Computer Science and Information Engineering National Chi Nan University Combinatorial Optimization Dr. Justie Su-Tzu Juan

Lecture 8 Domatic Number Problem

§ 8.3 Cartesian Product

Slides for a Course Based on the Paper G. J. Chang, "*The domatic number problem*," Discrete Math., 125 (1994), pp. 115-122.

<u>**Def</u>:**</u>

① The Cartesian product of two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is the graph $G_1 \times G_2 = (V_1 \times V_2, E)$, where $E = \{(x, y_1)(x, y_2) \colon x \in V_1 \text{ and } y_1 y_2 \in E_2\} \cup$

 $\{(x_1, y)(x_2, y): x_1x_2 \in E_1 \text{ and } y \in V_2\}$

② P_n , the path of *n* vertices, *V*(P_n) = {1, 2, ..., *n*}, *E*(P_n) = {*i*(*i*+1): 1 ≤ *i* ≤ *n*−1}.

③ The *r*-dimensional grid $P_{n_1} \times P_{n_2} \times \ldots \times P_{n_r}$, where all $n_i \ge 2$.

• <u>Note</u>:

$$\mathbb{D} V(P_{n_{1}} \times P_{n_{2}} \times ... \times P_{n_{r}}) = \{(a_{1}, a_{2}, ..., a_{r}): 1 \le a_{i} \le n_{i} \forall 1 \le i \le r\}$$

$$(a_{1}, a_{2}, ..., a_{r})(b_{1}, b_{2}, ..., b_{r}) \in E(P_{n_{1}} \times P_{n_{2}} \times ... \times P_{n_{r}}) \Leftrightarrow$$

$$\exists ! 1 \le j \le r, |a_{j} - b_{j}| = 1 \text{ and } \forall 1 \le i \le r, i \ne j, a_{i} = b_{i}.$$

Note:

Remark:

① P_n is domatically full for any n ≥ 1.
② 2 ≤ d(P_{n1}×P_{n2}) ≤ 3.
Let D₁ = {(a, b): a is odd}, D₂ = {(a, b): a is even}. D₁, D₂ is a domatic partition.

 $() d(P_2 \times P_2) = 2 = d(P_2 \times P_4) = d(P_4 \times P_2).$

• <u>Proposition 3.1</u>: For any spanning subgraph H = (V, E') of G = (V, E), $d(H) \le d(G)$.

• <u>Thm 3.2</u>: $d(P_{n_1} \times P_{n_2}) = 3$ except that $(n_1, n_2) = (2, 2), (2, 4), (4, 2).$

<u>Thm 3.2</u>: $d(P_{n_1} \times P_{n_2}) = 3$ except that $(n_1, n_2) = (2, 2), (2, 4), (4, 2).$ **Proof.** (1/2)Assume $(n_1, n_2) \neq (2, 2), (2, 4), (4, 2).$ Case 1: One of n_1 and n_2 is odd, say n_1 is odd: Let $D_1 = \{(a, b): a \equiv 0 \pmod{2}\},\$ $D_2 = \{(a, b): a \equiv 1 \pmod{4} \text{ and } b \equiv 1 \pmod{2} \} \cup$ $\{(a, b): a \equiv 3 \pmod{4} \text{ and } b \equiv 0 \pmod{2}\},\$ $D_3 = \{(a, b): a \equiv 1 \pmod{4} \text{ and } b \equiv 0 \pmod{2}\} \cup$ $\{(a, b): a \equiv 3 \pmod{4} \text{ and } b \equiv 1 \pmod{2}\}.$ Then D_1, D_2, D_3 form a domatic partition of $P_{n_1} \times P_{n_2}$. $\therefore d(P_{n_1} \times P_{n_2}) = 3.$ $d(P_5 \times P_4) = 3$ (c) Spring 2022, Justie Su-Tzu Juan

• <u>Thm 3.2</u>: $d(P_{n_1} \times P_{n_2}) = 3$ except that $(n_1, n_2) = (2, 2), (2, 4), (4, 2).$ Proof. (2/2)

Assume $(n_1, n_2) \neq (2, 2), (2, 4), (4, 2).$ Case 2: $(n_1, n_2) = (4, 4)$ show as follow:

b), (4, 2). as follow: $d(P_4 \times P_4) = 3$

<u>Case 3</u>: Both n_1, n_2 are even and at least one ≥ 6 , say $n_1 \ge 6$:

: $(P_3 \times P_{n_2}) \cup (P_{n_1 - 3} \times P_{n_2})$ is a spanning subgraph of $P_{n_1} \times P_{n_2}$.

: By <u>Case 1</u> and <u>proposition 2.1</u> and <u>3.1</u>:

$$d(P_{n_1} \times P_{n_2}) \ge d((P_3 \times P_{n_2}) \cup (P_{n_1 - 3} \times P_{n_2}))$$

$$\ge \min\{d(P_3 \times P_{n_2}), d(P_{n_1 - 3} \times P_{n_2})\} = 3.$$

• <u>Def</u>: G = (V, E) is a graph and $S \subseteq V$, let $G \triangle S = (V^*, E^*)$ with $V^* = V \cup \{x^* : x \in V - S\}$ and $E^* = E \cup \{x^*y : x \in V - S, y \in S, xy \in E\} \cup \{x^*y^* : x, y \in V - S, xy \in E\}.$

• Lemma 3.3: $S \subseteq V$ and $d(G \triangle S) \ge d(G)$.

