Computer Science and Information Engineering National Chi Nan University

The Principle and Application of Secret Sharing

Dr．Justie Su－Tzu Juan

Lecture 1．Overview of Cryptography

§ 1．2 Contemporary Cryptography
Slides for a Course Based on the Text
近代密碼學及其噟用
by 賴溪松，韓亮，張真誠

Goals of Cryptography

－SECRECY（秘密性）（or CONFIDENTIALITY，or PRIVACY）
－Keep information secret
－AUTHENTICATION（鑑定性）
－Receiver can verify who sender was
－INTEGRITY（完整性）
－Detect modified messages
－NON－REPUDIATION（不可否認性）
－Sender cannot later falsely deny sending a message．（Receiver cannot falsely deny receiving it．）

Cryptography Systems

Cryptography Systems（密碼系統）

－When $k_{1}=k_{2}$ ：Symmetric Key Cryptosystem（對稱金錀密碼系統），One－key Cryptosystem（單一金錀密碼系統），Private Key Cryptosystem（秘密金錀密碼系統 ），Conventional cryptosystem（傳統密碼系統）
－When $k_{1} \neq k_{2}$ ：Asymmetric Cryptosystem（非對稱密碼系統），Two Key Cryptosystem（雙金錀密碼系統），Public Key Distribution System（公開金錀分配系統）
（c）Spring 2023，Justie Su－Tzu Juan

Types of Attacks

－Ciphertext－Only Attack（密文攻擊法）

－Known－Plaintext Attack（已知明文攻擊法）

－Chosen－Text Attack（選擇文攻擊法）
－Chosen－Plaintext Attack
－Chosen－Ciphertext Attack

Symmetric Key Cryptosystem

Symmetric Key Cryptosystem:

- Advantage: Secrecy, Authentication, Integrity
- Disadvantage: 1. Need secure channel

2. Too many keys required $(n(n-1) / 2$, for n participants.)
3. No "Non-repudiation"

Asymmetric Key Cryptosystem

Asymmetric Cryptosystem（1976，Diffie and Hellman）：

－Advantage：Secrecy，Integrity，Non－repudiation，Only one key for each participant．
－If Commutative $\left(D_{k 2}\left(E_{k 1}(M)\right)=M=E_{k 1}\left(D_{k 2}(M)\right)\right)$ ：Non－repudiation（Digital Signature，數位簽章）
－Disadvantage：Calculations are complex and time－consuming （RSA takes 1000 times longer than DES）

Security Types

By Shannon， 1949.
－Theoretical Security or Perfect Security（理論安全）：
－One－Time Pad
－Stream Cryptography（not really）
－Practical Security or Computational Security（實際安全）：
－Work Characteristic $W(n)>10^{30}$
－Historical Work Characteristic $W_{h}(n)>10^{30}$
－Ex：Each calculate need 10^{-6} second，then

	n^{5}	2^{n}	$n!$
$n=10$	0.1 sec	0.0001 sec	3.6 sec
$n=100$	$10^{4} \mathrm{sec} \approx 2.8 \mathrm{~h}$	$\approx 1024 \mathrm{sec} \approx 10^{16}$ years	$\approx 10^{186} \mathrm{sec} \approx 10^{176}$ years
$n=1000$	$10^{9} \mathrm{sec} \approx 10$ years	$\approx 10^{286}$ years	$\approx 10^{2974}$ centuries

Mathematic Problems

－Def：One－way Function（單向函數）
－It is easy to compute on every input，but hard to invert given the image of a random input．

- 逃生門
- Def：One－way Trapdoor Function（單向暗門函數）
－It is easy to compute in one direction，yet difficult to compute in the opposite direction（finding its inverse） without special information，called the＂trapdoor＂．

By IkamusumeFan－Own work，CC BY－SA 4．0， https：／／commons．wikimedia．org／w／index．php？curi $\mathrm{d}=45284265$
－有錀题的逃生門

Mathematic Problems

－Problem 1：Discrete Logarithm Problem，DLP（解離散對數問題）
－Def：given a group G ，a generator g and an element h of G ，to find the discrete logarithm to the base g of h in the group G ．
－Discrete logarithm problem is not always hard．The hardness of finding discrete logarithms depends on the groups．
－Ex：In group $\left(Z_{5}, \times\right), g=2$ ，then the discrete logarithm of 1 is 4 because $2^{4} \equiv 1 \bmod 5$ ．
－The fastest known algorithm for solving DLP is $L(p)=\exp \left\{(\ln p)^{1 / 3}(\ln (\ln p))^{2 / 3}\right\}$ ，ex： $L\left(10^{512}\right) \geq e^{38.92} \geq 8 \times 10^{16} ; L\left(10^{1024}\right) \geq e^{52.19} \geq 4.6 \times 10^{22}$
－Representative：Diffie－Hellman Key Agreement System Elgamal Public－key Cryptography Digital Signature Algorithm（DSA）

