560
      choose an invertible element e = 17 in Z_r (= Z_{d(n)})
      The plaintext = "INVEST IN BONDS"
 2. Decryption :
     let d = e^{-1} in \mathbb{Z}_{7560} = 3113
     Ciphertext = 2169 0628 5540 2169 6560 6401 4829
       2169^{3113} \mod{7747} = 0813 \qquad \qquad 0628^{3113} \mod{7747} = 2104
   \Rightarrow0813 2104 1819 0813 0114 1303 1823
      A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
      00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
     08 13 21 04 18 19 08 13 01 14 13 03 18 23
   \Rightarrow I NV E S T I N B
                                 () N
```

(c) Spring 2023, Justie Su-Tzu Juan

<u>Remark</u>: 1. Public: (n, e), secret: (p, q, r, d)

- **2.** Find $r \Leftrightarrow \text{find } p, q$
- 3. Find *p*, *q*, prime factors of *n* is hard, and this is what makes this system so much secure than the other.
- 4. More digits of $p, q \Rightarrow$ more secure.

Sol. (2.)

(⇐) trivial

$$(\Rightarrow) p + q = pq - (p - 1)(q - 1) + 1 = n - \phi(n) + 1 = n - r + 1$$

$$p - q = \sqrt{(p - q)^2} = \sqrt{(p - q)^2 + 4pq - 4pq} = \sqrt{(p + q)^2 - 4pq}$$

$$= \sqrt{(p + q)^2 - 4n} = \sqrt{(n - r + 1)^2 - 4n}.$$

$$p = (1/2)[(n - r + 1) + \sqrt{(n - r + 1)^2 - 4n}]$$

$$q = (1/2)[(n - r + 1) - \sqrt{(n - r + 1)^2 - 4n}].$$

Key Generation:

- 1. Select *p*, *q* (*p* and *q* both are prime)
- 2. Calculate n = pq
- 3. Calculate, $r = \phi(n) = (p 1)(q 1)$
- 4. Select integer *e* such that gcd(e, r) = 1
- 5. Calculate $d = e^{-1}$ in Z_r
- 6. Public {*e*, *n*}
- 7. Keep key $\{d\}$

Encryption: Input: Plaintext M < n**Output**: Ciphertext $C = M^e \mod n$

Decryption:

Input: Ciphertext \boldsymbol{C} **Output**: Plaintext $M = C^d \mod n$

RSA Signature Algorithm

Sign: **Input**: Plaintext M < n**Output**: Signature $S = M^d \mod n$

Verify:

Input: Signature S **Output**: Varification $M = S^e \mod n$

How to select the parameters in RSA

How to select *n*:

- 1. *p* and *q* must be Strong Primes.
- **2.** The difference between *p* and *q* must be large (more than a few bits).
- 3. gcd(p-1, q-1) must be small.
- **4.** *p* and *q* should be so large that the decomposition factor *N* is computationally impossible

How to select e:

- 1. Can't be too small.
- 2. $o(e) = r = \phi(n)$.
- 3. $e^{-1} = d > n^{1/4}$.

How to select the parameters in RSA

<u>Def</u>: *p* is called a **Strong Prime** if

There are two big primes p₁, p₂ such that p₁|p - 1 and p₂|p + 1.
 There are four big primes r₁, s₂, r₂, s₂ such that r₁|p₁ - 1, s₁|p₁ + 1, r₂|p₂ - 1 and s₂|p₂ + 1.

(c) Spring 2023, Justie Su-Tzu Juan