Computer Science and Information Engineering National Chi Nan University **The Principle and Application of Secret Sharing** Dr. Justie Su-Tzu Juan

Lecture 1. Overview of Cryptography

§ 1.2 Contemporary Cryptography

Slides for a Course Based on the Text 近代密碼學及其應用 by 賴溪松、韓亮、張真誠

Goals of Cryptography

• SECRECY (秘密性) (or CONFIDENTIALITY, or PRIVACY)

Keep information secret

• AUTHENTICATION (鑑定性)

- Receiver can verify who sender was

INTEGRITY (完整性)

Detect modified messages

• NON-REPUDIATION (不可否認性)

Sender cannot later falsely deny sending a message. (Receiver cannot falsely deny receiving it.)

Cryptography Systems

Cryptography Systems (密碼条統) Sender Ciphertext Receiver Plaintext Encrypt (E) (C) Decrypt (D) Plaintext (M) $C = E_{k1}(M)$ $M = D_{k2}(C)$ $M = D_{k2}(E_{k1}(M))$

- When k₁ = k₂: Symmetric Key Cryptosystem (對稱金鑰密碼系統)、One-key Cryptosystem (單一金鑰密碼系統)、Private Key Cryptosystem (秘密金鑰密碼系統)、Conventional cryptosystem (傳統密碼系統)
- When k₁ ≠ k₂: Asymmetric Cryptosystem (非對稱密碼系統)、Two Key
 Cryptosystem (雙金鑰密碼系統)、Public Key Distribution System (公開金鑰分配
 (c) Spring 2023, Justie Su-Tzu Juan

Types of Attacks

- Ciphertext-Only Attack (密文攻擊法)
- Known-Plaintext Attack (已知明文攻擊法)
 - Chosen-Text Attack (選擇文攻擊法)
 - Chosen-Plaintext Attack
 - Chosen-Ciphertext Attack

Symmetric Key Cryptosystem

Symmetric Key Cryptosystem:

- Advantage: Secrecy, Authentication, Integrity
- Disadvantage: 1. Need secure channel

2. Too many keys required (n(n-1)/2), for *n* participants.)

3. No "Non-repudiation"

(c) Spring 2023, Justie Su-Tzu Juan

Asymmetric Key Cryptosystem

Asymmetric Cryptosystem (1976, Diffie and Hellman):

Advantage: Secrecy, Integrity, Non-repudiation, Only one key for each participant.

- If Commutative $(D_{k2}(E_{k1}(M)) = M = E_{k1}(D_{k2}(M)))$: Non-repudiation (Digital Signature, 數位簽章)
- Disadvantage: Calculations are complex and time-consuming

(RSA takes 1000 times longer than DES)

Security Types

By Shannon, 1949.

- Theoretical Security or Perfect Security (理論安全):
 - One-Time Pad
 - Stream Cryptography (not really)
- Practical Security or Computational Security (實際安全):
 - Work Characteristic $W(n) > 10^{30}$
 - Historical Work Characteristic $W_h(n) > 10^{30}$
 - Ex: Each calculate need 10^{-6} second, then

	<i>n</i> ⁵	2^n	<i>n</i> !
<i>n</i> = 10	0.1 sec	0.0001 sec	3.6 sec
<i>n</i> = 100	$10^4 \sec \approx 2.8 \text{ h}$	≈1024 sec ≈10 ¹⁶ years	$\approx 10^{186} \sec \approx 10^{176} \text{ years}$
<i>n</i> = 1000	$10^9 \sec \approx 10 \text{ years}$	$\approx 10^{286}$ years	$\approx 10^{2974}$ centuries

7

- <u>Def</u>: One-way Function (單向函數)
 - It is easy to compute on every input, but hard to invert given the image of a random input.

- 逃生門

<u>Def</u>: One-way Trapdoor Function (單向暗門函數)

- It is easy to compute in one direction, yet difficult to compute in the opposite direction (finding its inverse) without special information, called the "trapdoor".
- 有鑰匙的逃生門

 $(f, t) = \text{Gen } (1^n)$ $f: D \to R$ easy f(x) f(x) f(x) f(x) f(x) R

By IkamusumeFan - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curi d=45284265

