Computer Science and Information Engineering National Chi Nan University
 Combinatorial Optimization

Dr. Justie Su-tzu Juan

Lecture 4. The Domination Problems

 on Interval Graphs §4.3 Domination ProblemsSlides for a Course Based on the Paper G. Ramalingam and C. Pandu Rangan, "A unified approach to domination problems on interval graphs", Inform. Process. Lett. 27 (1988), 271-274.

4.3 Domination Problems

1. Introduction and notations

- Def: Let $G=(V, E)$ be a graph, let $D \subseteq V$
(1) D is a independent dominating set of G iff
$\{(1) D$ is a dominating set of G.
(2) D is a independent set. $(\forall x \neq y$ in $D \Rightarrow x y \notin E)$
$\gamma_{i}(\boldsymbol{G})=\min \{|\boldsymbol{D}|: \boldsymbol{D}$ is a independent dominating set of $\boldsymbol{G}\}(\geq \gamma(\boldsymbol{G}))$
(2) D is a connected dominating set of G iff
$\{(1) D$ is a dominating set of G.
(2) $G[D]$, the subgraph induced by D is connected.
$\gamma_{c}(G)=\min \{|D|: D$ is a connected dominating set of $\boldsymbol{G}\}$
(3) D is a total dominating set of \boldsymbol{G} iff
$\{(1) D$ is a dominating set of G.
(2) $\operatorname{deg}_{G[D]}(x) \neq 0, \forall x \in D$.

$$
\equiv \bigcup_{x \in D} N(x)=V
$$

$\left(=\forall x \in D \Rightarrow \exists y \neq x\right.$ and $y \in D^{x \in D}$ such that $\left.x y \in E\right)$
$\gamma_{t}(\boldsymbol{G})=\min \{|D|: D$ is a total dominating set of $\boldsymbol{G}\}$

4.3 Domination Problems

- Def: Given graph $G=(V, E)$, and \forall vertex v, \exists real number $w(v)$
(1) $\mathcal{\gamma}(\boldsymbol{G}, w)=\min \left\{\boldsymbol{w}(\boldsymbol{D})=\sum_{v \in D} w(v): \boldsymbol{D}\right.$ is a dominating set of $\left.\boldsymbol{G}\right\}$.
(2) $\gamma_{i}(\boldsymbol{G}, \boldsymbol{w})=\min \left\{\boldsymbol{w}(\boldsymbol{D})=\sum_{v \in D} w(v): \boldsymbol{D}\right.$ is an independent dom. set of $\left.\boldsymbol{G}\right\}$.
(3) $\gamma_{c}(\boldsymbol{G}, w)=\min \left\{\boldsymbol{w}(\boldsymbol{D})=\sum_{v \in D} w(v): \boldsymbol{D}\right.$ is a connected dom. set of $\left.\boldsymbol{G}\right\}$.
(4) $\gamma_{t}(\boldsymbol{G}, \boldsymbol{w})=\min \left\{\boldsymbol{w}(\boldsymbol{D})=\sum_{v \in D} w(v): \boldsymbol{D}\right.$ is a total dom. set of $\left.\boldsymbol{G}\right\}$.
- Remark: The problems of finding a minimum-cardinality (independent, connected, total) dominating set and finding a minimum-weight (independent, connected, total) dominating set of a graph are NP-complete. [Garey and Johnson, 1979]

4.3 Domination Problems

- Def: Given an interval graph $G=(V, E)$ and the interval ordering of G is $\{1,2, \ldots, n\}$. Define
(1) $V_{i}=\{1,2, \ldots, i\}, V_{0}=\phi$.
(2) $G_{i}=$ the subgraph of G induced by V_{i}
(3) $\operatorname{low}(i)=\min \{x \mid x \in N[i]\}$
(4) $\operatorname{maxlow}(i)=\max \{\operatorname{low}(j) \mid \operatorname{low}(i) \leq j \leq i\}$
(5) $L(i)=\{\operatorname{maxlow}(i), \operatorname{maxlow}(i)+1, \ldots, i\}$
(6) $M(i)=\{j \mid j>i$ and j is adjacent to $i\}$

$$
\begin{aligned}
L(4) & =\{2,3,4\} \\
M(4) & =\{5,8\}
\end{aligned}
$$

Ex:

