
(c) Spring 2022, Justie Su-Tzu Juan 1

Lecture 8 Domatic Number Problem

§ 8.1 Strongly Chordal Graphs

Computer Science and Information Engineering

National Chi Nan University

Combinatorial Optimization
Dr.  Justie Su-Tzu Juan

Slides for a Course Based on the Paper

S.-L. Peng and M.-S. Chang, “A Simple Linear Time Algorithm 

for the Domatic Partition Problem on Strongly Chordal Graphs,” 

Inform. Process. Lett., 43 (1992), pp. 297-300.



(c) Spring 2022, Justie Su-Tzu Juan 2

8.1 Strongly Chordal Graphs

 Def: 

 The domatic number of G, d(G) = max. number of pairwise 

disjoint dominating sets in G.

 The domatic partition problem is to partition V(G) into d(G) 

disjoint dominating sets.

 Note: d(G)  (G) + 1

 Def:

 G is domatically full if d(G) = (G) + 1.

 Ex:

a

b

c

d

G
S1 = {b}

S2 = {c}

S3 = {a, d}

d(G) = 3
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8.1 Strongly Chordal Graphs

 Remark:

 Kn, Kn, C3n, Trees, maximal outer planar graphs, interval graph 

are domatically full.



 1989, Farber showed that strongly chordal graphs are 

domatically full; following the proof, it can design a polynomial 

time algorithm, but not simple and efficient.

The domatic partition problem  |V| = n, |E| = m

General Graphs 1979 Garey and Johnson NP-hard

Interval Graphs

1988 Bertossi O(n2.5)

1989 Rao and Rangan
O(m+n)

1990 Lu, Ho, and Chang

1991 Peng and Chang O(n) with sorted intervals

Proper Interval Graphs 1988 Bertossi O(nlogn)

Proper Circular-arc Graphs 1985 Bonuccell O(n2logn)

Circular-arc Graphs NP-hard
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8.1 Strongly Chordal Graphs

 Remark: 

 There exist an O(nlogn) algorithm to recognize strongly chordal 

graphs and determines a strong elimination ordering.

 Recall:

 Graph G is called a strongly chordal gaphs if  ordering of V(G): 

[v1, v2, …, vn] satisfy i  j, k  l, i  k, i  l, j  k  j  l (SEO)

 (IO)   i  j  k, i  k  j  k

(PEO) i  j  k, i  j, i  k  j  k

(SEO) i  j, k  l, i  k, i  l, j  k  j  l

i       j      k

i       j      k
i

k

j

l(a) PEO

(b) i < j < k < l, i  k, i  l, j  k  j  l

(IO) (PEO)

(SEO)
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8.1 Strongly Chordal Graphs

 Def: 

 A vertex v is dominated by set S if  u  S s.t. u  N[v].

 A vertex v is completely dominated if v is dominated by  + 1 

dominating sets.

 Algorithm 8:

Si   for 1  i   + 1.

for i = n to 1 by –1 do

find the largest k with vk  N[vi] and vk is not completely dominated;

Let Sl be the set does not dominated vk;

if no such set exists then select any Sl;

Sl  Sl  {vi};

end

 Time Complexity = O(|V|+|E|).
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 Ex:

v1 v2

v3 v4

v5 v6

v7

v8

S1 = { }

i 1 2 3 4 5 6 7 8 

k

l

S2 = { }

S3 = { }

v1 v2

v4 v3

v8 v7

v5

v6

S1 = { }

i 1 2 3 4 5 6 7 8 

k

l

S2 = { }

S3 = { }

find the largest k with vk  N[vi] and vk is not completely dominated;

Let Sl be the set does not dominated vk;

if no such set exists then select any Sl;

Sl  Sl  {vi};
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8.1 Strongly Chordal Graphs

 Def: During execution of Algorithm 8

 R(j)(v) = |{ x  N[v]: x not in any of Sl }| in iteration i = j executed.

 ndom(j)(v) = number of Sl does not dominate v in iteration i = j

executed.

 Note:  R(n+1)(v) = deg(v) +1,  v  V(G).

 ndom(n+1)(v) = (G) +1,  v  V(G).

 R(1)(v) = 0,  v  V(G).

 Goal: ndom(1)(v) = 0,  v  V(G).
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8.1 Strongly Chordal Graphs

 Thm: At any time, R(i)(v)  ndom(i)(v) for any vertex v.

Proof. (1/3)

By induction on i: 

When i = n + 1 (initial): ∵ deg(v)  (G),  v  V(G). 

 R(n+1)(v)  ndom(n+1)(v),  v  V(G).

Suppose R(j)(v)  ndom(j)(v),  v  V(G),  i  j  n+1.

