Computer Science and Information Engineering National Chi Nan University

Combinatorial Optimization Dr. Justie Su-Tzu Juan

Lecture 7. Applications of L.P. Duality §7.1 Definitions of Strongly Chordal Graphs

Slides for a Course Based on the Paper M. Farber, "Domination, independent domination, and duality in strongly chordal graphs", Disc. Appl. Math. 7 (1984), pp. 115-130

- Def: A strong elimination ordering (SEO) of a graph G = (V, E) is an ordering [v₁, v₂, ..., v_n] of V such that ∀ i, j, k, l ∈ {1, 2, ..., n}.
 (a) i < j < k, v_iv_j, v_iv_k ∈ E ⇒ v_jv_k ∈ E
 (b) i < j < k < l, v_iv_k, v_iv_l, v_jv_k ∈ E ⇒ v_jv_l ∈ E
- **Def:** A graph is **strongly chordal graph** if *G* has a SEO.
- <u>Remark</u>:
 - ① A strong elimination ordering is a perfect elimination ordering ⇒ A strongly chordal graph is chordal graph.

- <u>Notation</u>: Given $[v_1, v_2, ..., v_n]$: a vertex ordering, $i \sim j$ (or $v_i \sim v_j$) 表示 $v_i \in N[v_j]$.
- <u>Lemma</u>: $[v_1, v_2, ..., v_n]$ is a strong elimination ordering iff $i \le j, k \le l, i \sim k, i \sim l, j \sim k \Rightarrow j \sim l.$ (SEO2)

<u>Lemma</u>: $[v_1, v_2, ..., v_n]$ is a strong elimination ordering iff $i \leq j, k \leq l, i \sim k, i \sim l, j \sim k \Rightarrow j \sim l.$ (SEO2) **Proof.** (1/3) (\Leftarrow) (a) $\forall i < j < k, v_i v_j, v_i v_k \in E$ $\therefore i \leq j, j \leq k, i \sim j, i \sim k, j \sim j$ \therefore By (SEO2), $j \sim k$ and $\because j < k, j \neq k \therefore v_j v_k \in E$ (b) $\forall i < j < k < l, v_i v_k, v_i v_l, v_i v_k \in E$ $\therefore i \leq j, k \leq l, i \sim k, i \sim l, j \sim k$ \therefore By (SEO2), $j \sim l$ and $\therefore j < l, j \neq l \therefore v_j v_l \in E$ (\Rightarrow) If i = j or k = l or j = l, then $j \sim l$ So we may assume $i < j, k < l, j \neq l$ W.L.O.G. we may assume $i \leq k$ Case 1: j < k. Case 2: j = k. Case 3: k < j.

<u>Lemma</u>: $[v_1, v_2, ..., v_n]$ is a strong elimination ordering iff $i \leq j, k \leq l, i \sim k, i \sim l, j \sim k \Rightarrow j \sim l.$ (SEO2) **Proof.** (2/3) $i < j, k < l, j \neq l$ and $i \leq k$ (\Rightarrow) Case 1: j < k: Then i < j < k < l $\therefore By (b), v_i v_k, v_i v_l, v_i v_k \in E \Rightarrow v_i v_l \in E \Rightarrow j \sim l$ Case 2: j = k: Then i < j < l $\therefore By (a), v_i v_i, v_i v_l \in E \Rightarrow v_i v_l \in E \Rightarrow j \sim l$ Case 3: *k* < *j*: Then $i \leq k < j, k < l$

<u>Lemma</u>: $[v_1, v_2, ..., v_n]$ is a strong elimination ordering iff $i \leq j, k \leq l, i \sim k, i \sim l, j \sim k \Rightarrow j \sim l.$ (SEO2) **Proof.** (3/3) $i < j, k < l, j \neq l$ and $i \leq k$ (\Rightarrow) Case 3: k < j: Then $i \leq k < j, k < l$ $\bigcirc i < k: :: i < k < l \text{ and } v_i v_k, v_i v_l \in E$ \therefore By (a), $v_k v_l \in E$ Hence k < l, k < j and $v_k v_l, v_k v_j \in E$ $\therefore \text{ By } (\mathbf{a}), v_l v_i \in E \Rightarrow j \sim l.$

• Notation: For $i \le j$, define $N_i[v_j] = \{v_k : k \ge i \text{ and } j \sim k\}$.

