Computer Science and Information Engineering National Chi Nan University

Combinatorial Optimization

Dr. Justie Su-Tzu Juan

Lecture 8 Domatic Number Problem

§ 8.3 Cartesian Product

Slides for a Course Based on the Paper
G. J. Chang, "The domatic number problem," Discrete Math., 125 (1994), pp. 115-122.

8.3 Cartesian Product

- Def:
(1) The Cartesian product of two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}\right.$, $\left.E_{2}\right)$ is the graph $G_{1} \times G_{2}=\left(V_{1} \times V_{2}, E\right)$, where

$$
\begin{aligned}
& E=\left\{\left(x, y_{1}\right)\left(x, y_{2}\right): x \in V_{1} \text { and } y_{1} y_{2} \in E_{2}\right\} \cup \\
&\left\{\left(x_{1}, y\right)\left(x_{2}, y\right): x_{1} x_{2} \in E_{1} \text { and } y \in V_{2}\right\}
\end{aligned}
$$

(2) P_{n}, the path of n vertices, $V\left(P_{n}\right)=\{1,2, \ldots, n\}, E\left(P_{n}\right)=\{i(i+1): 1 \leq$ $i \leq n-1\}$.
(3) The r-dimensional grid $P_{n_{1}} \times P_{n_{2}} \times \ldots \times P_{n_{r}}$, where all $n_{i} \geq 2$.

- Note:
(1) $V\left(P_{n_{1}} \times P_{n_{2}} \times \ldots \times P_{n_{r}}\right)=\left\{\left(a_{1}, a_{2}, \ldots, a_{r}\right): 1 \leq a_{i} \leq n_{i} \forall 1 \leq i \leq r\right\}$ $\left(a_{1}, a_{2}, \ldots, a_{r}\right)\left(b_{1}, b_{2}, \ldots, b_{r}\right) \in E\left(P_{n_{1}} \times P_{n_{2}} \times \ldots \times P_{n_{r}}\right) \Leftrightarrow$
$\exists!1 \leq j \leq r,\left|a_{j}-b_{j}\right|=1$ and $\forall 1 \leq i \leq r, i \neq j, a_{i}=b_{i}$.

8.3 Cartesian Product

- Note:
(2) $d\left(P_{n_{1}} \times P_{n_{2}} \times \ldots \times P_{n_{r}}\right) \leq \delta\left(P_{n_{1}} \times P_{n_{2}} \times \ldots \times P_{n_{r}}\right)+1=r+1$.
- Remark:
(1) P_{n} is domatically full for any $n \geq 1$.
(2) $\mathbf{2} \leq \boldsymbol{d}\left(\boldsymbol{P}_{n_{1}} \times P_{n_{2}}\right) \leq \mathbf{3}$.

Let $D_{1}=\{(a, b): a$ is odd $\}, D_{2}=\{(a, b): a$ is even $\}$.
D_{1}, D_{2} is a domatic partition.
(3) $d\left(P_{2} \times P_{2}\right)=2=d\left(P_{2} \times P_{4}\right)=d\left(P_{4} \times P_{2}\right)$.

(c) Spring 2022, Justie Su-Tzu Juan

8.3 Cartesian Product

- Proposition 3.1: For any spanning subgraph $H=(V, E)$ of $G=(V, E)$, $d(H) \leq d(G)$.
- Ex:

- Thm 3.2: $d\left(P_{n_{1}} \times P_{n_{2}}\right)=3$ except that $\left(n_{1}, n_{2}\right)=(2,2),(2,4),(4,2)$.

8.3 Cartesian Product

- Thm 3.2: $d\left(P_{n_{1}} \times P_{n_{2}}\right)=3$ except that $\left(n_{1}, n_{2}\right)=(2,2),(2,4),(4,2)$. Proof. (1/2)

Assume $\left(n_{1}, n_{2}\right) \neq(2,2),(2,4),(4,2)$.
Case 1: One of n_{1} and n_{2} is odd, say n_{1} is odd:
Let $D_{1}=\{(a, b): a \equiv 0(\bmod 2)\}$,
$D_{2}=\{(a, b): a \equiv 1(\bmod 4)$ and $b \equiv 1(\bmod 2)\} \cup$ $\{(a, b): a \equiv 3(\bmod 4)$ and $b \equiv 0(\bmod 2)\}$,
$D_{3}=\{(a, b): a \equiv 1(\bmod 4)$ and $b \equiv 0(\bmod 2)\} \cup$ $\{(a, b): a \equiv 3(\bmod 4)$ and $b \equiv 1(\bmod 2)\}$.

