Computer Science and Information Engineering National Chi Nan University

Combinatorial Optimization Dr. Justie Su-Tzu Juan

Lecture 6. NP-Completeness § 6.1 Dom is NP-complete

■ Question: Domination problem 是否 ∈ P?

想法: $\forall D \subseteq V$, <u>Step 1</u>: check D是否為dominating set <u>Step 2</u>: 若是,算出|D| <u>Step 3</u>: 求其中最小|D| 有2ⁿ種可能∴此法不可得証 $\in P$ 但仍不曉得 $\in P$ 或 $\notin P$!

Def: π is called NP-complete if
① π ∈ NP
② ∀ π' ∈ NP, π' ∝ π
其 中 ∝ 為 polynomial reduction.

- <u>Note</u>: ① ∝ 具有遞移性, i.e. π₁∝π₂ and π₂∝π₃ ⇒ π₁∝π₃.
 ② If π* is NP-complete and π* ∈ P, then NP = P.
 ③ If π* is NP-complete and π*∝π where π ∈ NP, then π is NP-complete.
- Def: Optimization problem v.s. Decision problem
- <u>Ex</u>: ① Given G, 回答 $\gamma(G)$ (=min{|D|: D is a dominating set of G.}) ② Given k, G, 回答 { yes, if $\gamma(G) \le k$ (if \exists dom. set of size $\le k$); no, otherwise.

- <u>Def</u>: SAT problem: Input: $f = f(x_1, x_2, ..., x_n) = \prod_{\substack{1 \le i \le m \\ i \le i \le m}} (x_{i,1} + x_{i,2} + ... + x_{i,a_i}) (+: \text{ or, } :: \text{ and})$ where $x_1, x_2, ..., x_n$: logical varibles, and $x_{i,j}$ is x_k or $\neg x_k$ for some $k \in \{1, 2, ..., n\}$ Output: { Yes, if we can assign $x_1, x_2, ..., x_n$ such that f is true; No, otherwise.
- <u>Ex</u>: $f = x \cdot y \cdot z$ ($m = 3, a_1 = a_2 = a_3 = 1$) Solve: assign $x \leftarrow 1, y \leftarrow 1, z \leftarrow 1$ $\Rightarrow f = 1$ \therefore Yes!
- <u>Ex</u>: $f = (x + \neg x)(x)(\neg x)$ ($m = 3, a_1 = 2, a_2 = 1, a_3 = 1$) Solve: No!

- **<u>Thm</u>**: (Cook) SAT is NP-complete.
- <u>Remark</u>: R. Karp 列出許多Combinatorial problem証其為NPcomplete.
- <u>Def</u>: VC problem: Input: G = (V, E) and k ≤ |V|.
 Output: { Yes, if ∃ vertex covering of size ≤ k; No, otherwise.
- <u>Def</u>: Dom problem:

Input: G = (V, E) and $k \le |V|$. Output: { Yes, if \exists dominating set of size $\le k$; No, otherwise.

- <u>Thm</u>: VC is NP-complete.
- <u>Thm</u>: Dom is NP-complete.
 Proof. (1/2)

$$I_{VC} \xrightarrow{VC} O_{VC}$$

$$poly. \downarrow \qquad \uparrow poly.$$

$$I_{Dom} \xrightarrow{Dom} O_{Dom}$$

① Construct ↓↑ ② Prove 正確性

<u>Claim</u>: *G* has a vertex cover *C* of size at most $k \Leftrightarrow$

G'has a dominating set D of size at most k'.

Thm: Dom is NP-complete. **Proof.** (2/2) Claim: G has a vertex cover C of size at most $k \Leftrightarrow$ G'has a dominating set D of size at most k'. $\langle \mathbf{pf} \rangle (\Rightarrow)$ Suppose *C* is a vertex cover of *G*, $|C| \leq k$. Then, by the definition of G', D = C is also a dominating set of G' with $|D| \le k = k'$. (\Leftarrow) Suppose *D* is a dominating set of *G'*, $|D| \le k' = k$. If \exists some $e = xy \in D \cap E$, where $x, y \in V$, then $D' = (D \setminus \{e\}) \cup \{x\}$ is also a dominating set of G' with $|D| \leq |D| \leq k$, since $N_G[e] \subseteq N_G[x]$. In this way, we may assume that $D \subseteq V$. Then C = D is a vertex cover of G with $|C| \le k$. Therefore, VC is NP-complete implies that Dom is NP-complete by Note ③.

