Computer Science and Information Engineering National Chi Nan University

 Combinatorial Optimization

 Combinatorial Optimization
 Dr. Justie Su-Tzu Juan

Lecture 8 Domatic Number Problem

§ 8.1 Strongly Chordal Graphs

Slides for a Course Based on the Paper S.-L. Peng and M.-S. Chang, "A Simple Linear Time Algorithm for the Domatic Partition Problem on Strongly Chordal Graphs," Inform. Process. Lett., 43 (1992), pp. 297-300.

8.1 Strongly Chordal Graphs

- Def:
(1) The domatic number of $\boldsymbol{G}, d(G)=$ max. number of pairwise disjoint dominating sets in G.
(2) The domatic partition problem is to partition $V(G)$ into $d(G)$ disjoint dominating sets.
- Note: $d(G) \leq \delta(G)+1$
- Def:
(3) G is domatically full if $d(G)=\delta(G)+1$.
- Ex:

(c) Spring 2022, Justie Su-Tzu Juan

8.1 Strongly Chordal Graphs

- Remark:
(1) $K_{n}, \overline{K_{n}}, C_{3 n}$, Trees, maximal outer planar graphs, interval graph are domatically full.
(2)

The domatic partition problem $\|\boldsymbol{V}\|=\boldsymbol{n},\|\boldsymbol{E}\|=\boldsymbol{m}$			
General Graphs	1979	Garey and Johnson	NP-hard
Interval Graphs	1988	Bertossi	$\boldsymbol{\mathcal { O } (n ^ { 2 . 5 })}$
	1989	Rao and Rangan	$(m+n)$
	1990	Lu, Ho, and Chang	
	1991	Peng and Chang	$\boldsymbol{\mathcal { O } (n \operatorname { l o g } n)}$
Proper Interval Graphs	1988	Bertossi	$\mathcal{O}\left(n^{2} \log n\right)$
Proper Circular-arc Graphs	1985	Bonuccell	NP-hard
Circular-arc Graphs			

(3) 1989, Farber showed that strongly chordal graphs are domatically full; following the proof, it can design a polynomial time algorithm, but not simple and efficient.
(c) Spring 2022, Justie Su-Tzu Juan

8.1 Strongly Chordal Graphs

- Remark:
(4) There exist an $\mathcal{O}(n \log n)$ algorithm to recognize strongly chordal graphs and determines a strong elimination ordering.
- Recall:
(1) Graph G is called a strongly chordal gaphs if \exists ordering of $V(G)$: $\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ satisfy $i \leq j, k \leq l, i \sim k, i \sim l, j \sim k \Rightarrow j \sim l$ (SEO)
(2)
$\left\{\begin{array}{l}(\mathrm{IO}) \quad i<j<k, i \sim k \Rightarrow j \sim k \\ (\mathrm{PEO}) i<j<k, i \sim j, i \sim k \Rightarrow j \sim k \\ \text { (SEO) } i \leq j, k \leq l, i \sim k, i \sim l, j \sim k \Rightarrow j \sim l\end{array}\right.$

II
(a) PEO

(c) Spring 2022, Justie Su-Tzu Juan

8.1 Strongly Chordal Graphs

- Def:
(1) A vertex v is dominated by set S if $\exists u \in S$ s.t. $u \in N[v]$.
(2) A vertex v is completely dominated if v is dominated by $\delta+1$ dominating sets.
- Algorithm 8:
$S_{i} \leftarrow \phi$ for $1 \leq i \leq \delta+1$.
for $\boldsymbol{i}=\boldsymbol{n}$ to 1 by $-\mathbf{1}$ do
find the largest k with $v_{k} \in N\left[v_{i}\right]$ and v_{k} is not completely dominated;
Let S_{l} be the set does not dominated v_{k};
if no such set exists then select any S_{l};
$S_{l} \leftarrow S_{l} \cup\left\{v_{i}\right\} ;$
end
- Time Complexity $=\mathcal{O}(|V|+|E|)$.
(c) Spring 2022, Justie Su-Tzu Juan
find the largest k with $v_{k} \in N\left[v_{i}\right]$ and v_{k} is not completely dominated; Let S_{l} be the set does not dominated v_{k}; if no such set exists then select any S_{l};
$S_{l} \leftarrow S_{l} \cup\left\{v_{i}\right\} ;$
(c) Spring 2022, Justie Su-Tzu Juan
- Ex:

