Computer Science and Information Engineering National Chi Nan University
 Combinatorial Optimization

 Dr. Justie Su-tzu Juan
Lecture 5. The Domatic Number Problem on Interval Graphs §5.1 Method 1: maximum flow

Slides for a Course Based on the Paper Alan A. Bertossi, "On the Domatic Number of Interval Graphs", Inform. Process. Lett. 28(6) (1988), 275-280.

5.1 Method 1: maximum flow

- Def: Given a graph \boldsymbol{G}, the domatic number, denoted by $d(G)=$ maximum number k such that $V=\bigcup D_{i}$, where D_{i} is a dominating set for all $1 \leq i \leq k$. $1 \leq \boldsymbol{i} \leq \boldsymbol{k}$
- Ex:

$$
d\left(C_{5}\right)=2
$$

- Note 1: $d(G)=$ maximum number k such that $\exists \boldsymbol{k}$ disjoint dominating sets in G.

5.1 Method 1: maximum flow

- Def: Given an interval graph $G=(V, E)$ where $V=\{1,2, \ldots, n\}$ and $\left\{I_{i} \mid I_{i}=\left[a_{i}, b_{i}\right]\right\}$ is an interval representation of G with $b_{1}<b_{2}<\ldots<$ b_{n}. (Hence $\forall i, j, k \in V, i<j<k$ and $i k \in E \Rightarrow j k \in E$)
(1) Define a graph $G^{\prime}=\left(V^{\prime}, E\right)$ where $V^{\prime}=\{0,1, \ldots, n, n+1\}$, and

$$
I_{0}=\left[a_{0}, b_{0}\right], b_{0}<a_{i} \forall i ; I_{n+1}=\left[a_{n+1}, b_{n+1}\right], b_{n}<a_{n+1} .
$$

(2) Define a digraph $H^{\prime}=\left(V^{\prime}, A\right)$ where

$$
\begin{aligned}
& A^{\prime}=\left\{(i, j) \mid(1) a_{i}<a_{j} \leq b_{i}<b_{j} \text { or (2) } \nexists h \text { s.t. } b_{i}<a_{h} \leq b_{h}<a_{j}\right\} \text {. } \\
& \begin{array}{llll}
a_{i} & b_{i} \\
a_{i} & \text { (2) } a_{i} & b_{i} \\
& b_{j} & b_{j} & b_{j}
\end{array}
\end{aligned}
$$

G^{\prime}

(6) H^{\prime}

(c) Spring 2022, Justie Su-Tzu Juan

5.1 Method 1: maximum flow

- Note 2: $\forall(i, j) \in A^{\prime}, i<j$ and $i<h<j \Rightarrow(i h \in E$ or $h j \in E)$.
- Lemma 5.1: $\forall 0-(n+1)$ dipath P in $H^{\prime} \Rightarrow D=\{v \mid v \in V(P)\}$ is a dominating set in G^{\prime}.
- Ex:

(0)

(c) Spring 2022, Justie Su-Tzu Juan

5.1 Method 1: maximum flow

- Lemma 5.1: $\forall 0-(n+1)$ dipath P in $H^{\prime} \Rightarrow D=\{v \mid v \in V(P)\}$ is a dominating set in G^{\prime}.

Proof.

Let $P=i_{0}(=0) \rightarrow i_{1} \rightarrow i_{2} \rightarrow \ldots \rightarrow i_{r} \rightarrow i_{r+1}(=n+1)$
then $D=\left\{i_{0}, i_{1}, i_{2}, \ldots, i_{r}, i_{r+1}\right\}$ where $i_{0}<i_{1}<i_{2}<\ldots<i_{r}<i_{r+1}$.
$\forall h \notin D$:
$\because h \neq 0, n+1 \therefore$ we can find $i_{j}, i_{j+1} \in D$ s.t. $i_{j}<h<i_{j+1}$
By Note $2, \because\left(i_{j}, i_{j+1}\right) \in A^{\prime}, \therefore i_{j} h \in E$ or $i_{j+1} h \in E$
\Rightarrow either i_{j} or i_{j+1} dominate h.
$\therefore D$ is a dominating set in G^{\prime}.

5.1 Method 1: maximum flow

Lemma 5.2: For any minimal dominating set D^{\prime} of G^{\prime} $\Rightarrow\left\{x \mid x \in D^{\prime}\right\}$ forms a $0-(n+1)$ dipath in H^{\prime}.