$d\left(P_{5} \times P_{4}\right)=3$
(c) Spring 2022, Justie Su-Tzu Juan

8.3 Cartesian Product

- Thm 3.2: $d\left(P_{n_{1}} \times P_{n_{2}}\right)=3$ except that $\left(n_{1}, n_{2}\right)=(2,2),(2,4),(4,2)$.

Proof. (2/2)
Assume $\left(n_{1}, n_{2}\right) \neq(2,2),(2,4),(4,2)$.
Case 2: $\left(n_{1}, n_{2}\right)=(4,4)$ show as follow:

$$
d\left(P_{4} \times P_{4}\right)=3
$$

Case 3: Both n_{1}, n_{2} are even and at least one ≥ 6, say $n_{1} \geq 6$:
$\because\left(P_{3} \times P_{n_{2}}\right) \cup\left(P_{n_{1}-3} \times P_{n_{2}}\right)$ is a spanning subgraph of $P_{n_{1}} \times P_{n_{2}}$
\therefore By Case 1 and proposition 2.1 and 3.1:

$$
\begin{aligned}
d\left(P_{n_{1}} \times P_{n_{2}}\right) & \geq d\left(\left(P_{3} \times P_{n_{2}}\right) \cup\left(P_{n_{1}-3} \times P_{n_{2}}\right)\right) \\
& \geq \min \left\{d\left(P_{3} \times P_{n_{2}}\right), d\left(P_{n_{1}-3} \times P_{n_{2}}\right)\right\}=3 .
\end{aligned}
$$

(c) Spring 2022, Justie Su-Tzu Juan

8.3 Cartesian Product

- Def: $G=(V, E)$ is a graph and $S \subseteq V$, let $G \triangle S=\left(V^{*}, E^{*}\right)$ with $V^{*}=V \cup\left\{x^{*}: x \in V-S\right\}$ and $E^{*}=E \cup\left\{x^{*} y: x \in V-S, y \in S, x y \in E\right\} \cup\left\{x^{*} y^{*}: x, y \in V-S, x y \in E\right\}$.
- Ex: (1)

$G=P_{4}$
(2)

(c) Spring 2022, Justie Su-Tzu Juan

8.3 Cartesian Product

- Lemma 3.3: $S \subseteq V$ and $d(G \triangle S) \geq d(G)$.

Proof. \forall dominating set D of G,

$$
D^{*}=D \cup\left\{x^{*}: x \in D-S\right\} \text { is a dominating set of } G \triangle S .
$$

- Lemma 3.4: If x is an end vertex of P_{n}, the $P_{n} \triangle\{x\} \cong P_{2 n-1}$.
- Lemma 3.5: $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right), S \subseteq V_{1}$

$$
\Rightarrow\left(G_{1} \triangle S\right) \times G_{2} \cong\left(G_{1} \times G_{2}\right) \Delta\left(S \times V_{2}\right) .
$$

8.3 Cartesian Product

8.3 Cartesian Product

- Thm 3.6: If $r, n \in \mathbb{N}$ and $n_{i} \in\{n, 2 n-1\} \forall 1 \leq i \leq r$, then

$$
d\left(P_{n_{1}} \times P_{n_{2}} \times \ldots \times P_{n_{r}}\right) \geq d(\underbrace{P_{n} \times P_{n} \times \ldots \times P_{n}}) .
$$

Proof. Let $h=\left|\left\{i: n_{i}=2 n-1 \forall 1 \leq i \leq r\right\}\right|$.
Prove by induction on \boldsymbol{h} :
(i) When $h=0$, it's trivial.
(ii) Suppose it's true when $h<k$; when $h=k$, W.L.O.G. say $n_{1}=2 n-1$
\because By Lemma 3.4 and 3.5
$\therefore P_{2 n-1} \times P_{n_{2}} \times \ldots \times P_{n_{r}} \cong\left(P_{n} \triangle\{x\}\right) \times P_{n_{2}} \times \ldots \times P_{n_{r}}$

$$
\cong\left(\boldsymbol{P}_{n} \times \boldsymbol{P}_{n_{2}} \times \ldots \times \boldsymbol{P}_{n_{r}}\right) \Delta\left(\{x\} \times V_{2} \times \ldots \times V_{r}\right)
$$