Cles)

$$
\begin{array}{lllllllll}
S_{1}=\{ & & \} & & & & & \\
S_{2}=\{ & & \} & & & & & \\
S_{3}=\{ & & \} & & & & & \\
\boldsymbol{i} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} \\
\boldsymbol{k} & & & & & & & & \\
\boldsymbol{l} & & & & & & & & \\
S_{1}=\{ & & \} & & & & & \\
S_{2}=\{ & & \} & & & & & \\
S_{3}=\{ & & \} & & & & & \\
\boldsymbol{i} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} \\
\boldsymbol{k} & & & & & & & & \\
\boldsymbol{l} & & & & & & & &
\end{array}
$$

8.1 Strongly Chordal Graphs

- Def: During execution of Algorithm 8
(1) $R^{(j)}(v)=\mid\left\{x \in N[v]: x\right.$ not in any of $\left.S_{l}\right\} \mid$ in iteration $i=j$ executed.
(2) $n \operatorname{dom}^{(j)}(v)=$ number of S_{l} does not dominate v in iteration $i=j$ executed.
- Note: © $R^{(n+1)}(v)=\operatorname{deg}(v)+1, \forall v \in V(G)$.
(2) $\operatorname{ndom}^{(n+1)}(v)=\delta(G)+1, \forall v \in V(G)$.
(3) $R^{(1)}(v)=0, \forall v \in V(G)$.
- Goal: $\operatorname{ndom}^{(1)}(v)=\mathbf{0}, \forall v \in V(G)$.

8．1 Strongly Chordal Graphs

－Thm：At any time，$R^{(i)}(v) \geq n \operatorname{dom}^{(i)}(v)$ for any vertex v ．

Proof．（1／3）

By induction on i ：
When $i=n+1$（initial）：$\because \operatorname{deg}(v) \geq \delta(G), \forall v \in V(G)$ ．

$$
\therefore R^{(n+1)}(v) \geq \operatorname{ndom}^{(n+1)}(v), \forall v \in V(G) .
$$

Suppose $R^{(j)}(v) \geq \operatorname{ndom}^{(j)}(\nu), \forall v \in V(G), \forall i<j \leq n+1$ ．
When iteration i ：
Algorithm will $\left\{\begin{array}{l}\text {（1）select } v_{k} \in N\left[v_{i}\right] \text { not completely } \\ \text { and } k \text { is maximum；} \\ \text {（2）select } S_{l} \text { does not dominate } v_{k} \text { ；} \\ \text {（3）} S_{l} \leftarrow S_{l} \cup\left\{v_{i}\right\} .\end{array}\right.$

$$
\begin{aligned}
& \text { Note: 只有 } j \sim i \text { 才可能改變 } R^{(i)}\left(v_{j}\right), n \operatorname{dom}^{(i)}\left(v_{j}\right) \text { 之值。 } \\
& \quad \text { 且若有改變, }\left\{\begin{array}{l}
R^{(i)}\left(v_{j}\right)=R^{(i+1)}\left(v_{j}\right)-1 . \\
n \operatorname{ndom}^{(i)}\left(v_{j}\right)=\text { ndom }^{(i+1)}\left(v_{j}\right) \text { or } n \operatorname{ndom}^{(i+1)}\left(v_{j}\right)-1 .
\end{array}\right.
\end{aligned}
$$

（c）Spring 2022，Justie Su－Tzu Juan

8.1 Strongly Chordal Graphs

- Thm: At any time, $\boldsymbol{R}^{(i)}(v) \geq \operatorname{ndom}^{(i)}(v)$ for any vertex v.