- <u>Def</u>: G = (V, E) is called a split graph if $V = C \cup S$, where G_C is a clique and G_S is a stable set.
- <u>Corollary</u>: The domination (total domination, connected domination) problem is NP-complete in split graphs.
- <u>Def</u>: G = (V, E) is called a bipartite graph if $V = A \cup B$, where G_A and G_B both are stable sets.
- **<u>Thm</u>:** The domination problem is NP-complete in bipartite graphs.

<u>Thm</u>: The domination problem is NP-complete in bipartite graphs.
 Proof. (1/2)

 $\forall G = (V, E) \text{ and } k \leq |V|$ construct G' = (V', E') and $k' \leq |V|$ such that $\begin{cases} V' = V \cup E \cup \{x^*, y^*\} \\ E' = \{xe: x \in V, e \in E, x \in e\} \cup \{x^*y^*\} \cup \{y^*x: x \in V\} \\ k' = k+1 \end{cases}$ Ex: (a)

Claim:

G has a vertex cover *C* of size at most $k \Leftrightarrow$

G'has a dominating set D of size at most k'.

Thm: The domination problem is NP-complete in bipartite graphs. **Proof.** (2/2) Claim: G has a vertex cover C of size at most $k \Leftrightarrow$ G'has a dominating set D of size at most k'. $\langle \mathbf{pf} \rangle (\Rightarrow)$ Suppose *C* is a vertex cover of *G* and $|C| \leq k$. Then, by the definition of G', $D = C \cup \{y^*\}$ is a dominating set of G' with $|D| \le k+1 = k'$. (\Leftarrow) Suppose *D* is a dominating set of *G* ' and $|D| \leq k$ '. Since $N_G[x^*] \subseteq N_G[y^*]$, So we may assume $x^* \notin D$ and $y^* \in D$ (Otherwise, replace *D* by $(D \setminus \{x^*\} \cup \{y^*\})$) If $\exists e = xy \in D$, then $D' = (D \setminus \{e\}) \cup \{x\}$ is also a dominating set of size $\leq k'$, since $N_G[e] \subseteq (N_G[x] \cup N_G[y^*])$. In this way, we may assume $D = C \cup \{y^*\}$ where $C \subseteq V$. Then C is a vertex cover of size at most k'-1 = k.

 <u>Exercise 4 (4/26)</u>: Prove that the independent domination problem is NP-complete for bipartite graphs. Computer Science and Information Engineering National Chi Nan University

Combinatorial Optimization Dr. Justie Su-Tzu Juan

Lecture 6. NP-Completeness

§6.2 Chordal Graphs

<u>Def</u>: A graph G is called a chordal graph if every cycle of length greater than 3 has a chord.

- <u>Def</u>: An ordering of *V*, $\sigma = [v_1, v_2, ..., v_n]$ in graph G = (V, E), is called a **perfect elimination ordering** (**PEO**) if $\forall 1 \le i < j < k \le n, v_i v_j \in E$ and $v_i v_k \in E \Rightarrow v_j v_k \in E$.
- (<u>Thm</u>: G = (V, E) is chordal graph iff we can order V into (PEO).)
- Note: ① 其中1≤i<j<k≤n可改成1≤i<j≤n,1≤i<k≤n,j≠k.
 ② 圖示:

 i
 i
 強迫

 Recall: Interval ordering (IO):

 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
- <u>Note</u>: A vertex ordering σ of G = (V, E) is (IO) $\Rightarrow \sigma$ is (PEO).
- <u>Remark</u>: ① Interval graphs are chordal graphs.
 ② ∃ example that are chordal graph but not interval graph.

 $C_n, n \ge 4$ 不是interval graph.