- Ex:

$$
\begin{equation*}
G^{\prime} \tag{6}
\end{equation*}
$$

(0)

(c) Spring 2022, Justie Su-Tzu Juan

5.1 Method 1: maximum flow

Lemma 5.2: For any minimal (proper) dominating set D^{\prime} of G^{\prime} $\Rightarrow\left\{x \mid x \in D^{\prime}\right\}$ forms a $0-(n+1)$ dipath in H^{\prime}.
Proof. (1/2)
Let $D^{\prime}=\left\{0=k_{0}, k_{1}, k_{2}, \ldots, k_{s}, k_{s+1}=n+1\right\}$
where $k_{0}<k_{1}<k_{2}<\ldots<k_{s}<k_{s+1}$.
Claim: $\left(k_{j}, k_{j+1}\right) \in A^{\prime}$

$$
<\mathbf{p f}>\text { for any } \mathbf{0} \leq j \leq s \text { : }
$$

$$
\text { Case 1: } I_{k_{j}} \cap I_{k_{j+1}} \neq \phi:
$$

$\because b_{k_{j}}<b_{k_{j+1}} \therefore a_{k_{j+1}} \leq b_{k_{j}}$

If $a_{k_{j+1}} \leq a_{k_{j}}$, then $I_{k_{j}} \subseteq I_{k_{j+1}}$
$\Rightarrow N\left[k_{j}\right] \subseteq N\left[k_{j+1}\right]$
$\Rightarrow D \backslash\left\{k_{j}\right\}$ is still a dominating set $\rightarrow \leftarrow$
($\because D$ is a "minimal" dominating set of G ')
$\therefore a_{k_{j}}<a_{k_{j+1}}<b_{k_{j}}<b_{k_{j+1}}$
Hence $\left(k_{j}, k_{j+1}\right) \in A^{\prime}$.
(c) Spring 2022, Justie Su-Tzu Juan

5.1 Method 1: maximum flow

Lemma 5.2: For any minimal dominating set D^{\prime} of G^{\prime} $\Rightarrow\left\{x \mid x \in D^{\prime}\right\}$ forms a $0-(n+1)$ dipath in H^{\prime}.
Proof. (2/2)
Case 2: $I_{k_{j}} \cap I_{k_{j+1}}=\phi:$

Suppose $\exists y \in V$ such that $b_{k_{j}}<a_{y} \leq b_{y}<a_{k_{j+1}}$
$\because D$ is a dominating set of G^{\prime}
$\therefore \exists I_{k_{x}} \in D$ such that $I_{k_{x}} \cap I_{y} \neq \phi$
$\because \nexists I_{k_{x}} \in D$ s.t. $j<x<j+1$
$\therefore k_{x}>y \Rightarrow x>j+1 \Rightarrow I_{k_{j+1}} \subseteq I_{k_{x}}$
$\Rightarrow D \backslash\left\{k_{j+1}\right\}$ is still a dominating set $\rightarrow \leftarrow$
$(\because D$ is a "minimal" dominating set of G)
$\therefore \nexists y$ s.t. $b_{k_{j}}<a_{y} \leq b_{y}<a_{k_{j+1}}$
Hence $\left(k_{j}, k_{j+1}\right) \in A^{\prime}$.
(c) Spring 2022, Justie Su-Tzu Juan

5.1 Method 1: maximum flow

- Thm 5.1: $d(G)=$ maximum number of internally vertex-disjoint $0-(n+1)$ path in H^{\prime}.
Proof.
By Note $1 d(G)=$ maximum number of disjoint dominating set in G.
= maximum number of minimal dominating set in G^{\prime} such that \forall proper dominating set $D_{i}{ }^{\prime} \neq D_{j}^{\prime}, D_{i}^{\prime} \cap D_{j}^{\prime}=\{0, n+1\}$.
By lemma $5.1 \geq$ maximum number of internally disjoint $0-(n+1)$ path in H^{\prime}.
By lemma $5.2 \geq$ maximum number of dominating set in G^{\prime} such that \forall dominating set $D_{i}{ }^{\prime} \neq D_{j}{ }^{\prime}, D_{i}{ }^{\prime} \cap D_{j}{ }^{\prime}=\{0, n+1\}$.
$=$ maximum number of disjoint dominating set in G.
By Note $1=d(G)$.
Hence $d(G)=$ maximum number of internally vertex-disjoint $0-(n+1)$ path in H^{\prime}.

5.1 Method 1: maximum flow

- Remark: Since maximum flow = minimum cut, the best method to find the maximum flow need $\mathcal{O}\left(n^{2.5}\right)$.
- Ex:

$\therefore d(G)=2$
H^{\prime}
G

Computer Science and Information Engineering National Chi Nan University

Combinatorial Optimization

Dr. Justie Su-Tzu Juan

Lecture 5. The Domatic Number

 Problem on Interval Graphs §5.2 Method 2: DynamicSlides for a Course Based on the Paper T. L. Lu, P. H. Ho, and G. J. Chang, "The domatic number problem in interval graphs", SIAM J. Disc. Math. 3 (1990), 531-536.

