Computer Science and Information Engineering National Chi Nan University Combinatorial Optimization Dr. Justie Su-Tzu Juan

Lecture 8 Domatic Number Problem

§ 8.1 Strongly Chordal Graphs

Slides for a Course Based on the Paper S.-L. Peng and M.-S. Chang, "A Simple Linear Time Algorithm for the Domatic Partition Problem on Strongly Chordal Graphs," Inform. Process. Lett., 43 (1992), pp. 297-300.

<u>Def</u>:

- **①** The **domatic number** of G, $d(G) = \max$. number of pairwise disjoint dominating sets in G.
- **2** The domatic partition problem is to partition V(G) into d(G) disjoint dominating sets.
- <u>Note</u>: $d(G) \le \delta(G) + 1$
- <u>Def</u>:

③ *G* is domatically full if $d(G) = \delta(G) + 1$.

Remark:

① K_n , $\overline{K_n}$, C_{3n} , Trees, maximal outer planar graphs, interval graph are domatically full.

<u></u> 0 .				
	The domatic partition problem $ V = n$, $ E = m$			
	General Graphs	1979	Garey and Johnson	NP-hard
	Interval Graphs	1988	Bertossi	$\mathcal{O}(n^{2.5})$
		1989	Rao and Rangan	$\mathcal{O}(m+n)$
		1990	Lu, Ho, and Chang	
		1991	Peng and Chang	$\mathcal{O}(n)$ with sorted intervals
	Proper Interval Graphs	1988	Bertossi	$\mathcal{O}(n \log n)$
	Proper Circular-arc Graphs	1985	Bonuccell	$\mathcal{O}(n^2 \log n)$
	Circular-arc Graphs			NP-hard

③ 1989, Farber showed that strongly chordal graphs are domatically full; following the proof, it can design a polynomial time algorithm, but not simple and efficient.

Remark:

④ There exist an $\mathcal{O}(n\log n)$ algorithm to recognize strongly chordal graphs and determines a strong elimination ordering.

Recall:

(SEO

<u>Def</u>:

- **①** A vertex *v* is **dominated** by set *S* if $\exists u \in S$ s.t. $u \in N[v]$.
- **②** A vertex *v* is completely dominated if *v* is dominated by $\delta + 1$ dominating sets.

Algorithm 8:

 $S_i \leftarrow \phi$ for $1 \le i \le \delta + 1$.

for i = n to 1 by -1 do

find the largest k with $v_k \in N[v_i]$ and v_k is not completely dominated;

Let S_l be the set does not dominated v_k ;

if no such set exists then select any S_l ;

$$S_l \leftarrow S_l \cup \{v_i\};$$

end

• Time Complexity = $\mathcal{O}(|V|+|E|)$.

find the largest k with $v_k \in N[v_i]$ and v_k is not completely dominated; Let S_l be the set does not dominated v_k ; if no such set exists then select any S_l ; $S_l \leftarrow S_l \cup \{v_i\}$;

- <u>Def</u>: During execution of Algorithm 8
 - ① $\mathbb{R}^{(j)}(v) = |\{x \in N[v]: x \text{ not in any of } S_l\}| \text{ in iteration } i = j \text{ executed.}$

2 $ndom^{(j)}(v) = number of S_l does not dominate v in iteration i = j executed.$

Note: (1)
$$R^{(n+1)}(v) = deg(v) + 1, \forall v \in V(G).$$

(2) $ndom^{(n+1)}(v) = \delta(G) + 1, \forall v \in V(G).$
(3) $R^{(1)}(v) = 0, \forall v \in V(G).$

• <u>Goal</u>: $ndom^{(1)}(v) = 0, \forall v \in V(G)$.

- <u>Thm</u>: At any time, $R^{(i)}(v) \ge ndom^{(i)}(v)$ for any vertex *v*. Proof. (1/3)
 - By induction on *i*:
 - When i = n + 1 (initial): $\therefore deg(v) \ge \delta(G), \forall v \in V(G)$.