- Problem 1: Discrete Logarithm Problem, DLP (解離散對數問題)
 - <u>Def</u>: given a group G, a generator g and an element h of G, to find the discrete logarithm to the base g of h in the group G.
 - Discrete logarithm problem is not always hard. The hardness of finding discrete logarithms depends on the groups.
 - <u>Ex</u>: In group (Z_5 , ×), g = 2, then the discrete logarithm of 1 is 4 because $2^4 \equiv 1 \mod 5$.
 - The fastest known algorithm for solving DLP is $L(p) = \exp\{(\ln p)^{1/3}(\ln(\ln p))^{2/3}\}$, ex: $L(10^{512}) \ge e^{38.92} \ge 8 \times 10^{16}$; $L(10^{1024}) \ge e^{52.19} \ge 4.6 \times 10^{22}$
- **Representative:** Diffie-Hellman Key Agreement System

Elgamal Public-key Cryptography

Digital Signature Algorithm (DSA)

• Recent Usage: Widely (c) Spring 2023, Justie Su-Tzu Juan

- Problem 2: Factorization Problem, FAC (因數分解問題)
 - **<u>Def</u>**: Given *n*, find *p* and *q* for any two big prims *p* and *q*, such that n = pq.
 - <u>Ex</u>: 2851697 (=
 - The fastest known algorithm for solving FAC is $T(p) = \exp\{C(\ln p)^{1/3}(\ln(\ln p))^{2/3}\}, C$ is a constant.
 - DLP is a bit more difficult than FAC.
- **Representative:** RSA Public-key Cryptography
- Recent Usage: RSA is still the most widely used system

CC BY-SA 2.5, https://commons.wikimedia.org/ w/index.php?curid=985491

- Problem 3: Knapsack Problem (迷袋問題、背包問題)
 - <u>Def</u>: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible.
 - Let $B = \{b_1, b_2, ..., b_n\}$, $V = \{v_1, v_2, ..., v_n\}$. Given an positive integer *S*, find $X = \{x_1, x_2, ..., x_n\}$ where $x_i \in \{0, 1\}$ for any $1 \le i \le n$, such that $\sum_{i=1, n} x_i b_i \le S$, and $\sum_{i=1, n} x_i v_i$ as large as possible.
 - **<u>Ex</u>**: $B = \{2, 5, 7, 16, 19, 25, 32, 38, 40, 47\}, S = 100.$
- **Representative:** Merkle-Hellman Public-key Cryptosystem
- Recent Usage: The Knapsack Problem has largely been cracked and is currently under-appreciated._{(c) Spring 2023, Justie Su-Tzu Juan}

- Problem 4: Elliptic Curve Cryptosystem, ECC (橢圓曲線密碼系統)
 - <u>Def</u>: An approach to public-key cryptography based on the algebraic structure of elliptic curves over finite fields.
 - Def: Elliptic Curves over Z_p : In $E_p(a, b)$, means $y^2 = x^3 + ax + b$ in Z_p (or say $\overline{GF}(p)$) and $(4a^3 + 27b^2) \neq 0 \mod p$. If $P = (x_P, y_P)$, $Q = (x_Q, y_Q)$, define O is the identity, the invers of $P = -P = (x_P, -y_P)$, and $R = P + Q = (x_R, y_R)$ is determined by the following rules:

where
$$\lambda \equiv (\lambda^2 - x_P - x_Q) \mod p$$

 $y_R \equiv (\lambda(x_P - x_R) - y_P) \mod p$, if $P \neq Q$;
 $(2x_P^2 + a)/2y_P \mod p$, if $P = Q$.
Multiplication is defined as repeated addition.
By SuperManu - Own work based on Image: ECClines processors.

Multiplication is defined as repeated addition.

By SuperManu - Own work based on Image:ECClines.png by en:User:Chas zzz brown, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2970559

- Problem 4: Elliptic Curve Cryptosystem, ECC (橢圓曲線密碼系統)
 - $\underline{\mathbf{Ex}}: \text{Let } p = 211, G = (2, 2) \text{ in } \mathbb{E}_p(0, -4): 240G = O; 121(2, 2) = (115, 48); 203(2, 2) = (130, 203). \text{ Knowing } kG \text{ and } G, p, \text{ it is difficult to get } k.$
 - ECC allows smaller keys compared to non-EC cryptography (based on plain Galois fields) to provide equivalent security.

Representative: Analog of Diffie-Hellman Key Exchange Elliptic Curve Encryption/Decryption IEEE P1363 Many standards are being developed.