Mathematic Problems

－Problem 2：Factorization Problem，FAC（因數分解問題）
－Def：Given n ，find p and q for any two big prims p and q ，such that $n=p q$ ．
－Ex： 2851697 （＝ ）
－The fastest known algorithm for solving FAC is $T(p)=\exp \left\{C(\ln p)^{1 / 3}(\ln (\ln p))^{2 / 3}\right\}, C$ is a constant．
－DLP is a bit more difficult than FAC．
－Representative：RSA Public－key Cryptography
－Recent Usage：RSA is still the most widely used system

Mathematic Problems

－Problem 3：Knapsack Problem（迷袋問題，背包問題）
－Def：Given a set of items，each with a weight and a value，determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible．
－Let $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}, V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ ．Given an positive integer S ，find $X=\left\{x_{1}\right.$ ， $\left.x_{2}, \ldots, x_{n}\right\}$ where $x_{i} \in\{0,1\}$ for any $1 \leq i \leq n$ ，such that $\Sigma_{i=1, n} x_{i} b_{i} \leq S$ ，and $\Sigma_{i=1, n} x_{i} v_{i}$ as large as possible．
－Ex：$B=\{2,5,7,16,19,25,32,38,40,47\}, S=100$ ．
－Representative：Merkle－Hellman Public－key Cryptosystem
－Recent Usage：The Knapsack Problem has largely been cracked and is currently under－appreciated．${ }_{(c)}$ Spring 2023, Justie Su－TuU Juan

Mathematic Problems

－Problem 4：Elliptic Curve Cryptosystem，ECC（橢圓曲線密碼系統）
－Def：An approach to public－key cryptography based on the algebraic structure of elliptic curves over finite fields．
－Def：Elliptic Curves over Z_{p} ：In $\mathrm{E}_{p}(a, b)$ ，means $y^{2}=x^{3}+a x+b$ in Z_{p}（or say $\overline{\mathrm{GF}}(p))$ and $\left(4 a^{3}+27 b^{2}\right) \neq 0 \bmod p$ ．If $P=\left(x_{P}, y_{P}\right), Q=\left(x_{Q}, y_{Q}\right)$ ，define O is the identity，the invers of $P=-P=\left(x_{P},-y_{P}\right)$ ，and $R=P+Q=\left(x_{R}, y_{R}\right)$ is determined by the following rules：

$$
\begin{aligned}
& x_{R} \equiv\left(\lambda^{2}-x_{P}-x_{Q}\right) \bmod p \\
& y_{R} \equiv\left(\lambda\left(x_{P}-x_{R}\right)-y_{P}\right) \bmod p
\end{aligned}
$$

where $\lambda \equiv\left(y_{Q}-y_{P}\right) /\left(x_{Q}-x_{P}\right) \bmod p$ ，if $P \neq Q$ ；

$$
\left(2 x_{P}^{2}+a\right) / 2 y_{P} \bmod p, \text { if } P=Q .
$$

$P+Q+R=0$

$P+Q+Q=0$

$P+Q+0=0$

$P+P+0=0$

Multiplication is defined as repeated addition．

By SuperManu－Own work based on Image：ECClines．png by en：User：Chas zzz brown，CC BY－SA 3．0， https：／／commons．wikimedia．org／w／index．php？curid＝2970559

Mathematic Problems

－Problem 4：Elliptic Curve Cryptosystem，ECC（橢圓曲線密碼系統）
－Ex：Let $p=211, G=(2,2)$ in $\mathrm{E}_{p}(0,-4): 240 G=O ; 121(2,2)=(115,48) ; 203(2,2)=$ （130，203）．Knowing $k G$ and G, p ，it is difficult to get k ．
－ECC allows smaller keys compared to non－EC cryptography（based on plain Galois fields）to provide equivalent security．
－Representative：Analog of Diffie－Hellman Key Exchange
Elliptic Curve Encryption／Decryption

IEEE P1363

Many standards are being developed．
－Recent Usage：ECC is considered to have development potential in the future．

Exponentiation function

－Def：Let (G, \cdot) is a finite group，and $g \in G$ ．The exponentiation function（指數函數）$E_{x}(g)$ is a function in G such that for any x in $G, E_{x}(g)=g^{x} \in G$ ．In $G=$ $Z_{p}=\{0,1,2, \ldots, p-1\}, E_{g}(x)=g^{x} \bmod p$ ．It has the following properties

- 1．Periodically（週期性）：$\langle g\rangle=\left\{g^{0}, g^{1}, g^{2}, \ldots\right\} \subseteq Z_{p}$ ，must periodically．
- 2．For any minimum positive integer T such that $g^{T}=0, T$ is called the order（序）of g ．
－3．$T \mid p-1$ by Fermat＇s Theorem．
－4．If $g \in Z_{p}$ with order $T=p-1, g$ is called the primitive root（原根）of（ Z_{p}, ）．If $\operatorname{gcd}(a, p-1)=1, g^{a}$ is also a primitive root．
－5．The number of the primitive root of $\left(Z_{p}, \cdot\right)=\phi(p-1)$ ，Euler Totient Function．
- 6．Commutative（交换律）：$E_{x}\left(E_{y}(g)\right)=E_{x}\left(g^{y}\right)=g^{y x}=g^{x y}=E_{y}\left(g^{x}\right)=E_{y}\left(E_{x}(g)\right)$
- 7．Asymmetric（非對稱性）：$E_{x}(-g)=(-g)^{x}=(-1)^{x} g^{x}=(-1)^{x} E_{x}(g)$

