Computer Science and Information Engineering National Chi Nan University
 Combinatorial Optimization
 Dr. Justie Su-Tzu Juan

Lecture 7. Applications of L.P. Duality §7.1 Definitions of Strongly Chordal Graphs

Slides for a Course Based on the Paper M. Farber, "Domination, independent domination, and duality in strongly chordal graphs", Disc. Appl. Math. 7 (1984), pp. 115-130

7.1 Definitions of Strongly Chordal Graphs

(c) Spring 2022, Justie Su-Tzu Juan

7．1 Definitions of Strongly Chordal Graphs

－Def：A strong elimination ordering（SEO）of a graph $G=(V, E)$ is an ordering $\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ of V such that $\forall i, j, k, l \in\{1,2, \ldots, n\}$ ．
（a）$i<j<k, v_{i} v_{j}, v_{i} v_{k} \in E \Rightarrow v_{j} v_{k} \in E$
（b）$i<j<k<l, v_{i} v_{k}, v_{i} v_{l}, v_{j} v_{k} \in E \Rightarrow v_{j} v_{l} \in E$
－Def：A graph is strongly chordal graph if \boldsymbol{G} has a SEO．
－Remark：
（1）A strong elimination ordering is a perfect elimination ordering \Rightarrow A strongly chordal graph is chordal graph．
（2）圖示：（a）
（b）

強迫

7.1 Definitions of Strongly Chordal Graphs

- Ex:

- Notation: Given $\left[\nu_{1}, v_{2}, \ldots, v_{n}\right]$: a vertex ordering,

$$
i \sim j\left(\text { or } v_{i} \sim v_{j}\right) \text { 表示 } v_{i} \in N\left[v_{j}\right] .
$$

- Lemma: $\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ is a strong elimination ordering iff

$$
i \leq j, k \leq l, i \sim k, i \sim l, j \sim k \Rightarrow j \sim l . \text { (SEO2) }
$$

7.1 Definitions of Strongly Chordal Graphs

- Lemma: $\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ is a strong elimination ordering iff

$$
i \leq j, k \leq l, i \sim k, i \sim l, j \sim k \Rightarrow j \sim l . \text { (SEO2) }
$$

Proof. (1/3)
$(\Leftarrow)(\mathbf{a}) \forall i<j<k, v_{i} \nu_{j}, v_{i} v_{k} \in E$
$\because i \leq j, j \leq k, i \sim j, i \sim k, j \sim j$
\therefore By (SEO2), $j \sim k$ and $\because j<k, j \neq k \therefore v_{j} v_{k} \in E$
(b) $\forall i<j<k<l, v_{i} v_{k}, v_{i} v_{l}, v_{j} v_{k} \in E$
$\because i \leq j, k \leq l, i \sim k, i \sim l, j \sim k$
\therefore By (SEO2), $j \sim l$ and $\because j<l, j \neq l \therefore v_{j} v_{l} \in E$
\Leftrightarrow) If $i=j$ or $k=l$ or $j=l$, then $j \sim l$
So we may assume $i<j, k<l, j \neq l$
W.L.O.G. we may assume $i \leq k$

Case 1: $j<k . \quad$ Case 2: $j=k . \quad$ Case 3: $k<j$.
(c) Spring 2022, Justie Su-Tzu Juan

7.1 Definitions of Strongly Chordal Graphs

- Lemma: $\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ is a strong elimination ordering iff

$$
i \leq j, k \leq l, i \sim k, i \sim l, j \sim k \Rightarrow j \sim l . \text { (SEO2) }
$$

Proof. (2/3) $i<j, k<l, j \neq l$ and $i \leq k$
(\Rightarrow) Case 1: $j<k$:
Then $i<j<k<l$
\therefore By (b), $v_{i} v_{k}, v_{i} v_{l}, v_{j} v_{k} \in E \Rightarrow v_{j} v_{l} \in E \Rightarrow j \sim l$
Case 2: $j=k$:
Then $i<j<l$
$\therefore \mathbf{B y}(\mathbf{a}), v_{i} v_{j}, v_{i} v_{l} \in E \Rightarrow v_{j} v_{l} \in E \Rightarrow j \sim l$
Case 3: $k<j$:
Then $i \leq k<j, k<l$