5.2 Method 2: Dynamic

- Thm 5.2: (Weakly duality inequality)

$$
d(G) \leq \delta(G)+1, \text { where } \delta(G)=\min \{\operatorname{deg}(x) \mid x \in V(G)\} .
$$

Proof.

Suppose $D_{1}, D_{2}, \ldots, D_{d(G)}$ are disjoint dominating set.
Choose $x \in V(G)$ such that $\operatorname{deg}(x)=\delta(G)$
$\because D_{i}$ is a dominating set, $\forall 1 \leq i \leq d(G)$
$\therefore D_{i} \cap N[x] \neq \phi, \quad \forall 1 \leq i \leq d(G)$
$\forall 1 \leq i<j \leq d(G):$
$\because D_{i}, D_{j}$ are disjoint

$$
\begin{aligned}
& \therefore\left(\boldsymbol{D}_{i} \cap N[x]\right) \cap\left(D_{j} \cap N[x]\right)=\phi \\
\Rightarrow & d(G) \leq|N[x]|=\delta(G)+1
\end{aligned}
$$

5.2 Method 2: Dynamic

- Algorithm:

Given an interval graph $G=(V, E)$, where $V=\{1,2, \ldots, n\}$ in interval ordering.

$$
\text { for } 0 \leq i \leq \delta(G)
$$

$D_{i} \leftarrow \phi ;$
($\mathrm{for} \boldsymbol{j}=\boldsymbol{n}$ to 1 step -1
choose a maximum $k \in N[j]$ that is not dominated by all D_{i};
say k is not dominated by $D_{i^{*}}$, If \ddagger such k then choose any D_{i} as $D_{i^{*}}$ $D_{i^{*}} \leftarrow D_{i^{*}} \cup\{j\}$.

- Time Complexity $=\mathcal{O}(|V|+|E|)$

$$
\text { for } j=n \text { to } 1 \text { step }-1
$$

choose a maximum $k \in N[j]$ that is not dominated by all D_{i}; say k is not dominated by $D_{i^{*}}$, If \nexists such k then choose any D_{i} as $D_{i^{*}}$ $D_{i^{*}} \leftarrow D_{i^{*}} \cup\{j\}$ 。

- Ex:

$$
\left.\begin{array}{lccll}
k & 1 & \phi & 2 & 5 \\
i^{*} & \{1\} & \phi & \{0\} & \{1\} \\
& \{0\}(\text { or }\{1\}) & D_{0}=\{5,3,2
\end{array}\right\}
$$

- Goal: When the algorithm stops, if $D_{0}, \ldots, D_{\delta(G)}$ are dominating sets, then $\delta(G)+1 \leq d(G) \leq \delta(G)+1 . \quad(\Rightarrow d(G)=\delta(G)+1)$ need prove w.d.i.
- Notation:
(1) n dom $_{j}(h)=$ number of D_{i} s.t. h is not dominated by D_{i} at iteration j.
(2) $\boldsymbol{R}_{j}(h)=$ number of vertices in $N[h]$ not yet assigned at iteration j.

5.2 Method 2: Dynamic

- Note:
(1) $n \operatorname{dom}_{n}(h)=\delta(G)+1, \forall 1 \leq h \leq n$
(2) $R_{n}(h)=\operatorname{deg}(h)+1 \geq \delta(G)+1, \forall 1 \leq h \leq n$
(3) $\boldsymbol{R}_{\mathbf{0}}(\boldsymbol{h})=\mathbf{0}, \forall 1 \leq h \leq \boldsymbol{n}$
(4) ndom $_{i}(h) \geq \operatorname{ndom}_{j}(h), \forall 1 \leq h \leq n, n \geq i>j \geq 0$.
- Lemma 5.3: $\forall 1 \leq h \leq n, R_{j}(h) \geq n d o m_{j}(h)$ in any iteration j.
- Thm 5.3: $D_{0}, \ldots, D_{\delta G)}$ are dominating sets.

Proof.
By Lemma 5.3, when $j=0: 0=R_{0}(h) \geq$ ndom $_{0}(h)$ \Rightarrow ndom $_{0}(h)=0$ for all h
i.e. $\forall h, h$ is dominated by $D_{i}, \forall 1 \leq i \leq \delta(G)$
$\Rightarrow D_{0}, \ldots, D_{\delta G)}$ are dominating sets.