$\max \operatorname{low}(i) \quad 1 \quad 2$
$L(3)=\{2,3\}$

$$
M(3)=\{4,5\}
$$

$$
\begin{aligned}
L(8) & =\{6,7,8\} \\
M(8) & =\{10\}
\end{aligned}
$$

) Spring 2022, Justie Su-Tzu Juan

4.3 Domination Problems

- Note: © $N_{G_{i}}(i)=\{\operatorname{low}(i), \operatorname{low}(i)+1, \ldots, i-1\}$
(2) $G[L(i)]$ form a maximal clique in G_{i}.
(3) Let $j \in V$ s.t. $\operatorname{low}(i) \leq j \leq i$ and $\operatorname{maxlow}(i)=\operatorname{low}(j)$

Then, (1) $\operatorname{low}(i) \leq \operatorname{low}(j)$
(2) $j \leq i$
(3) $N[j] \subseteq L(i) \cup M(i)$
(4) $N_{G_{i}}(j) \subseteq L(i)$

- Def: $\operatorname{Min} X=$ the element D^{*} in X, such that

$$
w\left(D^{*}\right)=\min \{w(D) \mid D \in X\} .
$$

4.3 Domination Problems

2. Domination

- Def: (1) Let $D_{i}=$ subset of $V(G)$ s.t. $\forall x \in V_{i}, \exists y \in D_{i}$ with $x \sim y$.
(2) Let $M D_{i}=$ the minimum-weight D_{i}.
- Thm: (a) $M D_{0}=\phi$
(b) For $1 \leq i \leq n, M D_{i}=\min \left\{\{j\} \cup M D_{l o w(j)-1} \mid j \in L(i) \cup M(i)\right\}$

Proof. (b) (1/2)

$$
\begin{aligned}
&(1) \because \exists j \in L(i) \text { s.t. } N(j) \subseteq L(i) \cup M(i) \\
& \therefore \exists k \in D_{i} \cap(L(i) \cup M(i)) \text { s.t. } k j \in E \\
& \Rightarrow D_{i}=\{k\} \cup D \text { for some } k \in L(i) \cup M(i), \\
& \quad \text { where } D=D_{i}-\{k\}, \text { for any } D_{i} .
\end{aligned}
$$

4.3 Domination Problems

- Thm: (b) For $1 \leq i \leq n, M D_{i}=\min \left\{\{j\} \cup M I D_{\text {low }(j)-1} \mid j \in L(i) \cup M(i)\right\}$ Proof. (b) (2/2)
(2) \because The definition of low function,
$\therefore k$ dominates no vertex in $V_{\text {low }(k)-1}$
$\Rightarrow D$ is a dominating set of $G_{\text {low }(k)-1}$
By (1), (2), a set is a $D_{i} \Leftrightarrow D_{i}=\{k\} \cup D_{\text {low }(k)-1}$ for some $k \in L(i) \cup M(i)$
$\therefore M D_{i}=\operatorname{Min}\left\{D_{i} \mid\right.$ for all possible $\left.D_{i}\right\}$

$$
=\operatorname{Min}\left\{\{k\} \cup D_{\operatorname{low}(k)-1} \mid k \in L(i) \cup M(i)\right\}
$$

4.3 Domination Problems

- Algorithm 4.3:

Given the interval ordering $\{1,2, \ldots, n\}$ and low, maxlow functions for every vertex of a interval graph \boldsymbol{G}.
$M D_{0}:=\phi$;
$w\left(M D_{0}\right):=0 ;$
for $i=1$ to n do
min $:=\infty$;
for $j \in L[i] \cup M[i]$ do
if $\left(j \geq \operatorname{maxlow}(i)\right.$ and $\left.w(j)+w\left(M D_{\operatorname{low}(j)-1}\right)<\min \right)$ then $\min :=w(j)+w\left(M D_{\text {low }(j)-1}\right) ;$ minj $:=j$
$M D_{i}:=\{$ minj $\} \cup M D_{l o w(m i n j)-1} ;$
$w\left(M D_{i}\right):=\min$