7.1 Definitions of Strongly Chordal Graphs

- Lemma: $\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ is a strong elimination ordering iff

$$
i \leq j, k \leq l, i \sim k, i \sim l, j \sim k \Rightarrow j \sim l . \text { (SEO2) }
$$

Proof. (3/3) $i<j, k<l, j \neq l$ and $i \leq k$
(\Rightarrow) Case 3: $k<j$:
Then $i \leq k<j, k<l$
(1) $i=k: v_{k} v_{l}=v_{i} v_{l} \in E$
(2) $i<k: \because i<k<l$ and $v_{i} v_{k}, v_{i} v_{l} \in E$
\therefore By (a), $v_{k} v_{l} \in E$
Hence $k<l, k<j$ and $v_{k} v_{l}, v_{k} v_{j} \in E$
$\therefore \mathbf{B y}(\mathbf{a}), v_{l} v_{j} \in E \Rightarrow j \sim l$.

- Notation: For $i \leq j$, define $N_{i}\left[\nu_{j}\right]=\left\{v_{k}: k \geq i\right.$ and $\left.j \sim k\right\}$.

7.1 Definitions of Strongly Chordal Graphs

- Thm: $(\mathbf{S E O 2}) \Leftrightarrow a \leq b \leq c, a \sim b$ and $a \sim c \Rightarrow N_{a}\left[v_{b}\right] \subseteq N_{a}\left[v_{c}\right]$.

Proof. (略)

- Note: By (SEO2), we can see an ordering is SEO or not by the adjacent matrix $A+I$; it will satisfy:

$$
\left.\begin{array}{l}
i \\
j
\end{array} \begin{array}{cc}
k & l \\
1 & 1 \\
1 &
\end{array}\right] \Rightarrow \begin{gathered}
\\
i
\end{gathered} \begin{array}{cc}
k & l \\
j
\end{array}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

- Ex:

(c) Spring 2022, Justie Su-Tzu Juan

7.1 Definitions of Strongly Chordal Graphs

- Note: There exist a polynomial algorithm to recognize a strongly chordal graph which constructs SEO on the vertices, if one exists.
- Reference:
- 1. M. Farber, Applications of l.p. duality to problems involving independence and domination, Ph.D. Thesis, Rutgers University, New Brunswick, NJ (January 1982); also issued as Technical Report 8113, Computing Science Department, Simon Fraser University, 1981.
- 2. M. Farber, Characterizations of strongly chordal graphs, Discrete Math. 43 (1983) 173-189.

Computer Science and Information Engineering National Chi Nan University

Combinatorial Optimization

Dr. Justie Su-Tzu Juan

Lecture 7. Applications of L.P. Duality §7.2 The Weighted Domination Problem on Strongly Chordal Graphs

Slides for a Course Based on the Paper M. Farber, "Domination, independent domination, and duality in strongly chordal graphs", Disc. Appl. Math. 7 (1984), pp. 115-130

7.2 The Weighted Domination Problem on Strongly Chordal Graphs

- Def: G is a weighted graph with each v_{i} be assigned a real weight w_{i},
(1) The weighted domination (WD) problem for a weighted graph G is to find a dominating set D s.t. $w(D)=\sum_{v_{i} \in D} w_{i}$ is minimum.
(2) $\gamma(G, w)=\min _{D} w(D)\left(\right.$ for the case of $w_{i}=1, \forall i, \gamma(G, w)=\gamma(G)$.)
(3) Let $P(G)$ is the following linear program:

Minimize $\sum_{i=1}^{n} w_{i} x_{i}$
Subject to $\left\{\begin{array}{c}\sum_{i \sim j} x_{i} \geq 1, \forall j \\ x_{i} \geq 0, \forall i\end{array}\right.$
(4) Let $P_{1}(G)$ is the linear program $P(G)$ with $x_{i} \in\{0,1\}, \forall i$.
(5) value $(\boldsymbol{P})=$ the value of the optimal solution of a linear program P.

