Computer Science and Information Engineering National Chi Nan University

Combinatorial Optimization Dr. Justie Su-tzu Juan

Lecture 4. The Domination Problems on Interval Graphs §4.3 Domination Problems

Slides for a Course Based on the Paper G. Ramalingam and C. Pandu Rangan, "A unified approach to domination problems on interval graphs", Inform. Process. Lett. 27 (1988), 271-274.

1. Introduction and notations

<u>Def</u>: Let *G* = (*V*, *E*) be a graph, let *D* ⊆ *V* **①** *D* is a independent dominating set of *G* iff $\begin{cases}
(1) D \text{ is a dominating set of } G.\\
(2) D \text{ is a independent set. } (\forall x ≠ y \text{ in } D \Rightarrow xy \notin E)\\
\gamma_i(G) = \min\{|D|: D \text{ is a independent dominating set of } G\} (≥ \gamma(G))\\$ **②***D*is a connected dominating set of G iff $<math>\begin{cases}
(1) D \text{ is a dominating set of } G.\\
(2) G[D], \text{ the subgraph induced by } D \text{ is connected.}\\
\end{cases}$

 $\gamma_c(G) = \min\{|D|: D \text{ is a connected dominating set of } G\}$ ③ *D* is a total dominating set of *G* iff

 $\begin{cases} (1) D \text{ is a dominating set of } G. \\ (2) \deg_{G[D]}(x) \neq 0, \forall x \in D. \\ (= \forall x \in D \Rightarrow \exists y \neq x \text{ and } y \in D \text{ such that } xy \in E) \\ \gamma_t(G) = \min\{|D|: D \text{ is a total dominating set of } G\} \end{cases}$

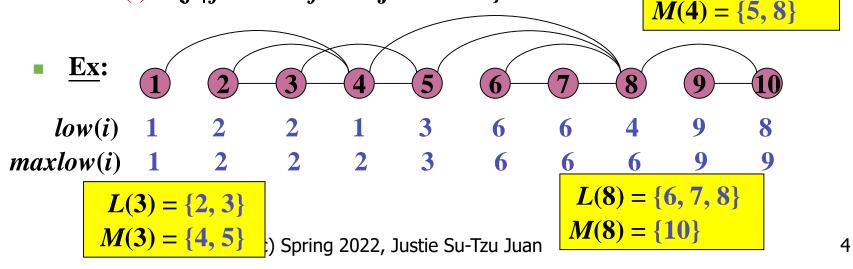
- <u>Def</u>: Given graph G = (V, E), and ∀ vertex v, ∃ real number w(v)
 𝔅(G, w) = min {w(D) = ∑_{v∈D} w(v) : D is a dominating set of G}.
 𝔅_i(G, w) = min {w(D) = ∑_{v∈D} w(v) : D is an independent dom. set of G}.
 𝔅_c(G, w) = min {w(D) = ∑_{v∈D} w(v) : D is a connected dom. set of G}.
 𝔅_{t∈D} w(v) = min {w(D) = ∑_{v∈D} w(v) : D is a total dom. set of G}.
- <u>Remark</u>: The problems of finding a minimum-cardinality (independent, connected, total) dominating set and finding a minimum-weight (independent, connected, total) dominating set of a graph are NP-complete. [Garey and Johnson, 1979]

• <u>Def</u>: Given an interval graph G = (V, E) and the interval ordering of *G* is $\{1, 2, ..., n\}$. Define

 $L(4) = \{2, 3, 4\}$

- **②** G_i = the subgraph of *G* induced by V_i
- (4) $maxlow(i) = max\{low(j) \mid low(i) \le j \le i\}$

(6) $M(i) = \{j \mid j > i \text{ and } j \text{ is adjacent to } i\}$



Note: ①
$$N_{G_i}(i) = \{low(i), low(i)+1, \dots, i-1\}$$
② $G[L(i)]$ form a maximal clique in G_i .
③ Let $j \in V$ s.t. $low(i) \leq j \leq i$ and $maxlow(i) = low(j)$
Then, (1) $low(i) \leq low(j)$
(2) $j \leq i$
(3) $N[j] \subseteq L(i) \cup M(i)$
(4) $N_{G_i}(j) \subseteq L(i)$