■ <u>Thm</u>: (SEO2) $\Leftrightarrow a \le b \le c, a \sim b$ and $a \sim c \Rightarrow N_a[v_b] \subseteq N_a[v_c]$. Proof. (略)

a

Note: By (SEO2), we can see an ordering is SEO or not by the adjacent matrix A + I; it will satisfy:

(SEO2)

- <u>Note</u>: There exist a polynomial algorithm to recognize a strongly chordal graph which constructs SEO on the vertices, if one exists.
- Reference:
- 1. M. Farber, Applications of l.p. duality to problems involving independence and domination, Ph.D. Thesis, Rutgers University, New Brunswick, NJ (January 1982); also issued as Technical Report 81-13, Computing Science Department, Simon Fraser University, 1981.
- 2. M. Farber, *Characterizations of strongly chordal graphs*, Discrete Math. 43 (1983) 173-189.

Computer Science and Information Engineering National Chi Nan University

Combinatorial Optimization Dr. Justie Su-Tzu Juan

Lecture 7. Applications of L.P. Duality §7.2 The Weighted Domination Problem on Strongly Chordal Graphs

Slides for a Course Based on the Paper M. Farber, "Domination, independent domination, and duality in strongly chordal graphs", Disc. Appl. Math. 7 (1984), pp. 115-130

<u>Def</u>: G is a weighted graph with each v_i be assigned a real weight w_i,
 ① The weighted domination (WD) problem for a weighted graph G is to find a dominating set D s.t. w(D) = ∑_{v_i ∈ D} w_i is minimum.

(2) $\gamma(G, w) = \min_{D} w(D)$ (for the case of $w_i = 1, \forall i, \gamma(G, w) = \gamma(G)$.)
(3) Let P(G) is the following linear program:
Minimize $\sum_{i=1}^{n} w_i x_i$ Subject to $\begin{cases} \sum_{i < j} x_i \ge 1, \forall j \\ x_i \ge 0, \forall i \end{cases}$

④ Let $P_1(G)$ is the linear program P(G) with $x_i \in \{0, 1\}, \forall i$.

(5) value(P) = the value of the optimal solution of a linear program *P*.

Remark:

- **①** \exists 1 1 correspondence between feasible solutions to $P_1(G)$ and dominating sets in *G*.
- **2** An optimal solution to $P_1(G)$ corresponds to a minimum weighted dominating set in *G*.

③ P(G) is unbounded if $\exists i, w_i < 0$.

• <u>Lemma</u>: G = (V, E) is a graph in which every vertex v has a weight $w(v) \in \mathbb{R}$. Let $w'(v) = \max\{0, w(v)\}$

$$\Rightarrow \gamma(G, w) = \gamma(G, w') + \sum_{x \in V} w(x)$$

$$w(x) < 0$$

• <u>Lemma</u>: G = (V, E) is a graph in which every vertex v has a weight $w(v) \in \mathbb{R}$. Let $w'(v) = \max\{0, w(v)\} \Rightarrow \gamma(G, w) = \gamma(G, w') + \sum_{x \in V} w(x)$

Proof.