When iteration i:

 select vk  N[vi] not completely dominated, 

and k is maximum;

Algorithm will  select Sl does not dominate vk;

 Sl  Sl  {vi}.

Note: 只有 j  i才可能改變R(i)(vj), ndom(i)(vj)之值。

且若有改變， R(i)(vj) = R(i+1)(vj) – 1. 

ndom(i)(vj) = ndom(i+1)(vj) or ndom(i+1)(vj) – 1. 



(c) Spring 2022, Justie Su-Tzu Juan 9

8.1 Strongly Chordal Graphs

 Thm: At any time, R(i)(v)  ndom(i)(v) for any vertex v.

Proof. (2/3)

 Only need to see the cases of: (a) R(i)(vj) = R(i+1)(vj) – 1

(b) ndom(i)(vj) = ndom(i+1)(vj) 

(c) R(i+1)(vj) = ndom(i+1)(vj) 

∵ (b), that means  p  i, vp  Sl, p  j (d)

Case 1: j  k: 

∵, k is maximum,  ndom(i+1)(vj) = 0.

 ndom(i)(vj) = 0  R(i)(vj).

Case 2: j  k: 

∵ i  p, j  k and i  j, i  k, p  j

 by (SEO), p  k 

∵ (d)

∵ Case 2

∵ Note ∵ (d)

∵
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8.1 Strongly Chordal Graphs

 Thm: At any time, R(i)(v)  ndom(i)(v) for any vertex v.

Proof. (3/3)

Case 2: j  k: 

∵ i  p, j  k and i  j, i  k, p  j

 by (SEO), p  k 

∵ vp  Sl (before iteration i)

but by , Sl does not dominate vk 

 R(i)(v)  ndom(i)(v),  v  V(G) at any time.

 Corollary: Algorithm 8 is true.

∵ (d)

∵ Case 2

∵ Note ∵ (d)

∵

 v  V(G), R(1)(v)  ndom(1)(v)  0  ndom(1)(v).

 ndom(1)(v) = 0 
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8.2 Graph Union and Join

 Def: G1 = (V1, E1), G2 = (V2, E2) are two graphs with V1  V2 = :

 The union of G1 and G2, G1  G2 = (V1  V2, E1  E2).

 The join of G1 and G2, G1 + G2 = (G1  G2) + {xy : x  V1, y  V2}

= (V1  V2, E1  E2  {xy : x  V1, y  V2})

 Ex: 

G1 G2 G1G2 G1+G2
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8.2 Graph Union and Join

 Proposition 2.1: d(G1  G2) = min{d(G1), d(G2)} for any two graphs 

G1 and G2. 

 Ex:

 Def: v  V(G) is called dominating vertex if {v} is a dominating set of 

G, i.e. N[v] = V(G).

 Note: If x is a dominating vertex of G, then G  (G – x) + K1.

G1 G2 G1G2

x G – x
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8.2 Graph Union and Join

 Proposition 9.2: If x is a dominating vertex of G, then d(G) = d(G – x) 

+ 1.

Proof. 

 Let D1, D2, …, Dk be a domatic partition of G – x, where k = d(G–x)

 D1, D2, …, Dk, {x} form a domatic partition of G.

 d(G)  d(G – x) + 1. 

 Let D1, D2, …, Dk be a domatic partition of G, where k = d(G)

Assume x  D1, note that D1  D2 – {x}, D3, …, Dk is a domatic

partition of G – x

 d(G)  d(G – x) + 1. 

 d(G) = d(G – x) + 1. 
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8.2 Graph Union and Join

 Note: Let r N and r  2. If G1, G2, …, Gr are graph without a 

dominating vertex, the G1 + G2 + … + Gr also has no dominating 

vertex. 

 Thm 2.3: Suppose r  2 and |V(Gi)| = ni, and Gi has no dominating 

vertex,  1  i  r. If 1  n1  n2  …  nr and n1 + n2 + … + nr–1  nr, 

then d(G1 + G2 + … + Gr) = (n1 + n2 + … + nr)/2.

Proof. (1/4)

∵ G1 + G2 + … + Gr has no dominating vertex

 each dominating set contains  2 vertices

 d(G1 + G2 + … + Gr)  (n1 + n2 + … + nr)/2.

 Claim: G1 + G2 + … + Gr has a domatic partition D1, D2, …, Dk s.t.

|D1| = 2 or 3, |Di| = 2  2  i  k, where k = 

(n1 + n2 + … + nr)/2.
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 Claim of proof  in Thm 2.3:

G1 + G2 + … + Gr has a domatic partition D1, D2, …, Dk s.t. |D1| = 2 or 

3, |Di| = 2  2  i  k, where k = (n1 + n2 + … + nr)/2.

