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6.1 Dom is NP-complete
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* 6.1 Dom is NP-complete
|

Def: zis called NP-complete if o
® e NP |, —0O,
@V aeNP, w’cxw
# ¥ o % polynomial reduction. |, %0,

Note: @ oc £ 7 :£#5 {2, i.e. mocn, and mocm; = mocr,.
@ If 7 is NP-complete and z* € P, then NP = P.

® If z* is NP-complete and z#*czwhere 7 € NP,
then zis NP-complete.

Def: Optimization problem v.s. Decision problem

Ex: @ Given G, » % ©G) (=min{|DJ: D is a dominating set of G.})
@ Givenk, G, » % [ yes, if {G)<k (if 3 dom. set of size < k);
{ no, otherwise.
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ﬁ 6.1 Dom is NP-complete
|

Def: SAT problem:
Input:f = £ (X}, X500, X)) = [ [ (Xi+ X5+ X, ) (+: 01, -2 @and)

WNEre Xy, Xoy «eey X Iogicléilg\r?aribles,
and x;; Is X, or —x, for some k € {1, 2, ..., n}
Output: [ Yes, if we can assign Xy, X5, ..., X,, such that f is true;
JLNo, otherwise.

Ex:f=xyz (m=3,a,=a,=a;=1)
Solve:assign X« 1, y« 1,72« 1
=f=1 .. Yes!

Ex:f=X+-=-x)(X)(—x) (m=3,a,=2,a,=1,a;=1)
Solve: No!
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q 6.1 Dom is NP-complete
|

Thm: (Cook) SAT is NP-complete.

Remark: R. Karp 7] ' 3F % Combinatorial problem3£H i NP-
complete.

Def: VC problem:

Input: G=(V,E)and k< |V].

Output: { Yes, if 3 vertex covering of size < k;
No, otherwise.

Def: Dom problem:

Input: G =(V, E)and k< |V].

Output: | Yes, if 3 dominating set of size < k;
{ No, otherwise.
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6.1 Dom is NP-complete

= Thm: VC is NP-complete. Iy V—C>OVC ® Construct 4T
poly. POl | @ Prove i FEl#
= Thm: Dom is NP-complete. | 1 Dom CI A
— Dom — > “YDom
Proof. (1/2)

253k VC oc Dom

VG=(V,E)and k<L |V|

Claim: G has a vertex cover C of size at most k <
G’has a dominating set D of size at most k.

Construct G’= (V/ E) and k’< |V 1 such that EX.
V’=VUE ¢
E’={xy:xzyinV}u{xe:xeV,e eE X e e} f.
i ©

©
G

G/

(c) Spring 2022, Justie Su-Tzu Juan



6.1 Dom is NP-complete

= Thm: Dom is NP-complete.
Proof. (2/2) Claim: G has a vertex cover C of size at most k <
G’has a dominating set D of size at most k”.
<pf> (=) Suppose C is a vertex cover of G, |C| L k.
Then, by the definition of G/,
D = C is also a dominating set of G’with |[D| <k = k.
(<) Suppose D is a dominating set of G/, |D| £ k’= k.
If 3some e =xy e DNE, where x,y € V,
then D= (D\{e}) U {x} is also a dominating set of G“with
|ID1<|D| £k, since NgJe] < NgX].
In this way, we may assume that D c V.
Then C =D is a vertex cover of G with |C| L k.

Therefore, VC is NP-complete implies that Dom is NP-complete by
Note ®.
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q 6.1 Dom is NP-complete

Def: G =(V, E) is called a split graph if V=C w S, where G is a
cligue and Gg is a stable set.

Corollary: The domination (total domination, connected domination)
problem is NP-complete in split graphs.

Def: G = (V, E) is called a bipartite graph if V = Aw B, where G,
and Gg both are stable sets.