- Time Complexity $=\mathcal{O}(|V|+|E|)$

4.3 Domination Problems


```
min := \infty;
for }j\inL[i]\cupM[i] do
    if (j\geqmaxlow(i) and w(j)+w(MD low(j)-1
        min}:=w(j)+w(M\mp@subsup{D}{low(j)-1}{})
        minj :=j
MD 
w ( M D _ { i } ) : = m \text { min}
```


4.3 Domination Problems

3. Independent domination

- Def: (1) Let $I D_{i}=$ an independent dominating set of $\boldsymbol{G}_{\boldsymbol{i}}$.
(2) Let $M I D_{i}=$ the minimum-weight $I D_{i}$.
- Thm: (a) $M I D_{0}=\phi$
(b) For $1 \leq i \leq n, M I D_{i}=\operatorname{Min}\left\{\{j\} \cup M I D_{l o w(j)-1} \mid j \in L(i)\right\}$

Proof. (b) (1/3) (\geq)
Let $M_{i}=D \cup\{j\}$, where $j=\max \left\{x \mid x \in \operatorname{MID}_{i}\right\}, D=\operatorname{MID}_{i} \backslash\{j\}$.
(1) D is an independent set.
(2) \boldsymbol{D} is a dominating set of $\boldsymbol{G}_{l o w(j)-1}$:
$\forall x \in V_{l o w(j)-1}, \exists y \in M I D_{i}$ s.t. $x \sim y$
But $\because x<\operatorname{low}(j) \therefore$ By the definition of low function, we have $y \neq j$.
Then $y \in D . \therefore D$ is a dominating set of $\boldsymbol{G}_{l o w(j)-1}$.

4.3 Domination Problems

- Thm: (b) For $1 \leq i \leq n, M I D_{i}=\operatorname{Min}\left\{\{j\} \cup M I D_{\text {low }(j)-1} \mid j \in L(i)\right\}$ Proof. (b) (2/3) (\geq)
(3) $j \in L(i):$

Suppose $k^{*} \in V$ s.t. $\operatorname{low}(i) \leq k^{*} \leq i$ and $\operatorname{maxlow}(i)=\operatorname{low}\left(k^{*}\right)$
$\Rightarrow \operatorname{maxlow}(i)=\max \{\operatorname{low}(k) \mid \operatorname{low}(i) \leq k \leq i\} \geq \operatorname{low}(j)$
$\left(\because N_{G_{i}}(i)=\{\operatorname{low}(i), \operatorname{low}(i)+1, \ldots, i-1\}, \therefore \operatorname{low}(i) \leq j \leq i\right)$
If $j \notin L(i)$, then $j<\operatorname{maxlow}(i)=\operatorname{low}\left(k^{*}\right) \leq k^{*}$
By definition of independent dominating set,

$$
\begin{equation*}
\exists x^{*} \in \operatorname{MID}_{i} \text { s.t. } x^{*} k^{*} \in E \tag{i}
\end{equation*}
$$

$\because x^{*}<\max \left\{x \mid x \in \operatorname{MID}_{i}\right\}=j<k^{*}$ and $x^{*} k^{*} \in E$
$\therefore \mathrm{By}(*), j k^{*} \in E \rightarrow \leftarrow\left(\because j<\operatorname{low}\left(k^{*}\right)\right)$
By (1), (2), (3) $\Rightarrow w(D) \geq w(j)+w\left(\right.$ MID $\left._{l o w(j)-1}\right)$ for some $j \in L(i)$.

$$
\left.\Rightarrow \operatorname{MID}_{i} \geq \operatorname{Min}\left\{\{j\} \cup \operatorname{MID}_{l o w}(j)-1\right) \mid j \in L(i)\right\} .
$$

(c) Spring 2022, Justie Su-Tzu Juan

4.3 Domination Problems

- Thm: (b) For $1 \leq i \leq n, M I D_{i}=\operatorname{Min}\left\{\{j\} \cup M I D_{l o w(j)-1} \mid j \in L(i)\right\}$