Suppose *D* is a dominating set of *G* such that $\gamma(G, w) = w(D)$. $\gamma(G, w') \le w'(D) = w(D) - \sum_{x \in D} w(x)$ $\leq w(D) - \sum_{x \in V} w(x) = \gamma(G, w) - \sum_{x \in V} w(x)$ w(x) < 0Suppose *D*' is a dominating set of *G* such that $\gamma(G, w') = w'(D')$. Then $D' \cup A$ is also a dominating set of *G* where $A = \{v \in V: w(v) < 0\}$. Then $\gamma(G, w) \le w(D' \cup A) = w((D' \setminus A) \cup A) = w(D' \setminus A) + w(A)$ $= w'(D' \setminus A) + w(A) = w'(D') + w(A) = \gamma(G, w') + \sum_{x \in V} w(x)$ w(x) < 0

- <u>Note</u>: For the remainder of this section, we will assume that $w(v_i) \ge 0$, $\forall v_i \in V(G)$.
- <u>Def</u>: The dual problem D(G) of P(G) is the linear program: Maximize $\sum_{j=1}^{n} y_j$ Subject to $\begin{cases} y_j \ge 0, \forall j \\ \sum_{j \sim i} y_j \le w_i, \forall i \end{cases}$
- <u>Thm</u>: (Weakly duality inequality)

 $\forall \text{ Feasible solutions } <\!\!x_1, x_2, \dots, x_n \!\!>, <\!\!y_1, y_2, \dots, y_n \!\!> \text{for } P(G), D(G)$ $\sum_{i=1}^n w_i x_i \ge \sum_{j=1}^n y_j$

Thm: (Weakly duality inequality) \forall Feasible solutions $\langle x_1, x_2, \dots, x_n \rangle$, $\langle y_1, y_2, \dots, y_n \rangle$ for P(G), D(G) $\sum_{i=1}^{n} w_i x_i \ge \sum_{i=1}^{n} y_j$ **Proof.** $\sum_{i=1}^{n} w_i x_i - \sum_{i=1}^{n} y_i$ $=\sum_{i=1}^{n} w_{i} x_{i} - \sum_{i=1}^{n} \sum_{i \sim i} y_{j} x_{i} + \sum_{j=1}^{n} \sum_{i \sim j} y_{j} x_{i} - \sum_{j=1}^{n} y_{j}$ $=\sum_{i=1}^{n} x_{i}(w_{i} - \sum_{i=1}^{n} y_{j}) + \sum_{i=1}^{n} y_{j}(\sum_{i=1}^{n} x_{i} - 1) \geq 0$ $\therefore \sum_{i=1}^{n} w_i x_i \ge \sum_{i=1}^{n} y_j$

• <u>Corollary</u>: $value(P(G)) \ge value(D(G))$.

w.d.i.

<u>Note</u>: $value(P_1(G)) \ge value(P(G)) \ge value(D(G))$.

 $\therefore P_1(G)$ is a special problem of P(G)

• <u>Thm</u>: If we have feasible solutions $x^* = \langle x_1, x_2, ..., x_n \rangle, y^* = \langle y_1, y_2, ..., y_n \rangle$ satisfy (CS1) $\forall j, y_j > 0 \Rightarrow \sum_{i \sim j} x_i = 1$ (CS2) $\forall i, x_i > 0 \Rightarrow \sum_{j \sim i} y_j = w_i$

((CS1) and (CS2) called the condition of complementary slackness) Then $\sum_{i=1}^{n} w_i x_i = \sum_{j=1}^{n} y_j$.

• Notation:

$$\begin{array}{l} \underline{\mathbf{Notation}}: \\ \mathbf{b}(i) = w_i - \sum_{j \sim i} y_j, \forall i. \\ \\ \mathbf{c}(i) = \{k : k \sim i \text{ and } y_k > 0\}. \\ \end{array}$$

AlgorithmI:

Input: A strongly chordal graph G with strong elimination ordering v_1, v_2, \ldots, v_n and positive vertex weights w_1, w_2, \ldots, w_n . **Output: Optimal solutions to** P(G) and D(G). Initially: $T = \{1, 2, ..., n\}, \forall i, x_i = 0, y_i = 0, h(i) = w_i, T_i = \{\}.$ Stage One: $\int for j = 1$ to *n* do $\begin{cases} y_j \leftarrow \min\{h(k): k \sim j\};\\ \forall i \sim j, \operatorname{modify} h(i), T_i; \end{cases}$ Stage Two: for i = n to 1 by -1 do $\begin{cases} \text{ if } h(i) = 0 \text{ and } T_i \subseteq T \text{ then} \\ \begin{cases} x_i \leftarrow 1; \\ T \leftarrow T - T_i; \end{cases} \end{cases}$

• Time Complexity = $\mathcal{O}(|V|+|E|)$.