• <u>Def</u>: Min X = the element D^* in X, such that $w(D^*) = \min\{w(D) \mid D \in X\}.$

2. Domination

<u>Def</u>: ① Let *D_i* = subset of *V*(*G*) s.t. ∀ *x* ∈ *V_i*, ∃ *y* ∈ *D_i* with *x* ~ *y*.
 ② Let *MD_i* = the minimum-weight *D_i*.

• <u>Thm</u>: (a) $MD_0 = \phi$ (b) For $1 \le i \le n$, $MD_i = \min\{\{j\} \cup MD_{low(j)-1} | j \in L(i) \cup M(i)\}$ Proof. (b) (1/2) ① $\therefore \exists j \in L(i) \text{ s.t. } N(j) \subseteq L(i) \cup M(i)$

 $\therefore \exists k \in D_i \cap (L(i) \cup M(i)) \text{ s.t. } kj \in E$

 $\Rightarrow D_i = \{k\} \cup D \text{ for some } k \in L(i) \cup M(i),$

where $D = D_i - \{k\}$, for any D_i .

• <u>Thm</u>: (b) For $1 \le i \le n$, $MD_i = \min\{\{j\} \cup MID_{low(j)-1} | j \in L(i) \cup M(i)\}$ Proof. (b) (2/2)

② ∵ The definition of *low* function,

 \therefore k dominates no vertex in $V_{low(k)-1}$

 \Rightarrow *D* is a dominating set of $G_{low(k)-1}$

By ①, ②, a set is a $D_i \Leftrightarrow D_i = \{k\} \cup D_{low(k)-1}$ for some $k \in L(i) \cup M(i)$

 $\therefore MD_i = Min\{D_i / \text{ for all possible } D_i\}$

 $= \operatorname{Min}\{\{k\} \cup D_{low(k)-1} \mid k \in L(i) \cup M(i)\}$

Algorithm 4.3:

```
Given the interval ordering {1, 2, ..., n} and low, maxlow functions for every vertex of a interval graph G.
```

```
MD_{0} := \phi;

w(MD_{0}) := 0;

for i = 1 to n do

min := \infty;

for j \in L[i] \cup M[i] do

if (j \ge maxlow(i) and w(j) + w(MD_{low(j)-1}) < min) then

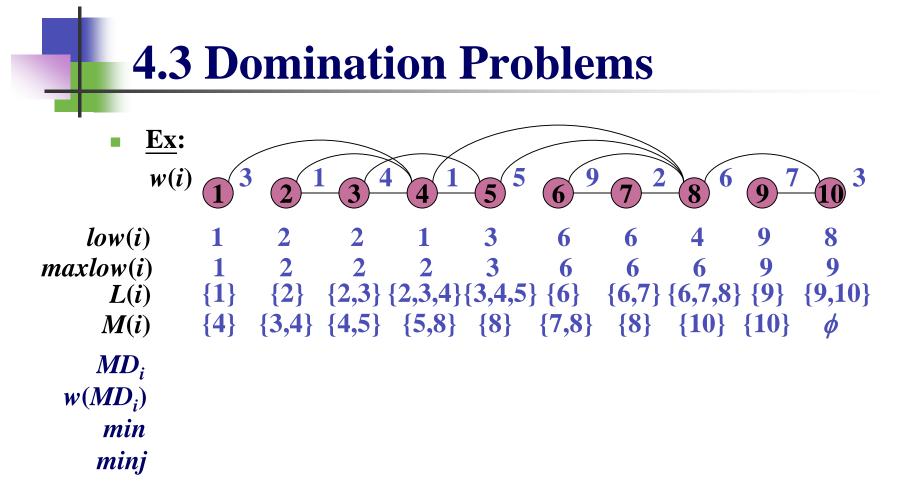
min := w(j) + w(MD_{low(j)-1});

minj := j

MD_{i} := \{minj\} \cup MD_{low(minj)-1};

w(MD_{i}) := min
```