Proof. (2/3)
\Rightarrow Only need to see the cases of: (a) $\boldsymbol{R}^{(i)}\left(v_{j}\right)=\boldsymbol{R}^{(i+1)}\left(v_{j}\right)-1$
(b) $\operatorname{ndom}^{(i)}\left(v_{j}\right)=\operatorname{ndom}^{(i+1)}\left(v_{j}\right)$
(c) $\boldsymbol{R}^{(i+1)}\left(v_{j}\right)=n d o m^{(i+1)}\left(v_{j}\right)$
$\because(\mathrm{b})$, that means $\exists p>i, v_{p} \in S_{l}, p \sim j \ldots(\mathrm{~d})$
Case 1: $j>k$:
\because (1), k is maximum, $\therefore \operatorname{ndom}^{(i+1)}\left(v_{j}\right)=0$.
$\Rightarrow \operatorname{ndom}^{(i)}\left(v_{j}\right)=0 \leq \boldsymbol{R}^{(i)}\left(v_{j}\right)$.
Case 2: $j \leq k$:
\because Case 2
\because (1)
$\because i<p, j \leq k$ and $i \sim j, i \sim k, p \sim j$
\because (d) $\quad \because$ Note $\quad \because$ (d)
$\Rightarrow \mathrm{by}$ (SEO), $p \sim k$
(c) Spring 2022, Justie Su-Tzu Juan

8.1 Strongly Chordal Graphs

- Thm: At any time, $\boldsymbol{R}^{(i)}(v) \geq \operatorname{ndom}^{(i)}(v)$ for any vertex v.

Proof. (3/3)

$$
\begin{aligned}
& \text { Case } 2: j \leq k: \quad \because \text { Case } 2 \quad \because \text { (1) } \\
& \\
& \because i<p, j \leq k \text { and } i \sim j, i \sim k, p \sim j \\
& \because(d) \quad \because \text { Note } \quad \because(\mathbf{d}) \\
& \Rightarrow \text { by }(\mathrm{SEO}), p \sim k \\
& \because v_{p} \in S_{l}(\text { before iteration } i) \\
& \text { but by (3), } S_{l} \text { does not dominate } v_{k} \rightarrow \leftarrow \\
& \therefore R^{(i)}(v) \geq \operatorname{ndom}^{(i)}(v), \forall v \in V(G) \text { at any time. }
\end{aligned}
$$

- Corollary: Algorithm 8 is true.

$$
\begin{aligned}
& \forall v \in V(G), R^{(1)}(v) \geq \operatorname{ndom}^{(1)}(v) \Rightarrow 0 \geq \operatorname{ndom}^{(1)}(v) . \\
& \therefore \operatorname{ndom}^{(1)}(v)=0
\end{aligned}
$$

Computer Science and Information Engineering National Chi Nan University
 Combinatorial Optimization

Dr. Justie Su-Tzu Juan

Lecture 8 Domatic Number Problem

§8.2 Graph Union and Joint

Slides for a Course Based on the Paper
G. J. Chang, "The domatic number problem," Discrete Math., 125 (1994), pp. 115-122.

8.2 Graph Union and Join

- Def: $G_{1}=\left(V_{1}, E_{1}\right), G_{2}=\left(V_{2}, E_{2}\right)$ are two graphs with $V_{1} \cap V_{2}=\phi$:
(1) The union of G_{1} and $G_{2}, G_{1} \cup G_{2}=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)$.
(2) The join of G_{1} and $G_{2}, G_{1}+G_{2}=\left(G_{1} \cup G_{2}\right)+\left\{x y: x \in V_{1}, y \in V_{2}\right\}$

$$
=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2} \cup\left\{x y: x \in V_{1}, y \in V_{2}\right\}\right)
$$

- Ex:

G_{1}
9

$G_{1} \cup G_{2}$

$$
G_{1}+G_{2}
$$

8.2 Graph Union and Join

- Proposition 2.1: $d\left(G_{1} \cup G_{2}\right)=\min \left\{d\left(G_{1}\right), d\left(G_{2}\right)\right\}$ for any two graphs G_{1} and G_{2}.
- Ex:

- Def: $v \in V(G)$ is called dominating vertex if $\{v\}$ is a dominating set of G, i.e. $N[\nu]=V(G)$.
- Note: If x is a dominating vertex of G, then $G \cong(G-x)+K_{1}$.

(c) Spring 2022, Justie Su-Tzu Juan

8.2 Graph Union and Join

- Proposition 9.2: If x is a dominating vertex of G, then $d(G)=d(G-x)$ $+1$.