• <u>Note</u>: It will follow from the algorithm that if *G* is strongly chordal, the P(G) has 0-1 optimal solution, i.e. $value(P(G)) = value(P_1(G))$.

Stage One:	for <i>j</i> = 1 to <i>n</i> do		Stage Two:	for $i = n$ to 1 by -1 do
	$y_j \leftarrow \min\{h(k): k \sim j\};$			if $h(i) = 0$ and $T_i \subseteq T$ then
	Modify $h(i), T_i$;			$x_i \leftarrow 1;$
		2,		$T \leftarrow T - T_i;$

- <u>Thm</u>: The final values of $x^* = \langle x_1, x_2, ..., x_n \rangle$ and $y^* = \langle y_1, y_2, ..., y_n \rangle$ of algorithmI are optimal solutions to P(G) and D(G).
 - i.e. (1) x^* is a feasible solution of P(G).
 - (2) y^* is a feasible solution of D(G).
 - (3) *x**, *y** satisfy (CS1) and (CS2).

$$y_j \ge 0, \forall j$$
$$\sum_{j \sim i} y_j \le w_i, \forall i$$

(2) By stage one, $y_j \ge 0$ and $h(j) \ge 0$, $\forall j$ at any time.

If not,

① If first become negative is h(i'), then $\exists j'$ s.t. $i'j' \in E$ & $h_{j' \mid 1}(i') \geq 0$, but $h_j(i') < 0$. $(h_k(i) \triangleq h(i); y_i^{(k)} \triangleq y_i$ when j = k.) $\therefore h_j(i') = w_{i'} - \sum_{j \sim i'} y_j = h_{j' \mid 1}(i') + y_{j'}^{(j' \mid 1)} (=0) - y_{j'}^{(j')} < 0$. $\therefore y_{j'}^{(j')} > h_{j' \mid 1}(i') \rightarrow \leftarrow$

- <u>Thm</u>: The final values of $x^* = \langle x_1, x_2, ..., x_n \rangle$ and $y^* = \langle y_1, y_2, ..., y_n \rangle$ of algorithmI are optimal solutions to P(G) and D(G).
 - i.e. (1) x* is a feasible solution of P(G).
 (2) y* is a feasible solution of D(G).

(3) *x**, *y** satisfy (CS1) and (CS2).

Proof. (2/5)

(2) By stage one, $y_j \ge 0$ and $h(j) \ge 0$, $\forall j$ at any time. If not,

② If first become negative is y_j , when j = j'.

 $\therefore y_{j'} = \min\{h_{j'-1}(k'): k \sim j\} \text{ and}$ $h_{j'-1}(k) \ge 0, \forall k.$ $\therefore y_{j'} \ge 0 \rightarrow \longleftarrow$

• <u>Thm</u>: The final values of $x^* = \langle x_1, x_2, ..., x_n \rangle$ and $y^* = \langle y_1, y_2, ..., y_n \rangle$ of algorithmI are optimal solutions to P(G) and D(G). i.e. (1) x^* is a feasible solution of P(G). $\sum x_i \ge 1, \forall j$

Proof. (3/5)

 $\sum_{i \sim j} x_i \ge 1, \forall j$ $x_i \ge 0, \forall i$

(1) $x_i \ge 0$ is easily to see. $(x_i \text{ is either } 0 \text{ or } 1, \forall i)$ Only need to see if $\forall j, \sum_{i \sim j} x_i \ge 1$, i.e. $\forall y_j, \exists x_{i^*} \text{ s.t. } i^* \sim j \text{ and } x_{i^*} = 1$. By the choice of $y_j, \exists k \sim j$ such that $h_j(k) = 0$ and $\max T_k \le j$.