Thm: The domination problem is NP-complete in bipartite graphs.
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6.1 Dom is NP-complete

= Thm: The domination problem is NP-complete in bipartite graphs.
Proof. (1/2)

VG=(V,E)and k<L |V|
construct G’= (V’ E) and k’<|V1 such that
V=V U E U {x* y*}
E’'={xe:xeV,eeE xee}lu{xy*}u{y*x: x e V}

k’=k+1

EX @
Claim: e
G has a vertex cover C of size at most k & ©
G’has a dominating set D of size at most k”. f‘
©
G G’
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6.1 Dom is NP-complete

= Thm: The domination problem is NP-complete in bipartite graphs.
Proof. (2/2) Claim: G has a vertex cover C of size at most k <

G’has a dominating set D of size at most k”.
<pf> (=) Suppose C is a vertex cover of G and |C| L k.
Then, by the definition of G/,

D = Cu {y*} is a dominating set of G’with |D| < k+1 =k,
(<) Suppose D is a dominating set of G”and |D| < k.
Since Ng [x*] < Ng[y*], So we may assume x*¢D and y*eD
(Otherwise, replace D by (D\{x*} U {y*})
If 3e =xy € D, then D’= (D\{e})U{x} is also a dominating
set of size < k', since NgJe] < (NgIX]JUNg[y*]).
In this way, we may assume D = C U {y*} where Cc V.
Then C is a vertex cover of size at most k=1 = k.
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ﬁ 6.1 Dom is NP-complete
|

: Prove that the independent domination problem is
NP-complete for bipartite graphs.
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6.2 Chordal Graphs

[ chordal graph J

= Def: A graph G is called a chordal graph if every cycle of length
greater than 3 has a chord.

= EX:

no no ves
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* 6.2 Chordal Graphs

Def: An ordering of V, o= [v{, V,, ..., V] In graph G = (V, E), is called
a perfect elimination ordering (PEO) If V1<i<j<k<n,vy,; e E
and vy, € Es vy € E.

(Thm: G =(V, E) iIs chordal graph iff we can order V into (PEO).)

Note: @ # # 1<i<j<k<n¥:#&= 1<i<j<n,1<i<k<n,jzk

Q@ B+ : : :
Recall: Interval ordering (10): m

5 18
Note: A vertex ordering ocof G = (V, E) is (10) = ois (PEO).

Remark: @ Interval graphs are chordal graphs.
@ 3 example that are chordal graph but not interval
graph.
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6.2 Chordal Graphs

= Ex: O ‘Q C, n=4 % &interval graph.

) £_chordal graph (by definition)
# &_interval graph
(*."% # dyinterval intersection representation)

= Thm: G =(V, E) is chordal graph iff we can order V into (PEO).
Proof. (1/5)

(<) Suppose G has a (PEQ) o= [Vy, Vyy «vvy V. ]

V k-cycle (k> 4), say X;Xp... X, 1 X (FX)X1(FXi) IN G
Letxj :vaj, V1<j<Lk.

Let 2., =min a. (&« < &g, 8x < &ix_4)
P : : :
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* 6.2 Chordal Graphs s
| .@ .......

Thm: G = (V, E) is chordal graph iff we can order | 6
Proof. (2/5) ”
(c) '.' Xj*xj*_l’ Xj*Xj*"'l € E, .. Xj*—lxj*"'l S E by (PEO) Vaj* ”

So the cycle has a chord. (°." k=4) aj*—1

(=) For any ordering o= [V, Voy «eey V, ]
Letd(o) =[d,, d, 4, ..., d;] whered;=[{j: j>iandv,;e N[v]}|.

B¢ @—@—@®oc — do)=[011]

G d >d
& @ oo — do-poz] T

Def: For two sequences s; = [a,, @y, ..., &,], S, = [Py, Dyy ...y D], WE
says, zs,if31<k<nst.a=bV1<i<kanda>Db,.