 $\therefore R^{(n+1)}(v) \ge ndom^{(n+1)}(v), \forall v \in V(G).$

Suppose $R^{(j)}(v) \ge ndom^{(j)}(v), \forall v \in V(G), \forall i < j \le n+1.$

When iteration *i*:

 Note:
 只有 $j \sim i$ 才可能改變 $R^{(i)}(v_j)$, $ndom^{(i)}(v_j)$ 之值。

 且若有改變,
 $R^{(i)}(v_j) = R^{(i+1)}(v_j) - 1$.

 $ndom^{(i)}(v_j) = ndom^{(i+1)}(v_j)$ or $ndom^{(i+1)}(v_j) - 1$.

 (c) Spring 2022, Justie Su-Tzu Juan

• <u>Thm</u>: At any time, $R^{(i)}(v) \ge ndom^{(i)}(v)$ for any vertex *v*. Proof. (2/3)

 $\Rightarrow \text{Only need to see the cases of: (a) } R^{(i)}(v_j) = R^{(i+1)}(v_j) - 1$ (b) $ndom^{(i)}(v_j) = ndom^{(i+1)}(v_j)$ (c) $R^{(i+1)}(v_j) = ndom^{(i+1)}(v_j)$

: (b), that means $\exists p > i, v_p \in S_l, p \sim j \dots (d)$

 $\underline{\text{Case 1}}: j > k:$

 $\therefore \textcircled{0}, k \text{ is maximum}, \therefore ndom^{(i+1)}(v_j) = 0.$ $\Rightarrow ndom^{(i)}(v_j) = 0 \le R^{(i)}(v_j).$ $\underbrace{\text{Case 2: } j \le k:}_{i < p, j \le k \text{ and } i \sim j, i \sim k, p \sim j}$ $\therefore (d) \qquad \therefore \text{ Note} \qquad \therefore (d)$ $\Rightarrow \text{ by (SEO), } p \sim k$

• <u>Thm</u>: At any time, $R^{(i)}(v) \ge ndom^{(i)}(v)$ for any vertex *v*. Proof. (3/3)

 $\underbrace{\text{Case 2: } j \leq k: \quad \because \text{ Case 2}}_{i \leq p, j \leq k \text{ and } i \sim j, i \sim k, p \sim j}_{i \leq (d)}$ $\Rightarrow by (SEO), p \sim k$ $\therefore v_p \in S_l \text{ (before iteration } i\text{)}$ $but by ③, S_l \text{ does not dominate } v_k \rightarrow \leftarrow$ $\therefore R^{(i)}(v) \geq ndom^{(i)}(v), \forall v \in V(G) \text{ at any time.}$

Corollary: Algorithm 8 is true.

 $\forall v \in V(G), R^{(1)}(v) \ge ndom^{(1)}(v) \Rightarrow 0 \ge ndom^{(1)}(v).$ $\therefore ndom^{(1)}(v) = 0$

Computer Science and Information Engineering National Chi Nan University Combinatorial Optimization Dr. Justie Su-Tzu Juan

Lecture 8 Domatic Number Problem

§ 8.2 Graph Union and Joint

Slides for a Course Based on the Paper G. J. Chang, "*The domatic number problem*," Discrete Math., 125 (1994), pp. 115-122.

Def: G₁ = (V₁, E₁), G₂ = (V₂, E₂) are two graphs with V₁ ∩ V₂ = φ:
① The union of G₁ and G₂, G₁ ∪ G₂ = (V₁ ∪ V₂, E₁ ∪ E₂).
② The join of G₁ and G₂, G₁ + G₂ = (G₁ ∪ G₂) + {xy : x ∈ V₁, y ∈ V₂} = (V₁ ∪ V₂, E₁ ∪ E₂ ∪ {xy : x ∈ V₁, y ∈ V₂})

• <u>Proposition 2.1</u>: $d(G_1 \cup G_2) = \min\{d(G_1), d(G_2)\}$ for any two graphs G_1 and G_2 .