7.2 The Weighted Domination Problem on Strongly Chordal Graphs

- Remark:
(1) $\exists 1$ - 1 correspondence between feasible solutions to $P_{1}(G)$ and dominating sets in \boldsymbol{G}.
(2) An optimal solution to $P_{1}(G)$ corresponds to a minimum weighted dominating set in \boldsymbol{G}.
(3) $P(G)$ is unbounded if $\exists i, w_{i}<0$.
- Lemma: $G=(V, E)$ is a graph in which every vertex v has a weight $w(v) \in R$. Let $w^{\prime}(v)=\max \{0, w(v)\}$

$$
\Rightarrow \gamma(G, w)=\gamma\left(G, w^{\prime}\right)+\sum_{\substack{x \in V \\ w(x)<0}} w(x)
$$

7.2 The Weighted Domination Problem on Strongly Chordal Graphs

- Lemma: $G=(V, E)$ is a graph in which every vertex v has a weight $\overline{w(v) \in R}$. Let $w^{\prime}(v)=\max \{0, w(v)\} \Rightarrow \gamma(G, w)=\gamma\left(G, w^{\prime}\right)+\sum_{x \in V} w(x)$ $w(x)<0$

Proof.

Suppose D is a dominating set of G such that $\gamma(G, w)=w(D)$.

$$
\begin{aligned}
\chi\left(G, w^{\prime}\right) & \leq w^{\prime}(D)=w(D)-\sum_{x \in D} w(x) \\
& \left.\leq w(D)-\sum_{x \in V} w(x)=\gamma(\boldsymbol{x})<0, w\right)-\sum_{x \in V} w(x)
\end{aligned}
$$

Suppose D^{\prime} is a dominating set of G such that $\gamma\left(G, w^{\prime}\right)=w^{\prime}(D)$.
Then $D^{\prime} \cup A$ is also a dominating set of G where $A=\{v \in V: w(v)<0\}$.
Then $\gamma(G, w) \leq w\left(D^{\prime} \cup A\right)=w\left(\left(D^{\prime} \backslash A\right) \cup A\right)=w\left(D^{\prime} \backslash A\right)+w(A)$

$$
=w^{\prime}\left(D^{\prime} \backslash A\right)+w(A)=w^{\prime}\left(D^{\prime}\right)+w(A)=\gamma\left(G, w^{\prime}\right)+\sum_{x \in V} w(x)
$$

(c) Spring 2022, Justie Su-Tzu Juan

7.2 The Weighted Domination Problem on Strongly Chordal Graphs

- Note: For the remainder of this section, we will assume that $w\left(v_{i}\right) \geq 0$, $\forall v_{i} \in V(G)$.
- Def: The dual problem $D(G)$ of $P(G)$ is the linear program:

$$
\begin{aligned}
& \text { Maximize } \sum_{j=1}^{n} y_{j} \\
& \text { Subject to }\left\{\begin{array}{l}
y_{j} \geq 0, \forall j \\
\sum_{j \sim i} y_{j} \leq w_{i}, \forall i
\end{array}\right.
\end{aligned}
$$

- Thm: (Weakly duality inequality)
\forall Feasible solutions $\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle,\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle$ for $P(G), D(G)$

$$
\sum_{i=1}^{n} w_{i} x_{i} \geq \sum_{j=1}^{n} y_{j}
$$

7.2 The Weighted Domination Problem on Strongly Chordal Graphs

- Thm: (Weakly duality inequality)
\forall Feasible solutions $\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle,\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle$ for $P(G), D(G)$

Proof.

$$
\sum_{i=1}^{n} w_{i} x_{i} \geq \sum_{j=1}^{n} y_{j}
$$

$$
\begin{aligned}
& \sum_{i=1}^{n} w_{i} x_{i}-\sum_{j=1}^{n} y_{j} \\
= & \sum_{i=1}^{n} w_{i} x_{i}-\sum_{i=1}^{n} \sum_{j \sim i} y_{j} x_{i}+\sum_{j=1}^{n} \sum_{i \sim j} y_{j} x_{i}-\sum_{j=1}^{n} y_{j} \\
= & \sum_{i=1}^{n} x_{i}\left(w_{i}-\sum_{j \sim i} y_{j}\right)+\sum_{j=1}^{n} y_{j}\left(\sum_{i \sim j} x_{i}-1\right) \geq 0 \\
& \therefore \sum_{i=1}^{n} w_{i} x_{i} \geq \sum_{j=1}^{n} y_{j}
\end{aligned}
$$

- Corollary: $\operatorname{value}(P(G)) \geq \operatorname{value}(D(G))$.