Proof.

(1) Let $D_{1}, D_{2}, \ldots, D_{k}$ be a domatic partition of $G-x$, where $k=d(G-x)$ $\Rightarrow D_{1}, D_{2}, \ldots, D_{k},\{x\}$ form a domatic partition of G. $\therefore d(G) \geq d(G-x)+1$.
(2) Let $D_{1}, D_{2}, \ldots, D_{k}$ be a domatic partition of G, where $k=d(G)$ Assume $x \in D_{1}$, note that $D_{1} \cup D_{2}-\{x\}, D_{3}, \ldots, D_{k}$ is a domatic partition of $\boldsymbol{G}-\boldsymbol{x}$
$\therefore d(G) \leq d(G-x)+1$.
$\therefore d(G)=d(G-x)+1$.

8.2 Graph Union and Join

- Note: Let $r \in \mathrm{~N}$ and $r \geq 2$. If $G_{1}, G_{2}, \ldots, G_{r}$ are graph without a dominating vertex, the $G_{1}+G_{2}+\ldots+G_{r}$ also has no dominating vertex.
- Thm 2.3: Suppose $r \geq 2$ and $\left|V\left(G_{i}\right)\right|=n_{i}$, and G_{i} has no dominating vertex, $\forall 1 \leq i \leq r$. If $1 \leq n_{1} \leq n_{2} \leq \ldots \leq n_{r}$ and $n_{1}+n_{2}+\ldots+n_{r-1} \geq n_{r}$, then $d\left(G_{1}+G_{2}+\ldots+G_{r}\right)=\left\lfloor\left(n_{1}+n_{2}+\ldots+n_{r}\right) / 2\right\rfloor$.
Proof. (1/4)
(1) $\because G_{1}+G_{2}+\ldots+G_{r}$ has no dominating vertex
\therefore each dominating set contains ≥ 2 vertices

$$
\Rightarrow d\left(G_{1}+G_{2}+\ldots+G_{r}\right) \leq\left\lfloor\left(n_{1}+n_{2}+\ldots+n_{r}\right) / 2\right\rfloor .
$$

(2) Claim: $G_{1}+G_{2}+\ldots+G_{r}$ has a domatic partition $D_{1}, D_{2}, \ldots, D_{k}$ s.t.

$$
\begin{aligned}
& \left|D_{1}\right|=2 \text { or } 3,\left|D_{i}\right|=2 \forall 2 \leq i \leq k \text {, where } k= \\
& \left\lfloor\left(n_{1}+n_{2}+\ldots+n_{r}\right) / 2\right\rfloor .
\end{aligned}
$$

(c) Spring 2022, Justie Su-Tzu Juan

8.2 Graph Union and Join

- Claim of proof (2) in Thm 2.3:
$G_{1}+G_{2}+\ldots+G_{r}$ has a domatic partition $D_{1}, D_{2}, \ldots, D_{k}$ s.t. $\left|D_{1}\right|=2$ or
$3,\left|D_{i}\right|=2 \forall 2 \leq i \leq k$, where $k=\left\lfloor\left(n_{1}+n_{2}+\ldots+n_{r}\right) / 2\right\rfloor$.
Proof. (2/4)
Prove by induction on $n=n_{1}+n_{2}+\ldots+n_{r}$.
(i) $n \leq 3$: it's clearly. (let $D_{1}=V$)

$$
r=2: \Rightarrow n_{1}=n_{2}, \text { it's true. }
$$

(ii) Suppose $n \geq 4, r \geq 3$ and the assertion is true for $n^{\prime}=n-2$:

Choose $x \in V\left(G_{r-1}\right), y \in V\left(G_{r}\right)$
Consider $G^{\prime}=G_{1}+G_{2}+\ldots+G_{r-2}+\left(G_{r-1}-x\right)+\left(G_{r}-y\right)$.
Case 1: $\boldsymbol{n}_{\boldsymbol{r}-2}<\boldsymbol{n}_{\boldsymbol{r}}$

$$
\left\{\begin{array}{l}
n_{1} \leq n_{2} \leq \ldots \leq n_{r-2} \leq n_{r}-1, n_{r-1}-1 \leq n_{r}-1 \\
n_{1}+n_{2}+\ldots+n_{r-2}+\left(n_{r-1}-1\right) \geq n_{r}-1
\end{array}\right.
$$