5．2 Method 2：Dynamic

－Lemma 5．3：$\forall 1 \leq h \leq n, R_{j}(h) \geq \operatorname{ndom}_{j}(h)$ in any iteration j ． Proof．（1／3）

Prove by induction on j（back induction）
When $j=n: R_{n}(h)=\operatorname{deg}(h)+1 \geq \delta(G)+1=\operatorname{ndom}_{n}(h), \forall 1 \leq h \leq n$
Suppose $R_{j+1}(h) \geq$ dom $_{j+1}(h)$ for some $2 \leq j \leq n, \forall 1 \leq h \leq n$
For the case of $j, \forall 1 \leq h \leq n$ ：
（1）$h \notin N[j+1]: R_{j}(h)=R_{j+1}(h) \geq$ ndom $_{j+1}(h)=$ ndom $_{j}(h)$ I．H．
（2）$h \in N[j+1]: R_{j}(h)=R_{j+1}(h)-1 \geq$ ndom $_{j+1}(h)-1$ I．H．
依演算法中所選出 k 之大小分別討論：
Case 1：$k<h$ or \nexists such k
Case 2：$h \leq k$ ：$\left(k\right.$ 未被 $D_{i^{*}}$ dominate）
（c）Spring 2022，Justie Su－Tzu Juan

5．2 Method 2：Dynamic

－Lemma 5．3：$\forall 1 \leq h \leq n, R_{j}(h) \geq \operatorname{ndom}_{j}(h)$ in any iteration j ． Proof．（2／3）
（2）$h \in N[j+1]: R_{j}(h)=R_{j+1}(h)-1 \geq \operatorname{dom}_{j+1}(h)-1$
Case 1：$k<h$ or \nexists such k
By the algorithm， $\operatorname{ndom}_{j}(h)=0=\operatorname{ndom}_{j+1}(h)$
$\Rightarrow R_{j}(h) \geq \mathbf{0}=\operatorname{ndom}_{j}(\boldsymbol{h})$
Case 2：$h \leq k$ ：$\left(k\right.$ 未被 $D_{i^{*}}$ dominate）

Claim：未將j＋1放入 $D_{i^{*}}$ 之前，$D_{i^{*}}$ does not dominate h ．
$\because j+1$ 放入 $D_{i^{*}}$ 之後，$D_{i^{*}}$ 就dominate h
\therefore ndom $_{j}(h)=$ ndom $_{j+1}(h)-1$ ．
$\Rightarrow R_{j}(h) \geq \operatorname{ndom}_{j+1}(h)-1=\operatorname{ndom}_{j}(h)$.

$$
\begin{equation*}
i<j<k \text { and } v_{i} v_{k} \in E \Rightarrow v_{j} v_{k} \in E \tag{*}
\end{equation*}
$$

5．2 Method 2：Dynamic

－Lemma 5．3：$\forall 1 \leq h \leq n, R_{j}(h) \geq \operatorname{ndom}_{j}(h)$ in any iteration j ． Proof．（3／3）

Case 2：$h \leq k$ ：$\left(k\right.$ 未被 $D_{i^{*}}$ dominate）
Claim：未將 $j+1$ 放入 $D_{i^{*}}$ 之前，$D_{i^{*}}$ does not dominate h ．
＜pf＞Suppose not， i．e．$\exists x \in D_{i^{*}}, x$ dominate h where $x \in\{j+2, \ldots, n\}$考虑 k 與 x 之大小關係：
（1）If $h \leq k<x:(\because h \leq k)$

By（ $*$ ），$h x \in E \Rightarrow k x \in E$
（2）else $j+1<x \leq k:(\because j+1<x)$
By（＊），$(j+1) k \in E \Rightarrow x k \in E$

\therefore In any case，k was dominated by $D_{i^{*}} \rightarrow \leftarrow$

5.2 Method 2: Dynamic

- Reference
- Glenn Manacher, Terrance Mankus, "Finding a Domatic Partition of an Interval Graph in Time O(n)," SIAM J. Discrete Math. 9 (1996) Issue 2, pages 167 - 172.
- Haim Kaplan, Ron Shamir, "The domatic number problem on some perfect graph families," Information Processing Letters, Volume 49, Issue 1 (January 1994) Pages: 51 - 56.
- G. J. Chang (1994), "The domatic number problem," Disc. Math. 125, 115-122.
- A. S. Rao and C. P. RanganLinear, "algorithm for domatic number problem on interval graphs," Information Processing Letters, Volume 33, Issue 1 (October 1989), Pages: 29-33
- Shen-Lung Peng and Maw-Shang Chang, "A simple linear time algorithm for the domatic partition problem on strongly chordal graphs," Information Processing Letters, Volume 43, Issue 6 (October 1992), Pages: 297-300
(c) Spring 2022, Justie Su-Tzu Juan

5.2 Method 2: Dynamic

- Exercise 3 (4/12): Develop a primal-dual algorithm for the vertex cover problem in tree. Or find an counterexample. (The dual problem is the maximum matching problem which is to find a matching of maximum size. A matching of a graph is a subset of edge set in which no two distinct edges have a common vertex.)