- <u>Def</u>: v ∈ V(G) is called dominating vertex if {v} is a dominating set of G, i.e. N[v] = V(G).
- <u>Note</u>: If x is a dominating vertex of G, then $G \cong (G x) + K_1$.

Proposition 9.2: If x is a dominating vertex of G, then d(G) = d(G - x) + 1.

Proof.

- ① Let $D_1, D_2, ..., D_k$ be a domatic partition of G x, where k = d(G x)⇒ $D_1, D_2, ..., D_k, \{x\}$ form a domatic partition of G. ∴ $d(G) \ge d(G - x) + 1$.
- ② Let D₁, D₂, ..., D_k be a domatic partition of G, where k = d(G) Assume x ∈ D₁, note that D₁ ∪ D₂ - {x}, D₃, ..., D_k is a domatic partition of G - x
 - $\therefore d(G) \leq d(G-x) + 1.$
- $\therefore d(G) = d(G x) + 1.$

- <u>Note</u>: Let *r* ∈ N and *r* ≥ 2. If *G*₁, *G*₂, ..., *G_r* are graph without a dominating vertex, the *G*₁ + *G*₂ + ... + *G_r* also has no dominating vertex.
- <u>Thm 2.3</u>: Suppose $r \ge 2$ and $|V(G_i)| = n_i$, and G_i has no dominating vertex, $\forall 1 \le i \le r$. If $1 \le n_1 \le n_2 \le \dots \le n_r$ and $n_1 + n_2 + \dots + n_{r-1} \ge n_r$, then $d(G_1 + G_2 + \dots + G_r) = \lfloor (n_1 + n_2 + \dots + n_r)/2 \rfloor$. Proof. (1/4)

① :: $G_1 + G_2 + \ldots + G_r$ has no dominating vertex

 \therefore each dominating set contains ≥ 2 vertices

 $\Rightarrow d(G_1 + G_2 + \ldots + G_r) \leq \lfloor (n_1 + n_2 + \ldots + n_r)/2 \rfloor.$

2 Claim: $G_1 + G_2 + \ldots + G_r$ has a domatic partition D_1, D_2, \ldots, D_k s.t. $|D_1| = 2 \text{ or } 3, |D_i| = 2 \forall 2 \le i \le k$, where $k = \lfloor (n_1 + n_2 + \ldots + n_r)/2 \rfloor$.

Claim of proof ② in Thm 2.3:

 $G_1 + G_2 + ... + G_r$ has a domatic partition $D_1, D_2, ..., D_k$ s.t. $|D_1| = 2$ or 3, $|D_i| = 2 \forall 2 \le i \le k$, where $k = \lfloor (n_1 + n_2 + ... + n_r)/2 \rfloor$.

Proof. (2/4)

Prove by induction on $n = n_1 + n_2 + \ldots + n_r$.

(i) $n \leq 3$: it's clearly. (let $D_1 = V$)

r = 2: $\Rightarrow n_1 = n_2$, it's true.

(ii) Suppose $n \ge 4, r \ge 3$ and the assertion is true for n' = n - 2: Choose $x \in V(G_{r-1}), y \in V(G_r)$ Consider $G' = G_1 + G_2 + ... + G_{r-2} + (G_{r-1} - x) + (G_r - y)$. <u>Case 1</u>: $n_{r-2} < n_r$ $\int n_1 \le n_2 \le ... \le n_{r-2} \le n_r - 1, n_{r-1} - 1 \le n_r - 1$

$$n_1 + n_2 + \dots + n_{r-2} + (n_{r-1} - 1) \ge n_r - 1$$

Claim of proof ② in Thm 2.3:

 $G_1 + G_2 + \dots + G_r$ has a domatic partition D_1, D_2, \dots, D_k s.t. $|D_1| = 2$ or 3, $|D_i| = 2 \forall 2 \le i \le k$, where $k = \lfloor (n_1 + n_2 + \dots + n_r)/2 \rfloor$.