(c) Spring 2022, Justie Su-Tzu Juan

8.2 Graph Union and Join

- Claim of proof (2) in Thm 2.3:
$G_{1}+G_{2}+\ldots+G_{r}$ has a domatic partition $D_{1}, D_{2}, \ldots, D_{k}$ s.t. $\left|D_{1}\right|=2$ or $3,\left|D_{i}\right|=2 \forall 2 \leq i \leq k$, where $k=\left\lfloor\left(n_{1}+n_{2}+\ldots+n_{r}\right) / 2\right\rfloor$.
Proof. (3/4)
(ii) Case 2: $n_{r-2}=n_{r-1}=n_{r}$

$$
\begin{aligned}
& n_{1} \leq n_{2} \leq \ldots \leq n_{r-3} \leq n_{r-2}, n_{r-1}-1=n_{r}-1<n_{r-2} \\
& \text { Case 2.1: } n_{r}=n_{r-1}=n_{r-2} \geq 2 \\
& n_{1}+n_{2}+\ldots+n_{r-3}+\left(n_{r-1}-1\right)+\left(n_{r}-1\right) \geq n_{r}=n_{r-2} \\
& \text { Case 2.2: } n_{r}=n_{r-1}=n_{r-2}=1 \\
& \because n \geq 4 \therefore r=n \geq 4 \\
& \Rightarrow n_{1}+n_{2}+\ldots+n_{r-3}+\left(n_{r-1}-1\right)+\left(n_{r}-1\right) \geq n_{r-3}=1=n_{r-2}
\end{aligned}
$$

By I.H., G^{\prime} has a domatic partition of
$\left\lfloor\left(n_{1}+\ldots+\left(n_{r-1}-1\right)+\left(n_{r}-1\right)\right) / 2\right\rfloor=k-1$ dominating sets; say
$D_{1}, D_{2}, \ldots, D_{k-1}$ with $\left|D_{1}\right|=2$ or $3,\left|D_{i}\right|=2 \forall 2 \leq i \leq k$.
(c) Spring 2022, Justie Su-Tzu Juan

8.2 Graph Union and Join

- Claim of proof (2) in Thm 2.3:
$G_{1}+G_{2}+\ldots+G_{r}$ has a domatic partition $D_{1}, D_{2}, \ldots, D_{k}$ s.t. $\left|D_{1}\right|=2$ or
$3,\left|D_{i}\right|=2 \forall 2 \leq i \leq k$, where $k=\left\lfloor\left(n_{1}+n_{2}+\ldots+n_{r}\right) / 2\right\rfloor$.
Proof. (4/4)
$\Rightarrow D_{1}, D_{2}, \ldots, D_{k-1},\{x, y\}=D_{k}$ form the desired domatic partition of $G_{1}+G_{2}+\ldots+G_{r}$.
- Def:
(1) Let $m \in \mathbb{N} \cup\{0\}$, an m-domatic partition of a graph $G=(V, E)$ is $\left\{D_{1}, D_{2}, \ldots, D_{k}\right\}$, where D_{i} is a dominating set of G and $D_{i} \cap D_{j}=\phi$ $\forall 1 \leq i<j \leq k$ and $\left|D_{1} \cup D_{2} \cup \ldots \cup D_{k}\right| \leq m$.
(2) The m-domatic number $d(G \mid m)$ of G is the maximum k s.t. \exists an \boldsymbol{m}-domatic partition of \boldsymbol{k} dominating sets.

