Computer Science and Information Engineering National Chi Nan University Combinatorial Optimization Dr. Justie Su-Tzu Juan

Lecture 9 More Class of Graphs § 9.1 AT-Free Graphs

<u>Def</u>:

- ① π is a permutation on $N_n = \{1, 2, ..., n\}$.
- ② A graph *G* is called a permutation graph if ∃ π on N_n s.t. $G = G(\pi)$ = $(N_n, E(\pi))$, where $ij \in E(\pi) \Leftrightarrow (i-j)(\pi^{-1}(i) - \pi^{-1}(j)) < 0$.

• <u>Def</u>: A graph *G* is called a trapozoid graph if \exists a set \mathcal{I} of trapozoid with same height, and a 1-1 function $f: V(G) \rightarrow \mathcal{I}$ s.t. $xy \in E(G) \Leftrightarrow f(x) \cap f(y) \neq \phi$.

- <u>Def</u>: A graph *G* is called a trapozoid graph if \exists a set \mathcal{I} of trapozoid with same height, and a 1-1 function $f: V(G) \rightarrow \mathcal{I}$ s.t. $xy \in E(G) \Leftrightarrow f(x) \cap f(y) \neq \phi$.
- <u>Note</u>: Trapozoid and permutation graphs are intersection graphs.

<u>Remark</u>: Interval graphs and permutation graphs are trapozoid graphs.

- Def: A digraph G = (V, E) is called transitive acyclic if
 ① ≇ v₁ → v₂ → ... → v_r → v₁, and
 ② if (i, j), (j, k) ∈ E(G), then (i, k) ∈ E(G).
- <u>Def</u>:
 - **①** *G* is a **comparability graph** if *G* has an orientation that is a transitive acyclic digraph.
 - **②** A **co-comparability graph** is the complement of a comparability graph.
- <u>Ex</u>: C_4 , bipartite graph are comparability graph.

• <u>Note</u>: *G* is a permutation graph.

 $\Leftrightarrow \exists \pi$ such that $G = G(\pi)$

⇒ ∃ partially ordered set (N_n, \preccurlyeq) (poset) s.t.

 $G' = (N_n, E')$ has a transitive orientation and $G' \cong \overline{G}$. where $E' = \{ij: i \neq j, i \leq j\}$ and

 $\forall i, j \in N_n, i \leq j \text{ iff } i \leq j \text{ and } \pi^{-1}(i) \leq \pi^{-1}(j).$

 $\Rightarrow \overline{G}$ has a transitive orientation.

 $\Rightarrow \overline{G}$ is a comparability graph.

 \Rightarrow *G* is a co-comparability graph.

<u>Thm C</u>: G = (V, E) is a comparability graph.
 ⇔ ∃ ordering [v₁, v₂, ..., v_n] of V s.t.
 (c) i < j < k, v_iv_j ∈ E, v_jv_k ∈ E ⇒ v_iv_k ∈ E.

Note: G = (V, E) is a co-comparability graph.
⇔ G^c = (V, E^c) is a comparability graph.
⇔ ∃ ordering [v₁, v₂, ..., v_n] of V s.t.
(c*) i < j < k, v_iv_j ∈ E^c, v_jv_k ∈ E^c ⇒ v_iv_k ∈ E^c.
⇔ (c**) i < j < k, v_iv_j ∉ E, v_jv_k ∉ E ⇒ v_iv_k ∉ E.
⇔ (cc) i < j < k, v_iv_k ∈ E ⇒ v_iv_j ∈ E or v_jv_k ∈ E.

- Problems:
 - Weighted independent domination for co-comparability graphs (Linear).
 - Connected domination for co-comparability graphs. (Poly.)
 - http://wwwteo.informatik.uni-rostock.de/isgci/classes/gc_147.html

<u>Def</u>:

- Three vertices x, y, z of graph G is called Asteroidal triple (AT) if
 {x, y, z} is an independent set.
 - ② ∃ x-y path $P \cap N[z] = \phi$, ∃ y-z path $Q \cap N[x] = \phi$ and

 $\exists x - z \text{ path } R \cap N[y] = \phi.$

2) A graph G is called AT-free graph if \nexists AT.

• <u>Thm</u>: *G* is an interval graph \Leftrightarrow *G* is a chordal graph and AT-free graph.

(cc) $i < j < k, v_i v_k \in E \Rightarrow v_i v_j \in E \text{ or } v_j v_k \in E$.

9.1 AT-Free Graphs

• <u>Thm</u>: *G* is co-comparability graph \Rightarrow *G* is AT-free. Proof.

If not, suppose $\{x, y, z\}$ is AT.

∴ *G* is co-comparability \therefore ∃ vertex ordering satisfy (cc).

W.L.O.G. say x < y < z, then $\forall x - z$ path $P: x = v_1, v_2, ..., v_r = z$

 $\therefore x < y < z \quad \therefore \exists 1 \le i < r \text{ s.t. } v_i \le y < v_{i+1}$

 $\because v_i v_{i+1} \in E \quad \therefore \text{ By (cc)}, v_i \in N[y] \text{ or } v_{i+1} \in N[y],$

i.e. $P \cap N[y] \neq \phi$. $\rightarrow \leftarrow$

- <u>Remark</u>: D. Kratsch, "Domination and total domination in asteroidal triple-free graphs," *Discrete Appl. Math.* 99, No. 1-3, pp. 111-123 (2000).
- (http://wwwteo.informatik.uni-rostock.de/isgci/classes/gc_61.html)

Computer Science and Information Engineering National Chi Nan University Combinatorial Optimization Dr. Justie Su-Tzu Juan

Lecture 9-1 More Class of Graphs

§9.2 D-H Graphs

Slides for a Course Based on the Paper

<u>Def</u>: G is a cograph (complement-reducible graph) if G can be construct from K₁ by disjoint union (⊕) and join (⊗) operations.

■ <u>Note</u>: 可將join ⊗換成complement.

- http://wwwteo.informatik.uni-rostock.de/isgci/classes/gc_151.html
- Exercise 6: 5/31 For any cograph G and the associated cotree, give an algorithm for finding the domination number $\gamma(G)$ of G.

- **<u>Thm</u>:** G is cograph. \Leftrightarrow G is P_4 -free.
 - (⇒) ∵ "join" or "union" ∴ ∀ $x, y \in V(G)$, either $d_G(x, y) \le 2$ or = ∞. ⇒ G has no P_4 .
- <u>Thm</u>: *G* is cograph. ⇔ *G* is a comparability graph of series-parallel posets.

• <u>Def</u>: *G* is distance-hereditary (D-H) graph if $d_H(x, y) = d_G(x, y) \forall x$, $y \in V(H)$ for any induced subgraph *H* of *G*.

• <u>Def</u>: *G* is distance-hereditary (D-H) graph if $d_H(x, y) = d_G(x, y) \forall x, y \in V(H)$ for any induced subgraph *H* of *G*.

<u>Def</u>: *G* is a D-H graph iff *G* is (5, 2)-crossing-chordal graph.
 i.e. for any cycle of length at least five in *G*, ∃ two crossing chords.

Two chords uv, xy are crossing iff the order in C of the endpoints is (u, x, v, y).

- **Problem:**

 - Domination *L*-Domination
 linear-time

- **Total Domination**
- Weighted connected k-domination
Weighted k-dominating clique $\mathcal{O}(|V||E|)$ -time

http://wwwteo.informatik.uni-rostock.de/isgci/classes/gc_80.html