Proof. (3/4)

ii) Case 2:
$$n_{r-2} = n_{r-1} = n_r$$

 $n_1 \le n_2 \le \dots \le n_{r-3} \le n_{r-2}, n_{r-1} - 1 = n_r - 1 < n_{r-2}$
Case 2.1: $n_r = n_{r-1} = n_{r-2} \ge 2$
 $n_1 + n_2 + \dots + n_{r-3} + (n_{r-1} - 1) + (n_r - 1) \ge n_r = n_{r-2}$
Case 2.2: $n_r = n_{r-1} = n_{r-2} = 1$
 $\therefore n \ge 4 \therefore r = n \ge 4$
 $\Rightarrow n_1 + n_2 + \dots + n_{r-3} + (n_{r-1} - 1) + (n_r - 1) \ge n_{r-3} = 1 = n_{r-2}$
By I.H., *G* 'has a domatic partition of

 $\lfloor (n_1 + ... + (n_{r-1}-1) + (n_r-1))/2 \rfloor = k - 1$ dominating sets; say $D_1, D_2, ..., D_{k-1}$ with $|D_1| = 2$ or $3, |D_i| = 2 \forall 2 \le i \le k$.

Claim of proof ② in Thm 2.3:

 $G_1 + G_2 + \ldots + G_r$ has a domatic partition D_1, D_2, \ldots, D_k s.t. $|D_1| = 2$ or 3, $|D_i| = 2 \forall 2 \le i \le k$, where $k = \lfloor (n_1 + n_2 + \ldots + n_r)/2 \rfloor$.

Proof. (4/4)

 $\Rightarrow D_1, D_2, ..., D_{k-1}, \{x, y\} = D_k$ form the desired domatic partition of $G_1 + G_2 + ... + G_r$.

■ <u>Def</u>:

- **①** Let *m* ∈ $\mathbb{N} \cup \{0\}$, an *m*-domatic partition of a graph *G* = (*V*, *E*) is $\{D_1, D_2, ..., D_k\}$, where D_i is a dominating set of *G* and $D_i \cap D_j = \phi$ $\forall 1 \le i < j \le k$ and $|D_1 \cup D_2 \cup ... \cup D_k| \le m$.
- ② The *m*-domatic number d(G|m) of *G* is the maximum *k* s.t. ∃ an *m*-domatic partition of *k* dominating sets.

- <u>Note</u>: For any graph *G* of *n* vertices, d(G) = d(G|n).
- <u>Proposition 2.4</u>: For any graph G and any nonnegative integers $m \le m', d(G|m) \le d(G|m').$
- <u>Thm 2.5</u>: Suppose $G_1 = (V_1, E_1)$, $G_2 = (V_2, E_2)$ are two graphs which both has no dominating vertex and $|V_1| = n_1 \le n_2 = |V_2|$. Then $d(G_1+G_2|m) = \begin{cases} \lfloor m/2 \rfloor, & \text{if } 0 \le m \le 2n_1.\\ n_1 + d(G_2|m-2n_1), & \text{if } 2n_1 < m \le n_1+n_2. \end{cases}$

• <u>Thm 2.5</u>: Suppose $G_1 = (V_1, E_1)$, $G_2 = (V_2, E_2)$ are two graphs which both has no a dominating vertex and $|V_1| = n_1 \le n_2 = |V_2|$. Then $d(G_1 + G_2|m) = \begin{cases} \lfloor m/2 \rfloor, & \text{if } 0 \le m \le 2n_1.\\ n_1 + d(G_2|m-2n_1), & \text{if } 2n_1 < m \le n_1+n_2. \end{cases}$

Proof. (1/5)

Let
$$V_1 = \{x_1, x_2, ..., x_{n_1}\}, V_2 = \{y_1, y_2, ..., y_{n_2}\}.$$

(1) $0 \le m \le 2n_1$:

① Let $D_i = \{x_i, y_i\}, 1 \le i \le \lfloor m/2 \rfloor, D_i$ is a dominating set of $G_1 + G_2$ $\Rightarrow d(G_1 + G_2 | m) \ge \lfloor m/2 \rfloor$.