Choose an ordering o* such that d(o*) is lexicographically largest.
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6.2 Chordal Graphs

= Thm: G =(V, E) is chordal graph iff we can order V into (PEO).
Proof. (3/5)

(=) Claim ®: forp<qg<randvy, e Eandvy, ¢ E @/M
=>3ds>qst.vyv,eEandvy, ¢ E

<pf>Let ¢’=[v,', V., ..., V] be an ordering of V obtained by @

interchanging V, and Vg, ie. {VI' =v,forall 1<i<n,i#p, 1#40.

Vo' =V
Letd! =d. in ¢’ Vg =V
Vs>q,d/=dsince Vs>q,V/ =V,
d, = {t: t>qand v, e N(vy)}|
d'y=Ht:t>gand v, (=v) € N(V')} = {t: t>qgand v, e N(v,)}
Since d(o) > d(o”), we have d, > d'.
Butr>q, v, € N(v;)\N(v,). Hence 3 s > g such that v, € N(v,)\N(v,).
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* 6.2 Chordal Graphs
|

Thm: G =(V, E) is chordal graph iff we can order V into (PEO).
Proof. (4/5)
(=) Claim @: A chordless path P: Va,, Vay, ..., Va, With X > 3 and
ay<ax<aiforally e {2,3, ..., x-1}.

A

<pf> Suppose such a path exists, @
choose one such P with max. a,

By @, 3V, , S.t. ax< ax+1
and Va,Va € E, Vs, Va, 2 E
(... 8.2<ax<8.1 and VaXVale E, Va_ZVa1 (S E)
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6.2 Chordal Graphs

= Thm: G =(V, E) is chordal graph iff w
Proof. (5/5)
(=) Claim @: 3 chordless path P: vy, Va,, ..., Va, With X > 3 and
ay<ax<aiforally e {2,3, ..., x-1}.
<pf> Choose a min j > 3 such that Vay,1Va; € E
("." a, is max., .. 3suchj)
Consider P” Va,, Va,y «-+ Va; 1 Vay, 1, IP1=4
Case 1: vy, Va ,, € E= (P)™, the inverse of P/ is a chordless
path with larger second max. vertex then P. 5>«
Case 2: vy Va ., € E = 3 chordless cycle of length > 4
("." Gisachordal graph) 5>«
Ifi<j<k vy;e Eandvy, € E,butvy, ¢ E
then 3 chordless path P: v, v;, v, 5>« (*." @)

Hence, the orderlng or IS a PEO
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6.2 Chordal Graphs

= Thm: The weighted independent domination problem is NP-complete
for chordal graphs.

Proof. (1/2) lyve e, Oyc
#RFED VC o WID ggrga poly. 1 WID 1p0|y
VG=(V,E)and k<L |V| lwing, ¢ WiDg
Construct G’= (V% E) and k”’

E’={x%’ xX | xeV}u{xe | xeV, eeE, xee}u{e,e, | e;#e, in E}

V7={x” x’, x| xeV}UE
by

k’=k + |V Ex:

and (w(e)=3|V|,VeeE
{W(x) =wX)=w(x)=1,VxeV.| e ::

f
Note that G’is a chordal graph. )

0O ©
c

20
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6.2 Chordal Graphs

= Thm: The weighted independent domination problem is NP-complete
for chordal graphs.
Proof. (2/2)
Claim: G has a vertex cover of size at most k <
G’has an independent dominating set of weight at most k.
<pf>(=) Suppose C is a vertex cover of G, |C| L k.
Then, D = {x, X" | x € C} U {x’| x € V\C} is a independent
dominating set of weight at most
D] =2|C| + (V|- |C|) = |C| + V| <k + [V[ =K
(<) Suppose D is a independent dominating set of G”and w(D)<k".
" Ve eE, w(e)=3|V|]and the definition of G’
~DNE=¢
=>D={x"|xeC}u{x’|x eV\C}forsomeCcV
then C is a vertex cover of G and
ICl =2|C| + (V|- [C]) = [V| = D] - V| < k"= V| = k.
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ﬁ 6.2 Chordal Graphs
|

Thm: (M. Farber) The independent domination problem is
polynomially solvable for chordal graphs.
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