Note: $T_k = \{p: p \sim k, y_p > 0\}.$ In interation 1, 2, ..., j : $T_k \subseteq \{1, 2, ..., j\};$ In interation $p, \forall p > j$: $0 p \sim k: \therefore 0 \le h_p(k) \le h_j(k) = 0, \therefore h_p(k) = 0 \Rightarrow y_p = 0 \Rightarrow T_k \subseteq \{1, 2, ..., j\}$ $p \neq k: T_k \land 會變 \therefore T_k \subseteq \{1, 2, ..., j\}$

Thm: The final values of $x^* = \langle x_1, x_2, \dots, x_n \rangle$ and $y^* = \langle y_1, y_2, \dots, y_n \rangle$ of algorithmI are optimal solutions to P(G) and D(G). $\sum_{i \sim j} x_i \ge 1, \forall j$ $x_i \ge 0, \forall i$ i.e. (1) x^* is a feasible solution of P(G). **Proof.** (4/5) (1) <u>Case 1</u>: If $x_k = 1$, let $i^* = k$, it's done!! Case 2: If $x_k = 0$, $\therefore h(k) = 0 \therefore T_k \not\subseteq T$ when i = k in stage Two. i.e. $\exists l > k$ s.t. $x_l = 1$ and $T_k \cap T_l \neq \phi$. Let $a \in T_k \cap T_l$ $(a \leq j (\therefore a \in T_k \therefore \max T_k \leq j))$ k < l (\therefore the choice of l) $\begin{cases} a \sim k (\therefore a \in T_k) \\ a \sim l (\therefore a \in T_l) \end{cases}$ $j \sim k$ (:: the choice of k) \therefore By (SEO2), $j \sim l$, let $i^* = l$, it's done!!

• <u>Thm</u>: The final values of $x^* = \langle x_1, x_2, ..., x_n \rangle$ and $y^* = \langle y_1, y_2, ..., y_n \rangle$ of algorithmI are optimal solutions to P(G) and D(G). i.e. (3) x^*, y^* satisfy (CS1) and (CS2). Proof. (5/5) (3) (CS2) $\forall i$, if $x_i > 0$, then $x_i = 1$ and by stage two, h(i)=0. i.e. $\sum_{j \sim i} y_i = w_i$ (CS1) If $\sum_{i \sim j} x_i > 1$ for some j, then $\exists i_1 \neq i_2$ s.t. $i_1 \sim j, x_{i_1} = 1$ $i_2 \sim j, x_{i_2} = 1$ } $\Rightarrow T_{i_1} \cap T_{i_2} = \phi$. If $y_i > 0$, then $i \in T_i \cap T_i \rightarrow \leftarrow$

If
$$y_j > 0$$
, then $j \in T_{i_1} \cap T_{i_2} \rightarrow \leftarrow$
 $\therefore y_j = 0$
i.e. $\forall j, \sum_{i \sim j} x_i \neq 1 \Rightarrow y_j \neq 0$
 $\therefore \forall j, y_j > 0 \Rightarrow \sum_{i \sim j} x_i = 1$

- <u>Def</u>: $\eta(G, w)$ = the maximum number of vertices of *G* (with repetition allowed) such that each vertex v_i of *G* is equal or adjacent to at most w_i of them.
- <u>Corollary</u>: If G is a strongly chordal graph with non-negative integer weight, then $\gamma(G, w) = \eta(G, w)$.
- <u>Note</u>: For an arbitrary graph G or chordal graph G, solve P(G) can not find a minimum weight dominating set.

 $(\because value(P(G)) \neq value(P_1(G)))$

 <u>Remark</u>: The weighted independent domination problem is linearly solvable for strongly chordal graphs in a similar way.