Computer Science and Information Engineering National Chi Nan University
 Combinatorial Optimization
 Dr. Justie Su-Tzu Juan

Lecture 6. NP-Completeness

§ 6.1 Dom is NP-complete

6．1 Dom is NP－complete

－Def：

－Question：Domination problem 是否 $\in \mathbf{P}$ ？
想法：$\forall D \subseteq V, \underline{\text { Step 1：check } D \text { 是否為dominating set }}$ Step 2：若是，算出 $|D|$
Step 3：求其中最小 $|D|$
有 2^{n} 種可能 \therefore 此法不可得証 $\in P$
但仍不曉得 $\in P$ 或 $\notin P$ ！
（c）Spring 2022，Justie Su－Tzu Juan

6．1 Dom is NP－complete

－Def：π is called NP－complete if
（1）$\pi \in \mathbf{N P}$
（2）$\forall \pi^{\prime} \in \mathbf{N P}, \pi^{\prime} \propto \pi$
其中 \propto 為 polynomial reduction．

－Note：（1）\propto 具有遞移性，i．e．$\pi_{1} \propto \pi_{2}$ and $\pi_{2} \propto \pi_{3} \Rightarrow \pi_{1} \propto \pi_{3}$ ．
（2）If π^{*} is NP－complete and $\pi^{*} \in P$ ，then $N P=P$ ．
（3）If π^{*} is NP－complete and $\pi^{*} \propto \pi$ where $\pi \in \mathbf{N P}$ ， then π is NP－complete．
－Def：Optimization problem v．s．Decision problem
－Ex：（1）Given G ，回答 $\chi(G)(=\min \{|D|: D$ is a dominating set of G ．$\})$
（2）Given k, G ，回答 $\left\{\begin{array}{l}\text { yes，if } \chi(G) \leq k(\text { if } \exists \text { dom．set of size } \leq k) ; \\ \text { no，otherwise．}\end{array}\right.$
（c）Spring 2022，Justie Su－Tzu Juan

6.1 Dom is NP-complete

- Def: SAT problem:

Input: $f=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{1,1}\left(x_{i, 2}+\ldots+x_{i, a_{i}}\right)(+:$ or, $::$ and $)$ where $x_{1}, x_{2}, \ldots, x_{n}$: logicaí varibles,
and $x_{i, j}$ is x_{k} or $\neg x_{k}$ for some $k \in\{1,2, \ldots, n\}$
Output: $\left\{\begin{array}{l}\text { Yes, if we can assign } x_{1}, x_{2}, \ldots, x_{n} \text { such that } f \text { is true; } \\ \text { No, otherwise. }\end{array}\right.$

- Ex: $f=x \cdot y \cdot z \quad\left(m=3, a_{1}=a_{2}=a_{3}=1\right)$

Solve: assign $x \leftarrow 1, y \leftarrow 1, z \leftarrow 1$

$$
\Rightarrow f=1 \quad \therefore \text { Yes }!
$$

- Ex: $f=(x+\neg x)(x)(\neg x) \quad\left(m=3, a_{1}=2, a_{2}=1, a_{3}=1\right)$

Solve: No!

6．1 Dom is NP－complete

－Thm：（Cook）SAT is NP－complete．
－Remark：R．Karp 列出許多Combinatorial problem証其為NP－ complete．
－Def：VC problem：
Input：$G=(V, E)$ and $k \leq|V|$ ．
Output：$\left\{\begin{array}{l}\text { Yes，if } \exists \text { vertex covering of size } \leq k ; \\ \text { No，otherwise．}\end{array}\right.$
－Def：Dom problem：
Input：$G=(V, E)$ and $k \leq|V|$ ．
Output：$\left\{\begin{array}{l}\text { Yes，if } \exists \text { dominating set of size } \leq k ; \\ \text { No，otherwise．}\end{array}\right.$