Exponentiation function

- 8．Inverse（乘法反元素）：If T is the order of g ，then $E_{x}\left(g^{-1}\right)=E_{T-x}(g)$ for any $0 \leq x<T$ ．
- 9．Multiplicity（乘法性）：$\left.E_{x}\left(g_{1}\right) E_{x}\left(g_{2}\right)\right)=g_{1}{ }^{x} g_{2}{ }^{x}=E_{x}\left(g_{1} g_{2}\right)$ ．
- 10．Reversibility（可逆性）：If T is the order of g ，and \underline{x}^{-1} is the inverse of x in $Z_{\underline{T}}$ ，that is $x x^{-1} \equiv 1 \bmod T$ ．Then $E_{x}\left(E_{x^{-1}}(g)\right)=E_{x^{-1}}\left(E_{x}(g)\right)=g^{x x^{-1}}=g^{k T+1}=\left(g^{T}\right)^{k} g \equiv g \bmod \bar{p}$ ， because $x x^{-1} \equiv 1 \bmod T$ ，so $x x^{-1}=k T+1$ for some integer k ．
－11．Square－multiplication（平方再乘法）：Let $(x)_{10}=\left(b_{n-1}, b_{n-2}, \ldots, b_{1}, b_{0}\right)_{2}$ is large， then $g^{x}=\left(\ldots\left(\left(1 \cdot g^{b^{n-1}}\right)^{2} \cdot g^{b^{n-2}}\right)^{2} \cdot g^{b^{n-3}} \ldots\right)^{2} \cdot g^{b^{0}}$ ．Take square：$n-1$ ，multiply：$\omega(x)-1$ ，where $\omega(x)=\mid\left\{j \mid b_{j}=1\right.$ for $\left.0 \leq j \leq n-1\right\} \mid$ ．
－12．Security（安全性）：Given g, y in G ，find x such that $y \equiv g^{x} \bmod p$ is DLP．
－13．By 11 and 12，exponentiation function is a one－way function with commutative．It is good for designing a Public－Key Distribution System，PKDS）．

Cryptographic Protocol

- Def: Roughly speaking, a protocol (協定) refers to a multiparty algorithm in which two or more parts cooperate to accomplish some work through a welldefined series of actions.
- Cryptographic Protocol: On public networks; for secret information exchange, or confirm information integrity.
- Include: cryptosystem, key distribution, digital signatures, authentication systems, secret sharing schemes.

https://news.mit.edu/2018/cryptographic-protocol-collaboration-drug-discovery-1018

Key Distribution System

- Def：Key Distribution System（or Protocol），KDS（金錀分配協定）
- Conference－Key Distribution System，CKDS（會議金鍽分配系統）
- Trusted－Key Distribution Center，TKDC（可信賴的金錀分配中心）
－Key generation ：E，D

－Key distribution ：

（1） $\mathrm{E}_{K_{c}}\left(I D_{i}, I D_{j}\right)$

Known－ Plaintext Attack

（c）Spring 2023，Justie Su－Tzu Juan

Public－Key Distribution System

－Public－Key Distribution System，PKDS（公開金錀分配系統）for sending messages is a framework which allows one party to securely send a message to a second party without the need to exchange or distribute encryption keys．
－Ex：Using exponentiation function．
Key generation ：All participants known big prime p ，and primitive root g ．
Key distribution ：

（5）Calculate
（3）Randomly select x_{j}

$$
z_{j i}=y_{i}^{x_{j}} \bmod p
$$

Three－Pass Protocol

－A three－pass protocol（三遍通訊協定）
－Ex：Using exponentiation function．
Key generation ：All participants known big prime p ，and primitive root g ，and each participant U_{i} has their own secret key x_{i} and $x_{i}^{-1}\left(\right.$ that is，$\left.x_{i} x_{i}^{-1} \equiv 1 \bmod (p-1)\right)$ ．

Key distribution ：

ElGamal Encryption System

－The ElGamal eprer asymmetric ke Cannot use based on the r the same r ！
－Ex：Using c Key gener： participant U_{i}

Known－ Plaintext
stem（ElGamal 公開金錀密 orithm for public－key cr ey exchange， 1982. on．

Jants known big prime p ，and primitive root g ，and each Attack \sim secret key x_{i} and public the Public－key $y_{i}=g^{x_{i}} \bmod p$ ． Key distributic
（1）Randomly select r Find $C_{1}=g^{r} \bmod p$ ，

$$
C_{2}=M y_{i}^{r} \bmod p
$$

One－way function with commutative