7.2 The Weighted Domination Problem on Strongly Chordal Graphs

- Note: $\operatorname{value}\left(P_{1}(G)\right) \geq \operatorname{value}(P(G)) \geq \operatorname{value}(D(G))$.
$\because P_{1}(G)$ is a special problem of $P(G)$
- Thm: If we have feasible solutions $x^{*}=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle, y^{*}=\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle$ $\overline{\text { satisfy }}(\mathbf{C S 1}) \forall j, y_{j}>0 \Rightarrow \sum_{i \sim j} x_{i}=1$

$$
(\mathrm{CS} 2) \forall i, x_{i}>0 \Rightarrow \sum_{j \sim i} y_{j}=w_{i}
$$

((CS1) and (CS2) called the condition of complementary slackness)
Then $\sum_{i=1}^{n} w_{i} x_{i}=\sum_{j=1}^{n} y_{j}$.

- Notation: (1) $h(i)=w_{i}-\sum_{j ; i} y_{j}, \forall i$.
(2) $T_{i}=\left\{k: k \sim i\right.$ and $\left.y_{k}>0\right\}$.
(c) Spring 2022, Justie Su-Tzu Juan

7.2 The Weighted Domination Problem on Strongly Chordal Graphs

- AlgorithmI:

Input: A strongly chordal graph \boldsymbol{G} with strong elimination ordering $v_{1}, v_{2}, \ldots, v_{n}$ and positive vertex weights $w_{1}, w_{2}, \ldots, w_{n}$.
Output: Optimal solutions to $P(G)$ and $D(G)$.
Initially: $T=\{1,2, \ldots, n\}, \forall i, x_{i}=0, y_{i}=0, h(i)=w_{i}, T_{i}=\{ \}$.
Stage One: (for $j=1$ to n do

$$
\begin{aligned}
& y_{j} \leftarrow \min \{h(k): k \sim j\} ; \\
& \forall i \sim j, \text { modify } h(i), T_{i} ;
\end{aligned}
$$

Stage Two: for $i=n$ to 1 by $-\mathbf{1}$ do

$$
\left[\begin{array}{l}
\text { if } h(i)=0 \text { and } T_{i} \subseteq T \text { then } \\
{\left[\begin{array}{l}
x_{i} \leftarrow 1 ; \\
T \leftarrow T-T_{i} ;
\end{array}\right.} \\
\hline
\end{array}\right.
$$

- Time Complexity $=\mathcal{O}(|V|+|E|)$.

7.2 The Weighted Domination Problem on Strongly Chordal Graphs

- Ex:

$$
\begin{aligned}
& h(i)=w_{i}-\sum_{j \sim i} y_{j}, \forall i . \\
& T_{i}=\left\{k: k \sim i \text { and } y_{k}>0\right\} .
\end{aligned}
$$

$$
T=\{1,2,3,4,5\}
$$

$$
x_{1}=0
$$

$$
x_{2}=0
$$

$$
x_{3}=0
$$

$$
x_{4}=0 \quad x_{5}=0
$$

$$
y_{3}=0
$$

$$
y_{4}=0 \quad y_{5}=0
$$

$$
h_{3}=3
$$

$$
h_{4}=4 \quad h_{5}=4
$$

$$
T_{1}=\{
$$

$$
\} T_{2}=\{
$$

$$
T_{3}=\{
$$

\}
$T_{4}=\{$
\}
$T_{5}=\{$

- Note: It will follow from the algorithm that if G is strongly chordal, the $P(G)$ has $0-1$ optimal solution, i.e. value $(P(G))=$ value $\left(P_{1}(G)\right)$.

Stage One: for $\boldsymbol{j}=1$ to \boldsymbol{n} do

$$
y_{j} \leftarrow \min \{h(k): k \sim j\}
$$

Modify $h(i), T_{i}$;

Stage Two: for $i=n$ to 1 by $-\mathbf{1}$ do
if $h(i)=0$ and $T_{i} \subseteq T$ then

$$
\begin{aligned}
& x_{i} \leftarrow 1 ; \\
& T \leftarrow T-T_{i} ;
\end{aligned}
$$

7.2 The Weighted Domination Problem on Strongly Chordal Graphs

- Thm: The final values of $x^{*}=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$ and $y^{*}=\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle$ of algorithmI are optimal solutions to $P(G)$ and $D(G)$.
i.e. (1) x^{*} is a feasible solution of $P(G)$.
(2) y^{*} is a feasible solution of $D(G)$.
(3) x^{*}, y^{*} satisfy (CS1) and (CS2).