6．1 Dom is NP－complete

－Thm：VC is NP－complete．
－Thm：Dom is NP－complete． Proof．（1／2）

（1）Construct $\downarrow \uparrow$
（2）Prove 正確性

欲証：VC \propto Dom
$\forall G=(V, E)$ and $k \leq|V|$
Construct $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ and $k^{\prime} \leq|V|$ such that

$$
\left\{\begin{array}{l}
V^{\prime}=V \cup E \\
E^{\prime}=\{x y: x \neq y \text { in } V\} \cup\{x e: x \in V, e \in E, x \in e\} \\
k^{\prime}=k
\end{array}\right.
$$

Claim：G has a vertex cover C of size at most $k \Leftrightarrow$ G^{\prime} has a dominating set D of size at most k^{\prime} ．

（c）Spring 2022，Justie Su－Tzu Juan

6.1 Dom is NP-complete

- Thm: Dom is NP-complete.

Proof. (2/2) Claim: G has a vertex cover C of size at most $k \Leftrightarrow$ G^{\prime} has a dominating set D of size at most k^{\prime}.
$<\mathrm{pf}>(\Rightarrow)$ Suppose C is a vertex cover of $G,|C| \leq k$.
Then, by the definition of G^{\prime},
$D=C$ is also a dominating set of G^{\prime} with $|D| \leq k=k^{\prime}$.
(\Leftarrow) Suppose D is a dominating set of $G^{\prime},|D| \leq k^{\prime}=k$.
If \exists some $e=x y \in D \cap E$, where $x, y \in V$, then $D^{\prime}=(D \backslash\{e\}) \cup\{x\}$ is also a dominating set of G^{\prime} with

$$
|D| \leq|D| \leq k, \text { since } N_{G}[e] \subseteq N_{G}[x] .
$$

In this way, we may assume that $D \subseteq V$.
Then $C=D$ is a vertex cover of G with $|C| \leq k$.
Therefore, VC is NP-complete implies that Dom is NP-complete by Note (3).

6.1 Dom is NP-complete

- Def: $G=(V, E)$ is called a split graph if $V=C \cup S$, where G_{C} is a clique and G_{S} is a stable set.
- Corollary: The domination (total domination, connected domination) problem is NP-complete in split graphs.
- Def: $G=(V, E)$ is called a bipartite graph if $V=A \cup B$, where G_{A} and G_{B} both are stable sets.
- Thm: The domination problem is NP-complete in bipartite graphs.

6.1 Dom is NP-complete

- Thm: The domination problem is NP-complete in bipartite graphs. Proof. (1/2)
$\forall G=(V, E)$ and $k \leq|V|$
construct $G^{\prime}=\left(V^{\prime}, E\right)$ and $k^{\prime} \leq|V|$ such that

$$
\begin{aligned}
& \left\{\begin{array}{l}
V^{\prime} \\
E^{\prime} \\
k^{\prime}
\end{array}=\right. \\
& \text { Claim: }
\end{aligned}
$$

G has a vertex cover C of size at most $k \Leftrightarrow$
G^{\prime} has a dominating set D of size at most k^{\prime}.

(c) Spring 2022, Justie Su-Tzu Juan

6.1 Dom is NP-complete

- Thm: The domination problem is NP-complete in bipartite graphs.

Proof. (2/2) Claim: G has a vertex cover C of size at most $k \Leftrightarrow$ G^{\prime} has a dominating set D of size at most k^{\prime}.
< $\mathbf{p f}>(\Rightarrow)$ Suppose C is a vertex cover of G and $|C| \leq k$.
Then, by the definition of G^{\prime},
$D=C \cup\left\{y^{*}\right\}$ is a dominating set of G^{\prime} with $|D| \leq k+1=k^{\prime}$.
(\Leftarrow) Suppose D is a dominating set of G^{\prime} and $|D| \leq k^{\prime}$.
Since $N_{G}\left[x^{*}\right] \subseteq N_{G}\left[y^{*}\right]$, So we may assume $x^{*} \notin D$ and $y^{*} \in D$
(Otherwise, replace \boldsymbol{D} by $\left(D \backslash\left\{x^{*}\right\} \cup\left\{y^{*}\right\}\right)$
If $\exists e=x y \in D$, then $D^{\prime}=(D \backslash\{e\}) \cup\{x\}$ is also a dominating
set of size $\leq k^{\prime}$, since $N_{G}[e] \subseteq\left(N_{G}[x] \cup N_{G}\left[y^{*}\right]\right)$.
In this way, we may assume $D=C \cup\left\{y^{*}\right\}$ where $C \subseteq V$.
Then C is a vertex cover of size at most $k^{\prime}-1=k$.