Proof. (b) (3/3) (\leq) $\quad \forall j \in L(i)$:
(1) $\because N_{G_{i}}(j)=\{x \in V \mid x \geq \operatorname{low}(j)\}$
$\therefore j$ is not adjacent to any vertex in $G_{l o w(j)-1}$
$\Rightarrow\{j\} \cup M I D_{\text {low }(j)-1}$ is an independent set of G_{i}.
(2) (1) $\forall x \in\{\operatorname{low}(j), \operatorname{low}(j)+1, \ldots, j\}:$
$\because \operatorname{low}(j) \leq x \leq j$
\therefore By the definition of $l o w$ function and $(*), x \sim j$.
(2) $\forall x \in\{j+1, j+2, \ldots, i\}$:
$\because j \in L(i)$ and $\operatorname{low}(i) \leq \operatorname{maxlow}(i) \leq j<x<i$
$\therefore \operatorname{low}(x) \leq \operatorname{maxlow}(i) \leq j<x$
\therefore By the definition of low function and $(*), j x \in E$
$\Rightarrow\{j\} \cup M I D_{\text {low(j)-1 }}$ is an indp. dom. set of $G_{i} \quad$ or say
By (1), (2), $\operatorname{MID}_{i} \leq \operatorname{Min}\left\{\{j\} \cup \operatorname{MID}_{\text {low }(j)-1} \mid j \in L(i)\right\} . \quad \therefore L(i)$ is a clique
(c) Spring 2022, Justie Su-Tzu Juan

4.3 Domination Problems

- Algorithm 4.2:

Given the interval ordering $\{1,2, \ldots, n\}$ and low, maxlow functions for every vertex of a interval graph \boldsymbol{G}.
$M I D_{0}:=\phi$,
$w\left(\right.$ MID $\left._{0}\right):=0 ;$
for $i=1$ to n do
min $:=\infty$;
for $\operatorname{maxlow}(i) \leq j \leq i$ do
if $\left(w(j)+w\left(\right.\right.$ MID $\left.\left._{l o w(j)-1}\right)<\min \right)$ then $\min :=w(j)+w\left(M I D_{l o w(j)-1}\right) ;$ minj $:=j$
MID $_{i}:=\{$ minj $\} \cup$ MID $_{\text {low }(\text { minj })-1} ;$
$w\left(\right.$ MID $\left._{i}\right):=\min$

- Time Complexity $=\mathcal{O}(|V|+|E|)$

4.3 Domination Problems

- Ex:
$w(i)$
0
low(i)
maxlow(i)

L(i) \{1\}
$\{2\}\{2,3\}\{2,3,4\}\{3,4,5\}\{6\} \quad\{6,7\}\{6,7,8\}\{9\} \quad\{9,10\}$
$M I D_{i}$
$\boldsymbol{w}\left(\right.$ MID $\left._{i}\right)$
min
minj

```
min := \infty;
for maxlow(i)\leqj\leqi do
    if (w(j)+w(MID low(j)-1})<min) the
    min}:=w(j)+w(MID low(j)-1)
    minj :=j
MID 
w(MID
```


4.3 Domination Problems

- Note:
(1) The method can be used to solve the "maximum-weight" version.
(2) For the other 3 domination problems, we can consider nonnegative weights only.

4.3 Domination Problems

4. Total domination and connected domination

- Exercise 加分 (4/13): Develop a dynamic programming algorithm for total domination or connected domination; or show there exist an counterexample.

4.3 Domination Problems

5. Related works

Interval Graphs				Circular-arc Graphs			
TD	WTD	WD, WID	WCD	D	WD	WTD	$\begin{aligned} & \hline \text { WID, } \\ & \text { WCD } \end{aligned}$
Open[84]				$\mathcal{O}(\mathrm{nm})$ [85]			
$\mathcal{O}\left(n^{2}\right)[86]$					$\mathcal{O}\left(n^{3}\right)$ [89]		
$\begin{gathered} \hline \mathcal{O}(n+m) \\ {[88]} \end{gathered}$				$\mathcal{O}(n)[91]$			
	$\begin{gathered} \mathcal{O}(n \log n) \\ {[88]} \end{gathered}$				$\begin{gathered} \hline \mathcal{O}\left(n^{2} \log n\right) \\ {[91]} \end{gathered}$		
	$\mathcal{O}(n+m)[88]$						
	$\mathcal{O}(n+m)[98]$		$\mathcal{O}(n \log \log n)[98]$		$\mathcal{O}(n+m)[98]$		

Where $n=|V|$ and $m=|E|$
(c) Spring 2022, Justie Su-Tzu Juan