8.2 Graph Union and Join

- Note: For any graph \boldsymbol{G} of \boldsymbol{n} vertices, $d(\boldsymbol{G})=d(\boldsymbol{G} \mid \boldsymbol{n})$.
- Proposition 2.4: For any graph G and any nonnegative integers

$$
m \leq m^{\prime}, d(G \mid m) \leq d(G \mid m)
$$

- Thm 2.5: Suppose $G_{1}=\left(V_{1}, E_{1}\right), G_{2}=\left(V_{2}, E_{2}\right)$ are two graphs which both has no dominating vertex and $\left|V_{1}\right|=n_{1} \leq n_{2}=\left|V_{2}\right|$. Then

$$
d\left(G_{1}+G_{2} \mid m\right)= \begin{cases}\lfloor m / 2\rfloor, & \text { if } 0 \leq m \leq 2 n_{1} \\ n_{1}+d\left(G_{2} \mid m-2 n_{1}\right), & \text { if } 2 n_{1}<m \leq n_{1}+n_{2}\end{cases}
$$

8.2 Graph Union and Join

- Thm 2.5: Suppose $G_{1}=\left(V_{1}, E_{1}\right), G_{2}=\left(V_{2}, E_{2}\right)$ are two graphs which both has no a dominating vertex and $\left|V_{1}\right|=n_{1} \leq n_{2}=\left|V_{2}\right|$. Then

$$
d\left(G_{1}+G_{2} \mid m\right)= \begin{cases}\lfloor m / 2\rfloor, & \text { if } 0 \leq m \leq 2 n_{1} . \\ n_{1}+d\left(G_{2} \mid m-2 n_{1}\right), & \text { if } 2 n_{1}<m \leq n_{1}+n_{2} .\end{cases}
$$

Proof. (1/5)
Let $V_{1}=\left\{x_{1}, x_{2}, \ldots, x_{n_{1}}\right\}, V_{2}=\left\{y_{1}, y_{2}, \ldots, y_{n_{2}}\right\}$.
(1) $0 \leq m \leq 2 n_{1}$:
(1) Let $D_{i}=\left\{x_{i}, y_{i}\right\}, 1 \leq i \leq\lfloor m / 2\rfloor, D_{i}$ is a dominating set of $G_{1}+G_{2}$ $\Rightarrow d\left(G_{1}+G_{2} \mid m\right) \geq\lfloor m / 2\rfloor$.
(2) $\because G_{i}$ has no dominating vertex, \therefore neither does $G_{1}+G_{2}$
$\therefore \forall$ dominating set D of $G_{1}+G_{2},|D| \geq 2$.
$\Rightarrow d\left(G_{1}+G_{2} \mid m\right) \leq\lfloor m / 2\rfloor$.
$\Rightarrow d\left(G_{1}+G_{2} \mid m\right)=\lfloor m / 2\rfloor$.
(c) Spring 2022, Justie Su-Tzu Juan

8.2 Graph Union and Join

- Thm 2.5: Suppose $G_{1}=\left(V_{1}, E_{1}\right), G_{2}=\left(V_{2}, E_{2}\right)$ are two graphs which both has no a dominating vertex and $\left|V_{1}\right|=n_{1} \leq n_{2}=\left|V_{2}\right|$. Then

$$
d\left(G_{1}+G_{2} \mid m\right)= \begin{cases}\lfloor m / 2\rfloor, & \text { if } 0 \leq m \leq 2 n_{1} . \\ n_{1}+d\left(G_{2} \mid m-2 n_{1}\right), & \text { if } 2 n_{1}<m \leq n_{1}+n_{2} .\end{cases}
$$

Proof. (2/5)
(2) $2 n_{1}<m \leq n_{1}+n_{2}$:
(1) Let $D_{1}, D_{2}, \ldots, D_{k}$ be an $\left(m-2 n_{1}\right)$-domatic partition of G_{2}, where $k=d\left(G_{2} \mid m-2 n_{1}\right)$.
Note D_{i} is also a dominating set of $G_{1}+G_{2}, \forall 1 \leq i \leq k$
$\because n_{2}-\left(m-2 n_{1}\right) \geq n_{1}$
W.L.O.G. say $\left\{y_{1}, y_{2}, \ldots, y_{n_{1}}\right\} \cap\left\{D_{1} \cup D_{2} \cup \ldots \cup D_{k}\right\}=\phi$. Let $D_{i}^{\prime}=\left\{x_{i}, y_{i}\right\}, 1 \leq i \leq n_{1}, D_{i}^{\prime}$ is a dominating set of $G_{1}+G_{2}$
$\Rightarrow d\left(G_{1}+G_{2} \mid m\right) \geq n_{1}+d\left(G_{2} \mid m-2 n_{1}\right)$.
(c) Spring 2022, Justie Su-Tzu Juan