② ∴ G_i has no dominating vertex, ∴ neither does G_1+G_2

 \therefore \forall dominating set *D* of $G_1 + G_2$, $|D| \ge 2$.

 $\Rightarrow d(G_1 + G_2 | m) \le \lfloor m/2 \rfloor.$

 $\Rightarrow d(G_1 + G_2 | m) = \lfloor m/2 \rfloor.$

• <u>Thm 2.5</u>: Suppose $G_1 = (V_1, E_1)$, $G_2 = (V_2, E_2)$ are two graphs which both has no a dominating vertex and $|V_1| = n_1 \le n_2 = |V_2|$. Then $d(G_1 + G_2|m) = \begin{cases} \lfloor m/2 \rfloor, & \text{if } 0 \le m \le 2n_1.\\ n_1 + d(G_2|m-2n_1), & \text{if } 2n_1 < m \le n_1+n_2. \end{cases}$

Proof. (2/5)

(2) $2n_1 < m \le n_1 + n_2$: ① Let $D_1, D_2, ..., D_k$ be an $(m-2n_1)$ -domatic partition of G_2 , where $k = d(G_2|m-2n_1)$.

Note D_i is also a dominating set of G_1+G_2 , $\forall 1 \le i \le k$

 $\therefore n_{2} - (m - 2n_{1}) \ge n_{1}$ W.L.O.G. say $\{y_{1}, y_{2}, ..., y_{n_{1}}\} \cap \{D_{1} \cup D_{2} \cup ... \cup D_{k}\} = \phi$. Let $D'_{i} = \{x_{i}, y_{i}\}, 1 \le i \le n_{1}, D'_{i}$ is a dominating set of $G_{1} + G_{2}$ $\Rightarrow d(G_{1} + G_{2}|m) \ge n_{1} + d(G_{2}|m - 2n_{1}).$

• <u>Thm 2.5</u>: Suppose $G_1 = (V_1, E_1)$, $G_2 = (V_2, E_2)$ are two graphs which both has no a dominating vertex and $|V_1| = n_1 \le n_2 = |V_2|$. Then $d(G_1+G_2|m) = \begin{cases} \lfloor m/2 \rfloor, & \text{if } 0 \le m \le 2n_1.\\ n_1 + d(G_2|m-2n_1), & \text{if } 2n_1 < m \le n_1+n_2. \end{cases}$

Proof. (3/5)

(2) $2n_1 < m \le n_1 + n_2$:

② A dominating set *D* of G_1 + G_2 is called standard if *D* = {*x*, *y*} for some *x* ∈ *V*₁, *y* ∈ *V*₂.

<u>Claim</u>: \exists an *m*-domatic partition of $G_1+G_2, D_1, D_2, ..., D_r$ where

 $r = d(G_1 + G_2 | m)$, s.t. among these *r* dominating sets, $\exists n_1$

standard ones, and the other $r - n_1$ sets are all subsets of V_2 .

Proof. Let $D_1, D_2, ..., D_r$ is an *m*-domatic partition of G_1+G_2 , $r = d(G_1+G_2|m)$, s.t.

standard dominating sets as many as possible.

<u>Claim</u>: \exists an *m*-domatic partition of $G_1+G_2, D_1, D_2, ..., D_r$ where $r = d(G_1+G_2|m)$, s.t. among these *r* dominating sets, $\exists n_1$ standard ones, and the other $r - n_1$ sets are all subsets of V_2 .

• <u>Thm 2.5</u>: Suppose $G_1 = (V_1, E_1), G_2 = (V_2, E_2)$ are two graphs which both has no a dominating vertex and $|V_1| = n_1 \le n_2 = |V_2|$. Then $d(G_1+G_2|m) = \begin{cases} \lfloor m/2 \rfloor, & \text{if } 0 \le m \le 2n_1.\\ n_1 + d(G_2|m-2n_1), & \text{if } 2n_1 < m \le n_1+n_2. \end{cases}$

Proof. (4/5)