Proof. (1/5) (2) - (1) - (3)

$$
\begin{aligned}
& y_{j} \geq 0, \forall j \\
& \sum_{j \sim i} y_{j} \leq w_{i}, \forall i
\end{aligned}
$$

(2) By stage one, $y_{j} \geq 0$ and $h(j) \geq 0, \forall j$ at any time.

If not,
(1) If first become negative is $h\left(i{ }^{\prime}\right.$, then $\exists j^{\prime}$ s.t. $i^{\prime} j^{\prime} \in E \&$

$$
\begin{aligned}
& h_{j^{\prime}-1}\left(i^{\prime}\right) \geq 0, \text { but } h_{j^{\prime}}\left(i^{\prime}\right)<0 .\left(h_{k}(i) \triangleq h(i) ; y_{i}{ }^{(k)} \triangleq y_{i} \text { when } j=k .\right) \\
& \because h_{j^{\prime}}\left(i^{\prime}\right)=w_{i^{\prime}}-\sum_{j \sim i^{\prime}} y_{j}=h_{j^{\prime}-1}\left(i^{\prime}\right)+y_{j^{\prime}}^{\left(j^{\prime}-1\right)}(=\mathbf{0})-y_{j^{\prime}}^{\left(\prime^{\prime}\right)}<\mathbf{0} . \\
& \therefore y_{j^{\prime}}^{(j)}>h_{j^{\prime}-1}\left(i^{\prime}\right) \rightarrow \leftarrow
\end{aligned}
$$

7.2 The Weighted Domination Problem on Strongly Chordal Graphs

- Thm: The final values of $x^{*}=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$ and $y^{*}=\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle$ of algorithmI are optimal solutions to $P(G)$ and $D(G)$.
i.e. (1) x^{*} is a feasible solution of $P(G)$.
(2) y^{*} is a feasible solution of $D(G)$.
(3) x^{*}, y^{*} satisfy (CS1) and (CS2).

$$
\begin{aligned}
& y_{j} \geq 0, \forall j \\
& \sum_{j \sim i} y_{j} \leq w_{i}, \forall i
\end{aligned}
$$

Proof. (2/5)
(2) By stage one, $y_{j} \geq 0$ and $h(j) \geq 0, \forall j$ at any time.

If not,
(2) If first become negative is y_{j}, when $j=j^{\prime}$.

$$
\begin{aligned}
\because & y_{j^{\prime}}=\min \left\{h_{j^{\prime}-1}(k): k \sim j\right\} \text { and } \\
& h_{j^{\prime} 1}(k) \geq 0, \forall k . \\
\therefore & y_{j^{\prime}} \geq 0 \rightarrow \leftarrow
\end{aligned}
$$

7．2 The Weighted Domination Problem on Strongly Chordal Graphs

－Thm：The final values of $x^{*}=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$ and $y^{*}=\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle$ of algorithmI are optimal solutions to $P(G)$ and $D(G)$ ．
i．e．（1）x^{*} is a feasible solution of $P(G)$ ．

Proof．（3／5）

（1）$x_{i} \geq 0$ is easily to see．$\left(x_{i}\right.$ is either 0 or $\left.1, \forall i\right)$

$$
\begin{gathered}
\sum_{i \sim j} x_{i} \geq 1, \forall j \\
x_{i} \geq 0, \forall i
\end{gathered}
$$

Only need to see if $\forall j, \sum_{i \sim j} x_{i} \geq 1$ ，i．e．$\forall y_{j}, \exists x_{i^{*}}$ s．t．$i^{*} \sim j$ and $x_{i^{*}}=1$ ． By the choice of $y_{j}, \exists k \sim j$ such that $h_{j}(k)=0$ and $\max T_{k} \leq j$ ．

Note：$\because T_{k}=\left\{p: p \sim k, y_{p}>0\right\}$ ．
In interation $1,2, \ldots, j: T_{k} \subseteq\{1,2, \ldots, j\} ;$
In interation $p, \forall p>j$ ：
（1）$p \sim k: \because 0 \leq h_{p}(k) \leq h_{j}(k)=0, \therefore h_{p}(k)=0 \Rightarrow y_{p}=0 \Rightarrow T_{k} \subseteq\{1,2, \ldots, j\}$
（2）If $p \nsim k$ ：T_{k} 不會變 $\therefore T_{k} \subseteq\{1,2, \ldots, j\}$

7.2 The Weighted Domination Problem on Strongly Chordal Graphs

- Thm: The final values of $x^{*}=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$ and $y^{*}=\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle$ of algorithmI are optimal solutions to $P(G)$ and $D(G)$.
i.e. (1) x^{*} is a feasible solution of $P(G)$.