• Time Complexity = $\mathcal{O}(|V| + |E|)$



```
\begin{array}{l} \min := \infty;\\ \text{for } j \in L[i] \cup M[i] \text{ do}\\ \text{ if } (j \geq maxlow(i) \text{ and } w(j) + w(MD_{low(j)-1}) < min) \text{ then}\\ min := w(j) + w(MD_{low(j)-1});\\ minj := j\\ MD_i := \{minj\} \cup MD_{low(minj)-1};\\ w(MD_i) := min \end{array}
```

- **3. Independent domination**
- <u>Def</u>: ① Let *ID_i* = an independent dominating set of *G_i*.
 ② Let *MID_i* = the minimum-weight *ID_i*.
- <u>Thm</u>: (a) *MID*₀ = φ (b) For 1 ≤ i ≤ n, *MID*_i = Min{{j} ∪ *MID*_{low(j)-1} | j ∈ L(i)}
 Proof. (b) (1/3) (≥) Let *MID*_i = D ∪ {j}, where j = max{x | x ∈ MID_i}, D = MID_i \ {j}.
 ① D is an independent set.
 ② D is a dominating set of G_{low(j)-1}: ∀ x ∈ V_{low(j)-1}, ∃ y ∈ MID_i s.t. x ~ y But ∵ x < low(j) ∴ By the definition of low function, we have y ≠ j.

Then $y \in D$. \therefore *D* is a dominating set of $G_{low(j)-1}$.

(c) Spring 2022, Justie Su-Tzu Juan

<u>Thm</u>: (b) For $1 \le i \le n$, $MID_i = Min\{\{j\} \cup MID_{low(i)-1} \mid j \in L(i)\}$ **Proof.** (b) (2/3) (≥) (3) $j \in L(i)$: Suppose $k^* \in V$ s.t. $low(i) \le k^* \le i$ and $maxlow(i) = low(k^*)$ \Rightarrow maxlow(i) = max{low(k) | low(i) \le k \le i} \ge low(j) $(:: N_{G_i}(i) = \{low(i), low(i)+1, ..., i-1\}, :: low(i) \le j \le i\}$ If $j \notin L(i)$, then $j < maxlow(i) = low(k^*) \le k^*$ By definition of independent dominating set, $\exists x^* \in MID_i \text{ s.t. } x^*k^* \in E$ $(low(k^*))$ $\therefore x^* < \max\{x \mid x \in MID_i\} = j < k^* \text{ and } x^*k^* \in \overline{E}$ $\therefore By (*), jk^* \in E \rightarrow \leftarrow (\therefore j < low(k^*))$

By ①, ②, ③ $\Rightarrow w(D) \ge w(j) + w(MID_{low(j)-1})$ for some $j \in L(i)$. $\Rightarrow MID_i \ge Min\{\{j\} \cup MID_{low(j)-1} \mid j \in L(i)\}.$