Proof. (2/4)

Prove by induction on n = n1 + n2 + … + nr.

(i) n  3: it’s clearly. (let D1 = V)

r = 2:  n1 = n2, it’s true.

(ii) Suppose n  4, r  3 and the assertion is true for n = n – 2:

Choose x  V(Gr–1), y  V(Gr)

Consider G = G1 + G2 + … + Gr–2 + (Gr–1 – x) + (Gr – y).

Case 1: nr–2  nr

n1  n2  …  nr–2  nr–1, nr–1–1  nr–1 

n1 + n2 + … + nr–2 + (nr–1–1)  nr–1

8.2 Graph Union and Join
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 Claim of proof  in Thm 2.3:

G1 + G2 + … + Gr has a domatic partition D1, D2, …, Dk s.t. |D1| = 2 or 

3, |Di| = 2  2  i  k, where k = (n1 + n2 + … + nr)/2.

Proof. (3/4)

(ii)   Case 2: nr–2 = nr–1 = nr

n1  n2  …  nr–3  nr–2, nr–1–1 = nr–1  nr–2

Case 2.1: nr = nr–1 = nr–2  2 

n1 + n2 + … + nr–3 + (nr–1–1) + (nr–1)  nr = nr–2

Case 2.2: nr = nr–1 = nr–2 = 1 

∵ n  4   r = n  4

 n1 + n2 + … + nr–3 + (nr–1–1) + (nr–1)  nr–3 = 1 = nr–2

By I.H., G has a domatic partition of 

(n1 + … + (nr–1–1) + (nr–1))/2 = k – 1 dominating sets; say 

D1, D2, …, Dk–1 with |D1| = 2 or 3, |Di| = 2  2  i  k.

8.2 Graph Union and Join
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 Claim of proof  in Thm 2.3:

G1 + G2 + … + Gr has a domatic partition D1, D2, …, Dk s.t. |D1| = 2 or 

3, |Di| = 2  2  i  k, where k = (n1 + n2 + … + nr)/2.

Proof. (4/4)

 D1, D2, …, Dk–1, {x, y} = Dk form  the desired domatic 

partition of G1 + G2 + … + Gr.

 Def: 

 Let m N  {0}, an m-domatic partition of a graph G = (V, E) is 

{D1, D2, …, Dk}, where Di is a dominating set of G and Di  Dj = 

 1  i  j  k and |D1  D2  …  Dk|  m.

 The m-domatic number d(G|m) of G is the maximum k s.t.  an 

m-domatic partition of k dominating sets.

8.2 Graph Union and Join
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8.2 Graph Union and Join

 Note: For any graph G of n vertices, d(G) = d(G|n). 

 Proposition 2.4: For any graph G and  any nonnegative integers 

m  m, d(G|m)  d(G|m). 

 Thm 2.5: Suppose G1 = (V1, E1), G2 = (V2, E2) are two graphs which 

both has no dominating vertex and |V1| = n1  n2 = |V2|. Then

d(G1+G2|m) = 
m/2, if 0  m  2n1.

n1 + d(G2|m–2n1), if 2n1  m  n1+n2. 
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8.2 Graph Union and Join

 Thm 2.5: Suppose G1 = (V1, E1), G2 = (V2, E2)  are two graphs which 

both has no a dominating vertex and |V1| = n1  n2 = |V2|. Then

Proof. (1/5)

Let V1 = {x1, x2, …, xn
1
}, V2 = {y1, y2, …, yn

2
}. 

(1) 0  m  2n1 :

 Let Di = {xi, yi}, 1  i  m/2, Di is a dominating set of G1+G2

 d(G1+G2|m)  m/2.

∵ Gi has no dominating vertex,  neither does G1+G2

  dominating set D of G1+G2, |D|  2.

 d(G1+G2|m)  m/2.

 d(G1+G2|m) = m/2.

d(G1+G2|m) = 
m/2, if 0  m  2n1.

n1 + d(G2|m–2n1), if 2n1  m  n1+n2. 
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8.2 Graph Union and Join

 Thm 2.5: Suppose G1 = (V1, E1), G2 = (V2, E2)  are two graphs which 

both has no a dominating vertex and |V1| = n1  n2 = |V2|. Then

Proof. (2/5)

(2) 2n1  m  n1+n2 :

 Let D1, D2, …, Dk be an (m–2n1)-domatic partition of G2 , 

where k = d(G2|m–2n1).

Note Di is also a dominating set of  G1+G2,  1  i  k

∵ n2 – (m–2n1)  n1

W.L.O.G.  say {y1, y2, …, yn
1
}  {D1  D2  …  Dk} = .