是chordal graph (by definition) 不是interval graph ('.'畫不出interval intersection representation)

• <u>Thm</u>: G = (V, E) is chordal graph iff we can order V into (PEO). Proof. (1/5)

(\Leftarrow) Suppose *G* has a (PEO) $\sigma = [v_1, v_2, ..., v_n]$ $\forall k$ -cycle ($k \ge 4$), say $x_1 x_2 ... x_{k-1} x_k (=x_0) x_1 (=x_{k+1})$ in *G* Let $x_j = v_{a_j}, \forall 1 \le j \le k$. Let $a_{j^*} = \min_{1 \le j \le k} a_j (a_{j^*} < a_{j^*+1}, a_{j^*} < a_{j^*-1})$

- <u>Thm</u>: G = (V, E) is chordal graph iff we can order Proof. (2/5)
- (⇐) $\therefore x_{j*}x_{j*-1}, x_{j*}x_{j*+1} \in E, \therefore x_{j*-1}x_{j*+1} \in E$ by (PEO) So the cycle has a chord. ($\therefore k \ge 4$)

$$(\Rightarrow) \text{ For any ordering } \sigma = [v_1, v_2, ..., v_n]$$

Let $d(\sigma) = [d_n, d_{n-1}, ..., d_1]$ where $d_i = |\{j: j > i \text{ and } v_j \in N[v_i]\}|$.

$$\underbrace{\operatorname{Ex:}}_{G} \xrightarrow{\psi_{1}} \xrightarrow{\psi_{2}} \sigma_{1} \xrightarrow{\varphi} d(\sigma_{1}) = [0, 1, 1] \\ \xrightarrow{\psi_{1}} \xrightarrow{\psi_{2}} \sigma_{2} \xrightarrow{\varphi} d(\sigma_{2}) = [0, 0, 2] \end{aligned} d(\sigma_{1}) \geq d(\sigma_{2})$$

$$\underbrace{\operatorname{Def:}}_{\operatorname{say}} \operatorname{For} \operatorname{two} \operatorname{sequences} s_{1} = [a_{1}, a_{2}, \dots, a_{n}], s_{2} = [b_{1}, b_{2}, \dots, b_{n}], \operatorname{we} s_{2} s_{2} \text{ if } \exists 1 \leq k \leq n \text{ s.t. } a_{i} = b_{i} \forall 1 \leq i < k \text{ and } a_{k} > b_{k}.$$

Choose an ordering σ^* such that $d(\sigma^*)$ is lexicographically largest.

• <u>Thm</u>: G = (V, E) is chordal graph iff we can order V into (PEO). Proof. (3/5)

(⇒) <u>Claim</u> ①: for p < q < r and $v_p v_r \in E$ and $v_q v_r \notin E$ $\Rightarrow \exists s > q \text{ s.t. } v_q v_s \in E \text{ and } v_p v_s \notin E$ <pf>Let $\sigma' = [v_1', v_2', ..., v_n']$ be an ordering of *V* obtained by interchanging v_p and v_q , i.e. $(v_i' = v_i)$, for all $1 \le i \le n, i \ne p, i \ne q$. $\langle v_p' = v_q$ $v_a' = v_p$ Let $d_i' = d_i$ in σ' $\forall s > q, d_s' = d_s \text{ since } \forall s > q, v_s' = v_s$ $d_a = |\{t: t > q \text{ and } v_t \in N(v_a)\}|$ $d'_{a} = |\{t: t > q \text{ and } v_{t'}(=v_{t}) \in N(v'_{a})\}| = |\{t: t > q \text{ and } v_{t} \in N(v_{p})\}|$ Since $d(\sigma) \ge d(\sigma')$, we have $d_a \ge d_a'$. But r > q, $v_r \in N(v_p) \setminus N(v_q)$. Hence $\exists s > q$ such that $v_s \in N(v_q) \setminus N(v_p)$.