(2) 2n₁ < m ≤ n₁+n₂: Proof of Claim. <u>Case 1</u>: If ∃ D_i s.t. {x, y} ⊂ D_i for some x ∈ V₁, y ∈ V₂, then replace D_i by {x, y}. <u>Case 2</u>: If ∃ D_i, D_j s.t. {x_a, x_b} ⊆ D_i and {y_c, y_d} ⊆ D_j for some x_a, x_b ∈ V₁, y_c, y_d ∈ V₂, then replace D_i, D_j by {x_a, y_c}, {x_b, y_d}. <u>Case 3</u>: If all nonstandard dominating set D are subsets of V₁, ∴ n₁≤ n₂ ∴ we can replace each nonstandard dominating set D by

 $\{x, y\}$, where $x \in D, y \in V_2 - \{D_1 \cup D_2 \cup ... \cup D_r\}$.

<u>Claim</u>: \exists an *m*-domatic partition of $G_1+G_2, D_1, D_2, ..., D_r$ where $r = d(G_1+G_2|m)$, s.t. among these *r* dominating sets, $\exists n_1$ standard ones, and the other $r - n_1$ sets are all subsets of V_2 .

<u>Thm 2.5</u>: Suppose $G_1 = (V_1, E_1), G_2 = (V_2, E_2)$ are two graphs which both has no a dominating vertex and $|V_1| = n_1 \le n_2 = |V_2|$. Then $d(G_1 + G_2 | m) = \begin{cases} \lfloor m/2 \rfloor, & \text{if } 0 \le m \le 2n_1. \\ n_1 + d(G_2 | m - 2n_1), & \text{if } 2n_1 < m \le n_1 + n_2. \end{cases}$ **Proof.** (5/5) (2) $2n_1 < m \le n_1 + n_2$: **Proof of Claim.** Case 4: If $\exists x \in V_1 - \{D_1 \cup D_2 \cup \ldots \cup D_r\}$ then let $y \in D_i$ for some $D_i \subset V_2$ (or $y \in V_2 - \{D_1 \cup D_2 \cup \ldots \cup D_r\}$) \Rightarrow replace D_i (or any $D_i \subset V_2$) by $\{x, y\}$. : By Claim, $\exists r - n_1$ nonstandard dominating set of $G_1 + G_2$ $\Rightarrow \exists$ an $(m - 2n_1)$ -domatic partition of G_2 with size $r - n_1$ $\Rightarrow d(G_2|m-2n_1) \ge r-n_1 = d(G_1+G_2|m)-n_1$ $\Rightarrow d(G_1 + G_2|m) \le n_1 + d(G_2|m - 2n_1).$

:. By ①, ②, $d(G_1 + G_2|m) = n_1 + d(G_2|m - 2n_1)$.

• <u>Corollary 2.6</u>: Suppose $r \ge 2$, G_i is a graph with n_i vertices and without a dominating vertex, $\forall 1 \le i \le r$. If $n_1 + n_2 + \ldots + n_{r-1} < n_r$, then $d(G_1 + G_2 + \ldots + G_r) = n_1 + n_2 + \ldots + n_{r-1} + d(G_r|n_r - n_1 - \ldots - n_{r-1})$. Proof.

Follows from <u>Thm 2.5</u> by $\begin{cases} G_1 = G_1 + G_2 + \dots + G_{r-1}, \\ G_2 = G_r, \\ m = n_1 + n_2 + \dots + n_r. \end{cases}$

• <u>Corollary 2.7</u>: If $r \ge 2$ and $n_1 + n_2 + \dots + n_{r-1} < n_r$, then $d(\overline{K_n}_1 + \overline{K_n}_2 + \dots + \overline{K_n}_r) = n_1 + n_2 + \dots + n_{r-1}$.

Proof.

Follows from Corollary 2.6 and $d(\overline{K_a}|b) = 0$ for a > b.

<u>Note:</u> Complete *k*-partite graph $K_{n_1,n_2,...,n_r} = \overline{K_{n_1}} + \overline{K_{n_2}} + ... + \overline{K_{n_r}}$ (c) Spring 2022, Justie Su-Tzu Juan