8.2 Graph Union and Join

- Thm 2.5: Suppose $G_{1}=\left(V_{1}, E_{1}\right), G_{2}=\left(V_{2}, E_{2}\right)$ are two graphs which both has no a dominating vertex and $\left|V_{1}\right|=n_{1} \leq n_{2}=\left|V_{2}\right|$. Then

$$
d\left(G_{1}+G_{2} \mid m\right)= \begin{cases}\lfloor m / 2\rfloor, & \text { if } 0 \leq m \leq 2 n_{1} . \\ n_{1}+d\left(G_{2} \mid m-2 n_{1}\right), & \text { if } 2 n_{1}<m \leq n_{1}+n_{2} .\end{cases}
$$

Proof. (3/5)
(2) $2 n_{1}<m \leq n_{1}+n_{2}$:
(2) A dominating set D of $G_{1}+G_{2}$ is called standard if $D=\{x, y\}$ for some $x \in V_{1}, y \in V_{2}$.
Claim: \exists an m-domatic partition of $G_{1}+G_{2}, D_{1}, D_{2}, \ldots, D_{r}$ where
$r=d\left(G_{1}+G_{2} \mid m\right)$, s.t. among these r dominating sets, $\exists n_{1}$
standard ones, and the other $r-n_{1}$ sets are all subsets of V_{2}.
Proof. Let $D_{1}, D_{2}, \ldots, D_{r}$ is an m-domatic partition of $G_{1}+G_{2}$,

$$
r=d\left(G_{1}+G_{2} \mid m\right), \text { s.t. }
$$

standard dominating sets as many as possible.
(c) Spring 2022, Justie Su-Tzu Juan

Claim: \exists an m-domatic partition of $G_{1}+G_{2}, D_{1}, D_{2}, \ldots, D_{r}$ where $r=d\left(G_{1}+G_{2} \mid m\right)$, s.t. among these r dominating sets, $\exists n_{1}$ standard ones, and the other $r-n_{1}$ sets are all subsets of V_{2}.

- Thm 2.5: Suppose $G_{1}=\left(V_{1}, E_{1}\right), G_{2}=\left(V_{2}, E_{2}\right)$ are two graphs which both has no a dominating vertex and $\left|V_{1}\right|=n_{1} \leq n_{2}=\left|V_{2}\right|$. Then

$$
d\left(G_{1}+G_{2} \mid m\right)= \begin{cases}\lfloor m / 2\rfloor, & \text { if } 0 \leq m \leq 2 n_{1} . \\ n_{1}+d\left(G_{2} \mid m-2 n_{1}\right), & \text { if } 2 n_{1}<m \leq n_{1}+n_{2} .\end{cases}
$$

Proof. (4/5)
(2) $2 n_{1}<m \leq n_{1}+n_{2}:$

Proof of Claim.
Case 1: If $\exists D_{i}$ s.t. $\{x, y\} \subset D_{i}$ for some $x \in V_{1}, y \in V_{2}$, then replace D_{i} by $\{x, y\}$ 。
Case 2: If $\exists D_{i}, D_{j}$ s.t. $\left\{x_{a}, x_{b}\right\} \subseteq D_{i}$ and $\left\{y_{c}, y_{d}\right\} \subseteq D_{j}$ for some x_{a}, x_{b} $\in V_{1}, y_{c}, y_{d} \in V_{2}$, then replace D_{i}, D_{j} by $\left\{x_{a}, y_{c}\right\},\left\{x_{b}, y_{d}\right\}$.
Case 3: If all nonstandard dominating set D are subsets of V_{1},
$\because n_{1} \leq n_{2}$
\therefore we can replace each nonstandard dominating set D by $\{x, y\}$, where $x \in D, y \in V_{2}-\left\{D_{1} \cup D_{2} \cup \ldots \cup D_{r}\right\}$.
(c) Spring 2022, Justie Su-Tzu Juan

Claim: \exists an m-domatic partition of $G_{1}+G_{2}, D_{1}, D_{2}, \ldots, D_{r}$ where $r=d\left(G_{1}+G_{2} \mid m\right)$, s.t. among these r dominating sets, $\exists n_{1}$ standard ones, and the other $r-n_{1}$ sets are all subsets of V_{2}.