6.1 Dom is NP-complete

- Exercise 4 (4/26): Prove that the independent domination problem is NP-complete for bipartite graphs.

Computer Science and Information Engineering National Chi Nan University
 Combinatorial Optimization
 Dr. Justie Su-Tzu Juan

Lecture 6. NP-Completeness

§ 6.2 Chordal Graphs

6.2 Chordal Graphs

- Def: A graph \boldsymbol{G} is called a chordal graph if every cycle of length greater than 3 has a chord.
- Ex:

(c) Spring 2022, Justie Su-Tzu Juan

6．2 Chordal Graphs

－Def：An ordering of $V, \sigma=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ in graph $G=(V, E)$ ，is called a perfect elimination ordering（PEO）if $\forall 1 \leq i<j<k \leq n, v_{i} v_{j} \in E$ and $v_{i} v_{k} \in E \Rightarrow v_{j} v_{k} \in E$ ．
－（Thm：$G=(V, E)$ is chordal graph iff we can order V into（PEO）．）
－Note：（1）其中 $1 \leq i<j<k \leq n$ 可改成 $1 \leq i<j \leq n, 1 \leq i<k \leq n, j \neq k$ ．
（2）圖示：

強迫
－Recall：Interval ordering（IO）：

－Note：A vertex ordering σ of $G=(V, E)$ is $(I O) \Rightarrow \sigma$ is (PEO) ．
－Remark：（1）Interval graphs are chordal graphs．
（2）\exists example that are chordal graph but not interval graph．
（c）Spring 2022，Justie Su－Tzu Juan

6．2 Chordal Graphs

－Ex：${ }^{(1)}$
（2）

$C_{n}, n \geq 4$ 不是interval graph．

是chordal graph（by definition）不是interval graph
（ \because 畫不出interval intersection representation）
－Thm：$G=(V, E)$ is chordal graph iff we can order V into（PEO）． Proof．（1／5）
(\Leftarrow) Suppose G has a（PEO）$\sigma=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$
$\forall k$－cycle $(k \geq 4)$ ，say $x_{1} x_{2} \ldots x_{k-1} x_{k}\left(=x_{0}\right) x_{1}\left(=x_{k+1}\right)$ in G
Let $x_{j}=v_{a_{j}}, \forall 1 \leq j \leq k$ ．
Let $a_{j^{*}}=\min _{1 \leq j \leq k} a_{j}\left(a_{j^{*}}<a_{j^{*}+1}, a_{j^{*}}<a_{j^{*}-1}\right)$

6.2 Chordal Graphs

- Thm: $G=(V, E)$ is chordal graph iff we can order Proof. (2/5)
$(\Leftarrow) \because x_{j^{*} \times x_{j^{*}-1}}, x_{j^{*}} x_{j^{* *+1}} \in E, \therefore x_{j^{* *-1}} x_{j^{* *+1}} \in E$ by (PEO) So the cycle has a chord. $(\because k \geq 4)$

(\Rightarrow) For any ordering $\sigma=\left[\nu_{1}, v_{2}, \ldots, v_{n}\right]$ Let $d(\sigma)=\left[d_{n}, d_{n-1}, \ldots, d_{1}\right]$ where $d_{i}=\mid\left\{j: j>i\right.$ and $\left.v_{j} \in N\left[v_{i}\right]\right\} \mid$.

$$
\text { Ex: } \quad \text { (12) (12) (12) } \sigma_{1} \rightarrow d\left(\sigma_{1}\right)=[0,1,1] ~ 子 d\left(\sigma_{1}\right) \succcurlyeq d\left(\sigma_{2}\right)
$$

Def: For two sequences $s_{1}=\left[a_{1}, a_{2}, \ldots, a_{n}\right], s_{2}=\left[b_{1}, b_{2}, \ldots, b_{n}\right]$, we say $s_{1} \succcurlyeq s_{2}$ if $\exists 1 \leq k \leq n$ s.t. $a_{i}=b_{i} \forall 1 \leq i<k$ and $a_{k}>b_{k}$.