Let Di = {xi, yi}, 1  i  n1, Di is a dominating set of G1+G2

 d(G1+G2|m)  n1 + d(G2|m–2n1).

d(G1+G2|m) = 
m/2, if 0  m  2n1.

n1 + d(G2|m–2n1), if 2n1  m  n1+n2. 
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 Thm 2.5: Suppose G1 = (V1, E1), G2 = (V2, E2)  are two graphs which 

both has no a dominating vertex and |V1| = n1  n2 = |V2|. Then

Proof. (3/5)

(2) 2n1  m  n1+n2 :

 A dominating set D of G1+G2 is called standard if D = {x, y} for 

some x  V1, y  V2.

Claim:  an m-domatic partition of G1+G2, D1, D2, …, Dr where

r = d(G1+G2|m), s.t. among these r dominating sets,  n1

standard ones, and the other r – n1 sets are all subsets of V2.

Proof. Let D1, D2, …, Dr is an m-domatic partition of G1+G2,        

r = d(G1+G2|m), s.t. 

standard dominating sets as many as possible.

8.2 Graph Union and Join

d(G1+G2|m) = 
m/2, if 0  m  2n1.

n1 + d(G2|m–2n1), if 2n1  m  n1+n2. 
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8.2 Graph Union and Join 

 Thm 2.5: Suppose G1 = (V1, E1), G2 = (V2, E2)  are two graphs which 

both has no a dominating vertex and |V1| = n1  n2 = |V2|. Then

Proof. (4/5)  

(2) 2n1  m  n1+n2 :

Proof of Claim. 

Case 1: If  Di s.t. {x, y}  Di for some x  V1, y  V2, then replace

Di by {x, y}.

Case 2: If  Di, Dj s.t. {xa, xb}  Di and {yc, yd}  Dj for some xa, xb

 V1, yc, yd  V2, then replace Di, Dj by {xa, yc}, {xb, yd}.

Case 3: If all nonstandard dominating set D are subsets of V1, 

∵ n1 n2

 we can replace each nonstandard dominating set D by

{x, y}, where x  D, y  V2 – {D1  D2  …  Dr}.

d(G1+G2|m) = 
m/2, if 0  m  2n1.

n1 + d(G2|m–2n1), if 2n1  m  n1+n2. 

Claim:  an m-domatic partition of G1+G2, D1, D2, …, Dr where r = d(G1+G2|m), 

s.t. among these r dominating sets,  n1 standard ones, and the other r – n1

sets are all subsets of V2.



8.2 Graph Union and Join

Claim:  an m-domatic partition of G1+G2, D1, D2, …, Dr where r = d(G1+G2|m), 

s.t. among these r dominating sets,  n1 standard ones, and the other r – n1

sets are all subsets of V2.
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 Thm 2.5: Suppose G1 = (V1, E1), G2 = (V2, E2)  are two graphs which 

both has no a dominating vertex and |V1| = n1  n2 = |V2|. Then

Proof. (5/5)  

(2) 2n1  m  n1+n2 :

Proof of Claim. 

Case 4: If  x  V1 – {D1  D2  …  Dr} then

let y  Dj for some Dj  V2 (or y  V2 – {D1  D2  …  Dr})

 replace Dj (or any Dj  V2) by {x, y}.

 By Claim,  r – n1 nonstandard dominating set of G1+G2

  an (m – 2n1)-domatic partition of G2 with size r – n1

 d(G2|m – 2n1)  r – n1 = d(G1+G2|m) – n1

 d(G1 + G2|m)  n1 + d(G2|m – 2n1).

 By , , d(G1 + G2|m) = n1 + d(G2|m – 2n1).

d(G1+G2|m) = 
m/2, if 0  m  2n1.

n1 + d(G2|m–2n1), if 2n1  m  n1+n2. 
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8.2 Graph Union and Join

 Corollary 2.6: Suppose r  2, Gi is a graph with ni vertices and 

without a dominating vertex,  1  i  r. If n1 + n2 + … + nr–1  nr, 

then d(G1 + G2 + … + Gr) = n1 + n2 + … + nr–1 + d(Gr|nr–n1–…–nr–1).

Proof. 

Follows from Thm 2.5 by    G1 = G1 + G2 + … + Gr–1 , 

G2 = Gr.

m = n1 + n2 + … + nr.

 Corollary 2.7: If r  2 and n1 + n2 + … + nr–1  nr, then d(Kn
1

+ Kn
2

+ …+ Knr
) = n1 + n2 + … + nr–1.

Proof. 

Follows from Corollary 2.6 and d(Ka|b) = 0 for a  b.

Note: Complete k-partite graph Kn
1

,n
2

, …, nr
= Kn

1
+ Kn

2
+ …+ Knr