Proof. (4/5)
(1) Case 1: If $x_{k}=1$, let $i^{*}=k$, it's done!!

$$
\begin{gathered}
\sum_{i \sim j} x_{i} \geq 1, \forall j \\
x_{i} \geq 0, \forall i
\end{gathered}
$$

Case 2: If $x_{k}=0, \because h(k)=0 \therefore T_{k} \nsubseteq T$ when $i=k$ in stage Two.
i.e. $\exists l>k$ s.t. $x_{l}=1$ and $T_{k} \cap T_{l} \neq \phi$.

Let $a \in T_{k} \cap T_{l}$
$a \leq j\left(\because a \in T_{k} \therefore \max _{k} \leq j\right)$
$k<l(\because$ the choice of $l)$
$a \sim k\left(\because a \in T_{k}\right)$
$a \sim l\left(\because a \in T_{l}\right)$
$j \sim k(\because$ the choice of k)
\therefore By (SEO2), $j \sim l$, let $i^{*}=l$, it's done!

7.2 The Weighted Domination Problem on Strongly Chordal Graphs

- Thm: The final values of $x^{*}=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$ and $y^{*}=\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle$ of algorithmI are optimal solutions to $P(G)$ and $D(G)$.
i.e. (3) x^{*}, y^{*} satisfy (CS1) and (CS2).

Proof. (5/5)
(3) (CS2) $\forall i$, if $x_{i}>0$, then $x_{i}=1$ and by stage two, $h(i)=0$. i.e. $\sum_{j \sim i} y_{i}=w_{i}$ (CS1) If

$$
\begin{aligned}
& \left.\begin{array}{l}
\quad \exists i_{1} \neq i_{2} \text { s.t. } i_{1} \sim j, x_{i_{1}}=1 \\
\quad i_{2} \sim j, x_{i_{2}}=1
\end{array}\right\} \Rightarrow T_{i_{1}} \cap T_{i_{2}}=\phi . \\
& \quad \text { If } y_{j}>0 \text {, then } j \in T_{i_{1}} \cap T_{i_{2}} \rightarrow \leftarrow \\
& \therefore y_{j}=0 \\
& \text { i.e. } \forall j, \sum_{i \sim j} x_{i} \neq 1 \Rightarrow y_{j} \ngtr 0 \\
& \therefore \forall j, y_{j}>0 \Rightarrow \sum_{i \sim j} x_{i}=1
\end{aligned}
$$

7.2 The Weighted Domination Problem on Strongly Chordal Graphs

- Def: $\eta(G, w)=$ the maximum number of vertices of G (with repetition allowed) such that each vertex v_{i} of G is equal or adjacent to at most w_{i} of them.
- Corollary: If \boldsymbol{G} is a strongly chordal graph with non-negative integer weight, then $\gamma(\boldsymbol{G}, \boldsymbol{w})=\eta(\boldsymbol{G}, w)$.
- Note: For an arbitrary graph G or chordal graph G, solve $P(G)$ can not find a minimum weight dominating set.

$$
\left(\because \operatorname{value}(P(G)) \neq \operatorname{value}\left(P_{1}(G)\right)\right)
$$

7.2 The Weighted Domination Problem on Strongly Chordal Graphs

- Ex:
(1)

$$
x_{1}=x_{2}=x_{3}=x_{4}=1 / 3=y_{1}=y_{2}=y_{3}=y_{4}
$$

value $(P(G))=4 / 3$
value $(D(G))=4 / 3$
(2)

\therefore neither $P(G)$ nor $D(G)$ has integer optimal solution!!

- Remark: The weighted independent domination problem is linearly solvable for strongly chordal graphs in a similar way.