Choose an ordering σ^{*} such that $d\left(\sigma^{*}\right)$ is lexicographically largest.
(c) Spring 2022, Justie Su-Tzu Juan

6.2 Chordal Graphs

- Thm: $G=(V, E)$ is chordal graph iff we can order V into (PEO). Proof. (3/5)
(\Rightarrow) Claim (1): for $p<q<r$ and $v_{p} v_{r} \in E$ and $v_{q} v_{r} \notin E$ $\Rightarrow \exists s>q$ s.t. $v_{q} v_{s} \in E$ and $v_{p} v_{s} \notin E$
<pf>Let $\sigma^{\prime}=\left[v_{1}{ }^{\prime}, v_{2}{ }^{\prime}, \ldots, v_{n}{ }^{\prime}\right]$ be an ordering of V obtained byy $-\cdots$ (D) interchanging v_{p} and v_{q}, i.e. $\left\{\begin{array}{l}v_{i}^{\prime}=v_{i}, \\ v_{p}=v_{q} \\ v_{q}{ }^{\prime}=v_{p}\end{array}\right.$ Let $d_{i}^{\prime}=d_{i}$ in σ^{\prime}
$\forall s>q, d_{s}{ }^{\prime}=d_{s}$ since $\forall s>q, v_{s}{ }^{\prime}=v_{s}$ $d_{q}=\mid\left\{t: t>q\right.$ and $\left.v_{t} \in N\left(v_{q}\right)\right\} \mid$ $d_{q}^{\prime}=\mid\left\{t: t>q\right.$ and $\left.v_{t^{\prime}}\left(=v_{t}\right) \in N\left(v_{q}^{\prime}\right)\right\}|=|\left\{t: t>q\right.$ and $\left.v_{t} \in N\left(v_{p}\right)\right\} \mid$ Since $d(\sigma) \succcurlyeq d(\sigma)$, we have $d_{q} \geq d_{q}{ }^{\prime}$.
But $r>q, v_{r} \in N\left(v_{p}\right) N N\left(v_{q}\right)$. Hence $\exists s>q$ such that $v_{s} \in N\left(v_{q}\right) \backslash N\left(v_{p}\right)$.

6.2 Chordal Graphs

- Thm: $G=(V, E)$ is chordal graph iff we can order V into (PEO). Proof. (4/5)
(\Rightarrow) Claim (2): A chordless path $P: v_{a_{1}}, v_{a_{2}}, \ldots, v_{a_{x}}$ with $x \geq 3$ and

$$
a_{y}<a_{x}<a_{1} \text { for all } y \in\{2,3, \ldots, x-1\} .
$$

<pf> Suppose such a path exists, choose one such P with max. a_{x}

By (1), $\exists v_{a_{x+1}}$ s.t. $a_{x}<a_{x+1}$
and $v_{a_{x+1}} v_{a_{x}} \in E, v_{a_{x+1}} v_{a_{2}} \notin E$
$\left(\because a_{2}<a_{x}<a_{1}\right.$ and $\left.v_{a_{x}} v_{a_{1}} \notin E, v_{a_{2}} v_{a_{1}} \in E\right)$
(c) Spring 2022, Justie Su-Tzu Juan

