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8.3 Cartesian Product

 Def: 

 The Cartesian product of two graphs G1 = (V1, E1) and G2 = (V2, 

E2) is the graph G1G2 = (V1V2, E), where

E ={(x, y1)(x, y2): x  V1 and y1y2  E2} 

{(x1, y)(x2, y): x1x2  E1 and y  V2}

 Pn, the path of n vertices, V(Pn) = {1, 2, …, n}, E(Pn) = {i(i+1): 1 

i  n–1}.

 The r-dimensional grid Pn
1
Pn

2
…Pnr

, where all ni  2.

 Note:

 V(Pn
1
Pn

2
…Pnr

) = {(a1, a2, …, ar): 1  ai  ni  1  i  r} 

(a1, a2, …, ar)(b1, b2, …, br)  E(Pn
1
Pn

2
…Pnr

) 

! 1  j  r, |aj – bj| = 1 and  1  i  r, i  j, ai = bi.



(c) Spring 2022, Justie Su-Tzu Juan 3

8.3 Cartesian Product

 Note:

 d(Pn1
Pn2

…Pnr
)  (Pn1

Pn2
…Pnr

)+1 = r+1.

 Remark:

 Pn is domatically full for any n  1.

 2  d(Pn1
Pn2

)  3.

 d(P2P2) = 2 = d(P2P4) = d(P4P2).

Let D1 = {(a, b): a is odd}, D2 = {(a, b): a is even}.

D1, D2 is a domatic partition. 

no dominating set with size 2 
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8.3 Cartesian Product

 Proposition 3.1: For any spanning subgraph H = (V, E) of G = (V, E), 

d(H)  d(G).

 Ex: 

 Thm 3.2: d(Pn
1
Pn

2
) = 3 except that (n1, n2) = (2, 2), (2, 4), (4, 2).

G H
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8.3 Cartesian Product

 Thm 3.2: d(Pn
1
Pn

2
) = 3 except that (n1, n2) = (2, 2), (2, 4), (4, 2).

Proof. (1/2)

Assume (n1, n2)  (2, 2), (2, 4), (4, 2).

Case 1: One of n1 and n2 is odd, say n1 is odd:

Let D1 = {(a, b): a  0 (mod 2)},

D2 = {(a, b): a  1 (mod 4) and b  1 (mod 2)} 

{(a, b): a  3 (mod 4) and b  0 (mod 2)},

D3 = {(a, b): a  1 (mod 4) and b  0 (mod 2)} 

{(a, b): a  3 (mod 4) and b  1 (mod 2)}.

Then D1, D2, D3 form a domatic partition of Pn
1
Pn

2
.

 d(Pn
1
Pn

2
) = 3.

d(P5P4) = 3
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8.3 Cartesian Product

 Thm 3.2: d(Pn
1
Pn

2
) = 3 except that (n1, n2) = (2, 2), (2, 4), (4, 2).

Proof. (2/2)

Assume (n1, n2)  (2, 2), (2, 4), (4, 2).

Case 2: (n1, n2) = (4, 4) show as follow:

Case 3: Both n1, n2 are even and at least one  6, say  n1  6:

∵ (P3Pn
2
)  (Pn

1
–3Pn

2
) is a spanning subgraph of Pn

1
Pn

2
.

 By Case 1 and proposition 2.1 and 3.1:

d(Pn
1
Pn

2
)  d((P3Pn

2
)  (Pn

1
–3Pn

2
)) 

 min{d(P3Pn
2
), d(Pn

1
–3Pn

2
)} = 3.

d(P4P4) = 3
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8.3 Cartesian Product

 Def: G = (V, E) is a graph and S  V, let GS = (V*, E*) with 

V* = V  {x*: x  V–S} and 

E* = E  {x*y: x  V–S, y  S, xy  E}  {x*y*: x, y  V–S, xy  E}.

 Ex: 

G = P4

a b c d

S
GS = P7

a b c d

S

c* b* a*



G
S

GS
S
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8.3 Cartesian Product

 Lemma 3.3: S  V and d(GS)  d(G).

Proof.  dominating set D of G, 

D* = D  {x*: x  D – S} is a dominating set of GS.

 Lemma 3.4: If x is an end vertex of Pn, the Pn{x}  P2n–1.

 Lemma 3.5: G1 = (V1, E1) and G2 = (V2, E2), S  V1

 (G1S)G2  (G1G2)(SV2).



(c) Spring 2022, Justie Su-Tzu Juan 9

8.3 Cartesian Product

 Ex:

G1

G2

G1G2

G2

G1S
(G1S)G2

S

SV2

G1G2

(G1G2)(SV2)
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8.3 Cartesian Product

 Thm 3.6: If r, n N and ni  {n, 2n–1}  1  i  r, then 

d(Pn
1
Pn

2
…Pnr

)  d(PnPn…Pn). 

Proof. Let h = |{i: ni = 2n–1  1  i  r}|.

Prove by induction on h:

(i) When h = 0, it’s trivial. 

(ii) Suppose it’s true when h < k; when h = k, W.L.O.G. say n1 = 2n–1 

∵ By Lemma 3.4 and 3.5

 P2n–1Pn
2
…Pnr

 (Pn{x})Pn
2
…Pnr

 (PnPn
2
…Pnr

)({x}V2…Vr)

By Lemma 3.3, d((PnPn
2
…Pnr

)({x}V2…Vr))

 d(PnPn
2
…Pnr

) 

 d(P2n–1Pn
2
…Pnr

)  d(PnPn
2
…Pnr

)  d(PnPn…Pn). 

By I.H.

r
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8.3 Cartesian Product

 Note: 

 gcd(n, 2n–1) = 1.

  n0 s.t.  m  n0  Z, m = rn + s(2n–1) for some r, s N  {0}.

 Denote the minimum such n0 by M(n).

 Ex: M(2) = 2, M(3) = 8.

 Thm 3.7: If r, n  Z+ and n1, n2, …, nr  M(n), then 

d(Pn
1
Pn

2
…Pnr

)  d(PnPn…Pn). 

Proof. ∵  ni,  ri, si N  {0} s.t. ni = rin + si(2n–1).

 Pn
1
Pn

2
…Pnr

has a spanning subgraph which is the union of 

some grids Pm
1
Pm

2
…Pmr

, where mi  {n, 2n–1}  1  i  r.

By Propositions 2.1, 3.1 and Thm 3.6, 

d(Pn
1
Pn

2
…Pnr

)  d(PnPn…Pn).
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8.3 Cartesian Product

 Ex: n = 2: 

 Thm 3.8: (Laborde 1987, Zelinka 1983) 

If k N and r = 2k–1, then P2P2…P2 is domatically full.

 Corollary 3.9: If k N, ni > 1 for all i and r = 2k–1, then 

Pn
1
Pn

2
…Pnr

is domatically full.

r
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8.3 Cartesian Product

 Conjecture: All r-dimensional grids, with finitely many exceptions, are 

domatically full. 

 Note:

 If we can find some n such that the r-dimensional grids, 

PnPn…Pn is domatically full for all r, then the conjecture is 

true.

 If we can find a domatically full r-dimensional grids for all r, then 

the conjecture is true.

Sol.  By Thm 3.6.

 If we find Pn
1
Pn

2
…Pnr

is domatically full, then let n = lcm(n1, 

n2, …, nr).

 PnPn…Pn is domatically full.