• Recent Usage: ECC is considered to have development potential in the future. (c) Spring 2023, Justie Su-Tzu Juan

Exponentiation function

- **Def:** Let (G, \cdot) is a finite group, and $g \in G$. The exponentiation function (指數 函數) $E_x(g)$ is a function in *G* such that for any *x* in *G*, $E_x(g) = g^x \in G$. In $G = Z_p = \{0, 1, 2, ..., p-1\}, E_g(x) = g^x \mod p$. It has the following properties - 1. Periodically (週期性): $\langle g \rangle = \{g^0, g^1, g^2, ...\} \subseteq Z_p$, must periodically.
 - 2. For any minimum positive integer T such that g^T = 0, T is called the order (序) of g.
 3. T | p 1 by Fermat's Theorem.
 - 4. If *g* ∈ *Z_p* with order *T* = *p* − 1, *g* is called the primitive root (βR) of (*Z_p*, ·). If gcd(*a*, *p* − 1) = 1, *g^a* is also a primitive root.
 - 5. The number of the primitive root of $(Z_p, \cdot) = \phi(p-1)$, Euler Totient Function.
 - 6. Commutative (交換律): $E_x(E_y(g)) = E_x(g^y) = g^{yx} = g^{xy} = E_y(g^x) = E_y(E_x(g))$
 - 7. Asymmetric (非對稱性): $E_x(-g) = (-g)^x = (-1)^x g^x = (-1)^x E_x(g)$

Exponentiation function

- 8. Inverse (乘法反元素): If *T* is the order of *g*, then $E_x(g^{-1}) = E_{T-x}(g)$ for any $0 \le x < T$.
- 9. Multiplicity (乘法性): $E_x(g_1)E_x(g_2)$) = $g_1^x g_2^x = E_x(g_1g_2)$.
- 10. Reversibility (可逆性): If *T* is the order of *g*, and $\underline{x^{-1}}$ is the inverse of *x* in $Z_{\underline{T}}$, that is $x x^{-1} \equiv 1 \mod T$. Then $E_x(E_{\underline{x^{-1}}}(g)) = E_{\underline{x^{-1}}}(E_x(g)) = g^{xx^{-1}} = g^{kT+1} = (g^T)^k g \equiv g \mod p$, because $x x^{-1} \equiv 1 \mod T$, so $x x^{-1} = kT + 1$ for some integer *k*.
- 11. Square-multiplication (平方再乘法): Let $(x)_{10} = (b_{n-1}, b_{n-2}, ..., b_1, b_0)_2$ is large, then $g^x = (...((1 \cdot g^{b^{n-1}})^2 \cdot g^{b^{n-2}})^2 \cdot g^{b^{n-3}} ...)^2 \cdot g^{b^0}$. Take square: n - 1, multiply: $\omega(x) - 1$, where $\omega(x) = |\{j \mid b_j = 1 \text{ for } 0 \le j \le n - 1\}|.$
- 12. Security (安全性): Given g, y in G, find x such that $y \equiv g^x \mod p$ is DLP.
- 13. By 11 and 12, exponentiation function is a one-way function with commutative. It is good for designing a Public-Key Distribution System, PKDS).

Cryptographic Protocol

- **Def:** Roughly speaking, a protocol (協定) refers to a multiparty algorithm in which two or more parts cooperate to accomplish some work through a well-defined series of actions.
- **Cryptographic Protocol**: On public networks; for secret information exchange, or confirm information integrity.
- Include: cryptosystem, key distribution, digital signatures, authentication systems, secret sharing schemes.

https://news.mit.edu/2018/cryptographic-protocolcollaboration-drug-discovery-1018

Key Distribution System

- Def: Key Distribution System (or Protocol), KDS (金鑰分配協定)
 - Conference-Key Distribution System, CKDS (會議金鑰分配系統)
 - Trusted-Key Distribution Center, TKDC (可信賴的金鑰分配中心)

Public-Key Distribution System

- Public-Key Distribution System, PKDS (公開金鑰分配系統) for sending messages is a framework which allows one party to securely send a message to a second party without the need to exchange or distribute encryption keys.
 - <u>**Ex</u>**: Using exponentiation function.</u>

Key generation : All participants known big prime *p*, and primitive root *g*.

Key distribution :

Three-Pass Protocol

- A three-pass protocol (三遍通訊協定)
 - <u>**Ex</u>**: Using exponentiation function.</u>

<u>Key generation</u> : All participants known big prime *p*, and primitive root *g*, and each participant U_i has their own secret key x_i and x_i^{-1} (that is, $x_i x_i^{-1} \equiv 1 \mod (p-1)$).

Key distribution : U_i U_j OPC (XOR-operation)
can not be
used here.(3) $y_3 = y_2^{x_i^{-1}} \mod p$ $M = y_3^{x_j^{-1}} \mod p$

ElGamal Encryption System