(c) Spring 2022, Justie Su-Tzu Juan

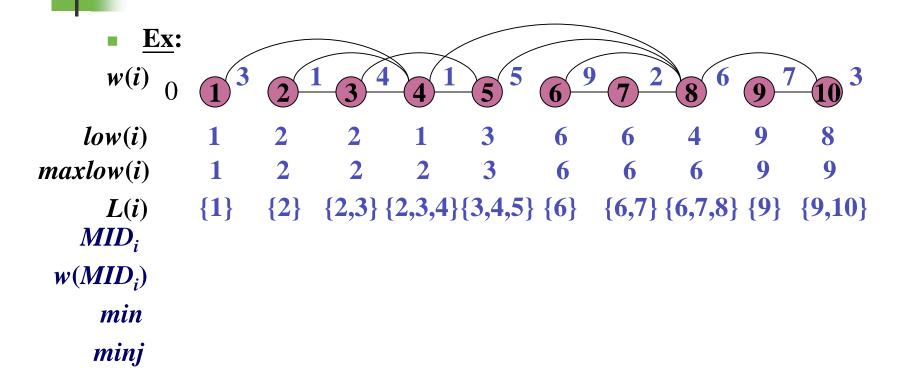
<u>Thm</u>: (b) For $1 \le i \le n$, $MID_i = Min\{\{j\} \cup MID_{low(i)-1} \mid j \in L(i)\}$ **Proof.** (b) $(3/3) \leq \forall j \in L(i)$: \therefore *j* is not adjacent to any vertex in $G_{low(j)-1}$ \Rightarrow {*j*} \cup *MID*_{*low*(*j*)-1} is an independent set of *G*_{*i*}. ② (1) $\forall x \in \{low(j), low(j)+1, ..., j\}$: $\therefore low(i) \le x \le i$: By the definition of *low* function and $(*), x \sim j$. (2) $\forall x \in \{j+1, j+2, ..., i\}$: $\therefore j \in L(i) \text{ and } low(i) \leq maxlow(i) \leq j < x < i$ \therefore low(x) \leq maxlow(i) \leq j < x \therefore By the definition of *low* function and $(\bigstar), jx \in E$ or say \Rightarrow {*j*} \cup *MID*_{*low*(*i*)-1} is an indp. dom. set of *G*_{*i*} \therefore *L*(*i*) is a clique By ①, ②, $MID_i \le Min\{\{j\} \cup MID_{low(i)-1} | j \in L(i)\}.$ $\therefore \forall x \in L(i), x \sim j.$ (c) Spring 2022, Justie Su-Tzu Juan

Algorithm 4.2:

```
Given the interval ordering \{1, 2, ..., n\} and low, maxlow functions for every vertex of a interval graph G.
```

```
MID_{0} := \phi;
w(MID_{0}) := 0;
for i = 1 to n do
min := \infty;
for maxlow(i) \le j \le i do
if (w(j) + w(MID_{low(j)-1}) < min) \text{ then}
min := w(j) + w(MID_{low(j)-1});
minj := j
MID_{i} := \{minj\} \cup MID_{low(minj)-1};
w(MID_{i}) := min
```

```
• Time Complexity = \mathcal{O}(|V| + |E|)
```



 $\begin{array}{l} \min := \infty;\\ \text{for } maxlow(i) \leq j \leq i \text{ do}\\ & \text{if } (w(j) + w(MID_{low(j)-1}) < \min) \text{ then}\\ & \min := w(j) + w(MID_{low(j)-1});\\ & \min j := j\\ MID_i := \{\min \} \cup MID_{low(minj)-1};\\ & w(MID_i) := \min \end{array}$

- <u>Note</u>:
 - **①** The method can be used to solve the "maximum-weight" version.
 - **②** For the other 3 domination problems, we can consider nonnegative weights only.

4. Total domination and connected domination

 Exercise 加分 (4/13): Develop a dynamic programming algorithm for total domination or connected domination; or show there exist an counterexample.

5. Related works

Interval Graphs				Circular-arc Graphs			
TD	WTD	WD, WID	WCD	D	WD	WTD	WID, WCD
Open[84]				C (<i>nm</i>)[85]			
$\mathcal{O}(n^2)[86]$					$\mathcal{O}(n^3)[89]$		
$ \begin{array}{c} \mathcal{O}(n+m) \\ [88] \end{array} $				C (<i>n</i>)[91]			
	C (nlogn) [88]				$\mathcal{C}(n^2 \log n)$ [91]		
	$\mathcal{O}(n+m)[88]$						
	$\mathcal{O}(n+m)[98]$ $\mathcal{O}(n\log\log n)$ [98]				$\mathcal{O}(n+m)[98]$		

Where n = |V| and m = |E|