6.2 Chordal Graphs

- Thm: $G=(V, E)$ is chordal graph iff w Proof. (5/5)
(\Rightarrow) Claim (2): \exists chordless path $P: v_{a_{1}}, v_{a_{2}}, \ldots, v_{a_{x}}$ with $x \geq 3$ and

$$
a_{y}<a_{x}<a_{1} \text { for all } y \in\{2,3, \ldots, x-1\} .
$$

$<$ pf> Choose a $\min j \geq 3$ such that $v_{a_{x+1}} v_{a_{j}} \in E$
($\because a_{x}$ is max., $\therefore \exists$ such j)
Consider $P^{\prime}: v_{a_{1}}, v_{a_{2}}, \ldots, v_{a_{j}}, v_{a_{x+1}},|P| \geq 4$
Case 1: $v_{a_{1}} v_{a_{x+1}} \notin E \Rightarrow(P)^{-1}$, the inverse of P^{\prime}, is a chordless path with larger second max. vertex then $P . \rightarrow \leftarrow$
Case 2: $v_{a_{1}} v_{a_{x+1}} \in E \Rightarrow \exists$ chordless cycle of length ≥ 4
$(\because G$ is a chordal graph $) \rightarrow \leftarrow$
If $i<j<k, v_{i} v_{j} \in E$ and $v_{i} v_{k} \in E$, but $v_{j} v_{k} \notin E$ then \exists chordless path $P: v_{k}, v_{i}, v_{j} \rightarrow \leftarrow(\because$ (2) $)$
Hence, the ordering σ^{*} is a (PEO).
(c) Spring 2022, Justie Su-Tzu Juan

6.2 Chordal Graphs

- Thm: The weighted independent domination problem is NP-complete for chordal graphs.
Proof. (1/2)
欲証: VC $\propto \mathbf{W I D}_{\text {chordal }}$
$\forall G=(V, E)$ and $k \leq|V|$
Construct $G^{\prime}=\left(V^{\prime}, E\right)$ and k^{\prime}

by $\left\{\begin{array}{l}V^{\prime}=\left\{x^{\prime \prime}, x^{\prime}, x \mid x \in V\right\} \cup E \\ E^{\prime}=\left\{x^{\prime \prime} x^{\prime}, x x^{\prime} x \mid x \in V\right\} \cup\{x e \mid x \in V, e \in E, \\ k^{\prime}=k+|V|\end{array}\right\} \begin{aligned} & \text { and }\left\{\begin{array}{l}w(e)=3|V|, \forall e \in E \\ w(x)=w(x)=w\left(x^{\prime \prime}\right)=1, \forall x \in V .\end{array}\right.\end{aligned}$

Note that G^{\prime} is a chordal graph.
(c) Spring 2022, Justie Su-Tzu Juan

Ex:

6.2 Chordal Graphs

- Thm: The weighted independent domination problem is NP-complete for chordal graphs.
Proof. (2/2)
Claim: G has a vertex cover of size at most $k \Leftrightarrow$
G^{\prime} has an independent dominating set of weight at most k^{\prime}.
$<\mathbf{p f}>(\Rightarrow)$ Suppose C is a vertex cover of $G,|C| \leq k$.
Then, $D=\left\{x, x^{\prime \prime} \mid x \in C\right\} \cup\left\{x^{\prime} \mid x \in V C\right\}$ is a independent dominating set of weight at most

$$
|D|=2|C|+(|V|-|C|)=|C|+|V| \leq k+|V|=k^{\prime} .
$$

(\Leftarrow) Suppose D is a independent dominating set of G^{\prime} and $w(D) \leq k^{\prime}$.
$\because \forall e \in E, w(e)=3|V|$ and the definition of G^{\prime}
$\therefore D \cap E=\phi$
$\Rightarrow D=\left\{x, x^{\prime \prime} \mid x \in C\right\} \cup\left\{x^{\prime} \mid x \in M C\right\}$ for some $C \subseteq V$
then C is a vertex cover of G and $|C|=2|C|+(|V|-|C|)-|V|=|D|-|V| \leq k^{\prime}-|V|=k$.
(c) Spring 2022, Justie Su-Tzu Juan

6.2 Chordal Graphs

- Thm: (M. Farber) The independent domination problem is polynomially solvable for chordal graphs.