• <u>Thm</u>: G = (V, E) is chordal graph iff we can order V into (PEO). Proof. (4/5)

 $(\Rightarrow) \underline{\text{Claim} @}: \nexists \text{ chordless path } P: v_{a_1}, v_{a_2}, \dots, v_{a_x} \text{ with } x \ge 3 \text{ and} \\ a_y < a_x < a_1 \text{ for all } y \in \{2, 3, \dots, x-1\}.$

<pf> Suppose such a path exists,

choose one such *P* with max. a_x

By ①, $\exists v_{a_{x+1}}$ s.t. $a_x < a_{x+1}$ and $v_{a_{x+1}}v_{a_x} \in E$, $v_{a_{x+1}}v_{a_2} \notin E$ (`.` $a_2 < a_x < a_1$ and $v_{a_x}v_{a_1} \notin E$, $v_{a_2}v_{a_1} \in E$)

∄

• <u>Thm</u>: G = (V, E) is chordal graph iff w Proof. (5/5)

(⇒) <u>Claim @</u>: ∃ chordless path *P*: $v_{a_1}, v_{a_2}, ..., v_{a_r}$ with $x \ge 3$ and $a_y < a_x < a_1$ for all $y \in \{2, 3, ..., x-1\}$. **<pf> Choose a min** $j \ge 3$ such that $v_{a_{x+1}}v_{a_j} \in E$ $(:: a_x \text{ is max.}, :: \exists \text{ such } j)$ Consider *P*': $v_{a_1}, v_{a_2}, ..., v_{a_i}, v_{a_{x+1}}, |P| \ge 4$ <u>Case 1</u>: $v_{a_1}v_{a_{r+1}} \notin E \Rightarrow (P')^{-1}$, the inverse of P', is a chordless path with larger second max. vertex then $P. \rightarrow \leftarrow$ <u>Case 2</u>: $v_{a_1}v_{a_{r+1}} \in E \Rightarrow \exists$ chordless cycle of length ≥ 4 (:: G is a chordal graph) $\rightarrow \leftarrow$ If i < j < k, $v_i v_j \in E$ and $v_i v_k \in E$, but $v_j v_k \notin E$ then \exists chordless path $P: v_k, v_i, v_i \rightarrow \leftarrow (:: @)$ Hence, the ordering σ* is a (PEO). (c) Spring 2022, Justie Su-Tzu Juan

<u>Thm</u>: The weighted independent domination problem is NP-complete for chordal graphs.

Proof. (1/2) $\begin{array}{c} & \& \exists : VC \propto WID_{chordal} \\ \forall G = (V, E) \text{ and } k \leq |V| \\ & \text{Construct } G' = (V', E') \text{ and } k' \\ & V' = \{x'', x', x \mid x \in V\} \cup E \\ & by \begin{cases} V' = \{x'', x', x \mid x \in V\} \cup E \\ E' = \{x''x', x'x \mid x \in V\} \cup \{xe \mid x \in V, e \in E, x \in e\} \cup \{e_1e_2 \mid e_1 \neq e_2 \text{ in } E\} \\ & k' = k + |V| \\ & \text{and } \begin{cases} w(e) = 3|V|, \forall e \in E \\ w(x) = w(x') = w(x'') = 1, \forall x \in V. \end{cases} \end{array}$

g

G

G'

20

Note that G' is a chordal graph.

- <u>Thm</u>: The weighted independent domination problem is NP-complete for chordal graphs.
- **Proof.** (2/2)

<u>Claim</u>: *G* has a vertex cover of size at most $k \Leftrightarrow$

G 'has an independent dominating set of weight at most *k* '. $<\mathbf{pf}>(\Rightarrow)$ Suppose *C* is a vertex cover of *G*, $|C| \le k$.

Then, $D = \{x, x'' \mid x \in C\} \cup \{x' \mid x \in V \setminus C\}$ is a independent dominating set of weight at most

 $|D| = 2|C| + (|V| - |C|) = |C| + |V| \le k + |V| = k'.$

(\Leftarrow) Suppose *D* is a independent dominating set of *G* 'and *w*(*D*) $\leq k$ '.

- $\therefore \forall e \in E, w(e) = 3|V|$ and the definition of *G'*
- $\therefore D \cap E = \phi$
- $\Rightarrow D = \{x, x'' \mid x \in C\} \cup \{x' \mid x \in V \setminus C\} \text{ for some } C \subseteq V$

then C is a vertex cover of G and

 $|C| = 2|C| + (|V| - |C|) - |V| = |D| - |V| \le k' - |V| = k.$

 <u>Thm</u>: (M. Farber) The independent domination problem is polynomially solvable for chordal graphs.