Proof. \forall dominating set *D* of *G*, $D^* = D \cup \{x^* : x \in D - S\}$ is a dominating set of $G \triangle S$.

- Lemma 3.4: If x is an end vertex of P_n , the $P_n \triangle \{x\} \cong P_{2n-1}$.
- Lemma 3.5: $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2), S \subseteq V_1$ $\Rightarrow (G_1 \triangle S) \times G_2 \cong (G_1 \times G_2) \triangle (S \times V_2).$

• <u>Thm 3.6</u>: If $r, n \in \mathbb{N}$ and $n_i \in \{n, 2n-1\} \forall 1 \le i \le r$, then $d(P_{n_1} \times P_{n_2} \times \ldots \times P_{n_r}) \ge d(\underbrace{P_n \times P_n \times \ldots \times P_n}_{n_r}).$

Proof. Let $h = |\{i: n_i = 2n - 1 \forall 1 \le i \le r\}|$.

Prove by induction on *h***:**

(i) When h = 0, it's trivial.

(ii) Suppose it's true when h < k; when h = k, W.L.O.G. say $n_1 = 2n-1$

:: By <u>Lemma 3.4</u> and <u>3.5</u>

 $\therefore P_{2n-1} \times P_{n_2} \times \ldots \times P_{n_r} \cong (P_n \triangle \{x\}) \times P_{n_2} \times \ldots \times P_{n_r}$ $\cong (P_n \times P_{n_2} \times \ldots \times P_{n_r}) \triangle (\{x\} \times V_2 \times \ldots \times V_r)$ By Lemma 3.3, $d((P_n \times P_{n_2} \times \ldots \times P_{n_r}) \triangle (\{x\} \times V_2 \times \ldots \times V_r))$ $\ge d(P_n \times P_{n_2} \times \ldots \times P_{n_r})$ $\Rightarrow d(P_{2n-1} \times P_{n_2} \times \ldots \times P_{n_r}) \ge d(P_n \times P_{n_2} \times \ldots \times P_{n_r}) \ge d(P_n \times P_n \times \ldots \times P_n).$ (c) Spring 2022, Justie Su-Tzu Juan By I.H.

Note:

- (1) gcd(n, 2n-1) = 1.
- ② ∃ n_0 s.t. $\forall m \ge n_0 \in \mathbb{Z}, m = rn + s(2n-1)$ for some $r, s \in \mathbb{N} \cup \{0\}$.
- **③** Denote the minimum such n_0 by M(n).

• Ex:
$$M(2) = 2, M(3) = 8.$$

• <u>Thm 3.7</u>: If $r, n \in \mathbb{Z}^+$ and $n_1, n_2, ..., n_r \ge M(n)$, then $d(P_{n_1} \times P_{n_2} \times ... \times P_{n_r}) \ge d(P_n \times P_n \times ... \times P_n)$. Proof. $\because \forall n_i, \exists r_i, s_i \in \mathbb{N} \cup \{0\}$ s.t. $n_i = r_i n + s_i (2n-1)$. $\therefore P_{n_1} \times P_{n_2} \times ... \times P_{n_r}$ has a spanning subgraph which is the union of some grids $P_{m_1} \times P_{m_2} \times ... \times P_{m_r}$, where $m_i \in \{n, 2n-1\} \forall 1 \le i \le r$. By <u>Propositions 2.1, 3.1</u> and <u>Thm 3.6</u>, $d(P_{n_1} \times P_{n_2} \times ... \times P_{n_r}) \ge d(P_n \times P_n \times ... \times P_n)$. (c) Spring 2022, Justie Su-Tzu Juan 11

Ex: *n* = 2:

r

- Thm 3.8: (Laborde 1987, Zelinka 1983) If $k \in \mathbb{N}$ and $r = 2^k - 1$, then $\underbrace{P_2 \times P_2 \times \ldots \times P_2}_{j}$ is domatically full.
- <u>Corollary 3.9</u>: If $k \in \mathbb{N}$, $n_i > 1$ for all i and $r = 2^k 1$, then $P_{n_1} \times P_{n_2} \times \ldots \times P_{n_r}$ is domatically full.

- <u>Conjecture</u>: All *r*-dimensional grids, with finitely many exceptions, are domatically full.
- <u>Note</u>:
 - **①** If we can find some *n* such that the *r*-dimensional grids, $P_n \times P_n \times \dots \times P_n$ is domatically full for all *r*, then the conjecture is true.
 - **②** If we can find a domatically full *r*-dimensional grids for all *r*, then the conjecture is true.
- Sol. ^① By <u>Thm 3.6</u>.
 - ② If we find $P_{n_1} \times P_{n_2} \times \ldots \times P_{n_r}$ is domatically full, then let $n = lcm(n_1, n_2, \ldots, n_r)$.

 $\Rightarrow P_n \times P_n \times \dots \times P_n$ is domatically full.