By Lemma 3.3, $d\left(\left(P_{n} \times P_{n_{2}} \times \ldots \times P_{n_{r}}\right) \Delta\left(\{x\} \times V_{2} \times \ldots \times V_{r}\right)\right)$
$\geq d\left(P_{n} \times P_{n_{2}} \times \ldots \times P_{n_{r}}\right)$
$\Rightarrow d\left(P_{2 n-1} \times P_{n_{2}} \times \ldots \times P_{n_{r}}\right) \geq d\left(P_{n} \times P_{n_{2}} \times \ldots \times P_{n_{r}}\right) \geq d\left(P_{n} \times P_{n} \times \ldots \times P_{n}\right)$.
(c) Spring 2022, Justie Su-Tzu Juan

8.3 Cartesian Product

- Note:
(1) $\operatorname{gcd}(n, 2 n-1)=1$.
(2) $\exists n_{0}$ s.t. $\forall m \geq n_{0} \in \mathbb{Z}, m=r n+s(2 n-1)$ for some $r, s \in \mathbb{N} \cup\{0\}$.
(3) Denote the minimum such n_{0} by $M(n)$.
- Ex: $M(2)=2, M(3)=8$.
- Thm 3.7: If $r, n \in \mathbb{Z}^{+}$and $n_{1}, n_{2}, \ldots, n_{r} \geq M(n)$, then

$$
d\left(P_{n_{1}} \times P_{n_{2}} \times \ldots \times P_{n_{r}}\right) \geq d\left(P_{n} \times P_{n} \times \ldots \times P_{n}\right) .
$$

Proof. $\because \forall n_{i}, \exists r_{i}, s_{i} \in \mathbb{N} \cup\{0\}$ s.t. $n_{i}=r_{i} n+s_{i}(2 n-1)$.
$\therefore P_{n_{1}} \times P_{n_{2}} \times \ldots \times P_{n_{r}}$ has a spanning subgraph which is the union of some grids $P_{m_{1}} \times P_{m_{2}} \times \ldots \times P_{m_{r}}$, where $m_{i} \in\{n, 2 n-1\} \forall 1 \leq i \leq r$.
By Propositions 2.1, 3.1 and Thm 3.6,

$$
d\left(P_{n_{1}} \times P_{n_{2}} \times \ldots \times P_{n_{r}}\right) \geq d\left(P_{n} \times P_{n} \times \ldots \times P_{n}\right)
$$

(c) Spring 2022, Justie Su-Tzu Juan

8.3 Cartesian Product

- Ex: $n=2$:

- Thm 3.8: (Laborde 1987, Zelinka 1983)

- Corollary 3.9: If $k \in \mathbb{N}, n_{i}>1$ for all i and $r=2^{k}-1$, then $\boldsymbol{P}_{n_{1}} \times \boldsymbol{P}_{n_{2}} \times \ldots \times \boldsymbol{P}_{n_{r}}$ is domatically full.
(c) Spring 2022, Justie Su-Tzu Juan

8.3 Cartesian Product

- Conjecture: All r-dimensional grids, with finitely many exceptions, are domatically full.
- Note:
(1) If we can find some n such that the r-dimensional grids, $P_{n} \times P_{n} \times \ldots \times P_{n}$ is domatically full for all r, then the conjecture is true.
(2) If we can find a domatically full r-dimensional grids for all r, then the conjecture is true.
Sol. (1) By Thm 3.6.
(2) If we find $P_{n_{1}} \times P_{n_{2}} \times \ldots \times P_{n_{r}}$ is domatically full, then let $n=\operatorname{lcm}\left(n_{1}\right.$, n_{2}, \ldots, n_{r}).
$\Rightarrow P_{n} \times P_{n} \times \ldots \times P_{n}$ is domatically full.