- Thm 2.5: Suppose $G_{1}=\left(V_{1}, E_{1}\right), G_{2}=\left(V_{2}, E_{2}\right)$ are two graphs which both has no a dominating vertex and $\left|V_{1}\right|=n_{1} \leq n_{2}=\left|V_{2}\right|$. Then

$$
d\left(G_{1}+G_{2} \mid m\right)= \begin{cases}\lfloor m / 2\rfloor, & \text { if } 0 \leq m \leq 2 n_{1} . \\ n_{1}+d\left(G_{2} \mid m-2 n_{1}\right), & \text { if } 2 n_{1}<m \leq n_{1}+n_{2} .\end{cases}
$$

Proof. (5/5)
(2) $2 n_{1}<m \leq n_{1}+n_{2}:$

Proof of Claim.
Case 4: If $\exists x \in V_{1}-\left\{D_{1} \cup D_{2} \cup \ldots \cup D_{r}\right\}$ then
let $y \in D_{j}$ for some $D_{j} \subset V_{2}\left(\right.$ or $\left.y \in V_{2}-\left\{D_{1} \cup D_{2} \cup \ldots \cup D_{r}\right\}\right)$
\Rightarrow replace $D_{j}\left(\right.$ or any $\left.D_{j} \subset V_{2}\right)$ by $\{x, y\}$.
\therefore By Claim, $\exists r-n_{1}$ nonstandard dominating set of $G_{1}+G_{2}$
$\Rightarrow \exists$ an $\left(m-2 n_{1}\right)$-domatic partition of G_{2} with size $r-n_{1}$
$\Rightarrow d\left(G_{2} \mid m-2 n_{1}\right) \geq r-n_{1}=d\left(G_{1}+G_{2} \mid m\right)-n_{1}$
$\Rightarrow d\left(G_{1}+G_{2} \mid m\right) \leq n_{1}+d\left(G_{2} \mid m-2 n_{1}\right)$.
$\therefore \mathrm{By}$ (1), (2), $d\left(G_{1}+G_{2} \mid m\right)=n_{1}+d\left(G_{2} \mid m-2 n_{1}\right)$.
(c) Spring 2022, Justie Su-Tzu Juan

8.2 Graph Union and Join

- Corollary 2.6: Suppose $r \geq 2, G_{i}$ is a graph with n_{i} vertices and without a dominating vertex, $\forall 1 \leq i \leq r$. If $n_{1}+n_{2}+\ldots+n_{r-1}<n_{r}$, then $d\left(G_{1}+G_{2}+\ldots+G_{r}\right)=n_{1}+n_{2}+\ldots+n_{r-1}+d\left(G_{r} \mid n_{r}-n_{1}-\ldots-n_{r-1}\right)$.
Proof.
Follows from Thm 2.5 by $\left\{\begin{array}{l}G_{1}=G_{1}+G_{2}+\ldots+G_{r-1}, \\ G_{2}=G_{r} . \\ m=n_{1}+n_{2}+\ldots+n_{r} .\end{array}\right.$
- Corollary 2.7: If $r \geq 2$ and $n_{1}+n_{2}+\ldots+n_{r-1}<n_{r}$, then $d\left(\overline{K_{n}}+\overline{K_{n}}{ }_{2}\right.$ $\left.+\ldots+\overline{K_{n_{r}}}\right)=n_{1}+n_{2}+\ldots+n_{r-1}$.
Proof.
Follows from Corollary 2.6 and $d\left(\bar{K}_{a} \mid b\right)=0$ for $a>b$.

Note: Complete k-partite graph $\boldsymbol{K}_{n_{1}, n_{2}}, \ldots, n_{r}=\overline{\boldsymbol{K}_{n}}+\overline{\boldsymbol{K}_{n}}+\ldots+\overline{\boldsymbol{K}_{n_{r}}}$
(c) Spring 2022, Justie Su-Tzu Juan

