Computer Science and Information Engineering National Chi Nan University
 Combinatorial Optimization

Dr. Justie Su-Tzu Juan

Lecture 3. Domination Problem in Tree

§3.3 Method 3 : Dynamic Programming

3.3 Method 3 : Dynamic Programming

- Def:
- A rooted tree \boldsymbol{T} rooted at r is denoted by $T(r)$.
- Given two rooted trees $T_{1}(r)$ and $T_{2}(s)$, compose them into a rooted tree $T(r)$ by adding an edge $r s$ into $T_{1} \cup T_{2}$, denoted by

$$
T(r)=T_{1}(r) \otimes T_{2}(s) .
$$

- Ex:

$T(r)$

(c) Spring 2022, Justie Su-Tzu Juan

3.3 Method 3 : Dynamic Programming

- Def: Given a rooted tree $\boldsymbol{T}(x)$,
(1) $\gamma_{1}(T, x)=\min \{|D|: x \in D$ is a dominating set of $T\}$
(2) $\gamma_{2}(T, x)=\min \{|D|: x \notin D$ is a dominating set of $T\}$
(3) $\gamma_{3}(T, x)=\min \{|D|: D$ is a dominating set of $T-x\}$
- Note: $\gamma(T)=\min \left\{\gamma_{1}(T, x), \gamma_{2}(T, x)\right\}$
- Thm: For any rooted tree $T(x)=T_{1}(x) \otimes T_{2}(y)$:
(1) $\gamma_{1}(T, x)=\gamma_{1}\left(T_{1}, x\right)+\min \left\{\gamma_{1}\left(T_{2}, y\right), \gamma_{3}\left(T_{2}, y\right)\right\}$;
(2) $\gamma_{2}(T, x)=\min \left\{\gamma_{3}\left(T_{1}, x\right)+\gamma_{1}\left(T_{2}, y\right), \gamma_{2}\left(T_{1}, x\right)+\gamma_{2}\left(T_{2}, y\right)\right\}$;
(3) $\gamma_{3}(T, x)=\gamma_{3}\left(T_{1}, x\right)+\gamma\left(T_{2}, y\right)$.
(c) Spring 2022, Justie Su-Tzu Juan

3.3 Method 3 : Dynamic Programming

- Thm: © ${ }_{1}(T, x)=\gamma_{1}\left(T_{1}, x\right)+\min \left\{\gamma_{1}\left(T_{2}, y\right), \gamma_{3}\left(T_{2}, y\right)\right\}$.
(2) $\gamma_{2}(T, x)=\min \left\{\gamma_{3}\left(\boldsymbol{T}_{1}, x\right)+\gamma_{1}\left(\boldsymbol{T}_{2}, y\right), \gamma_{2}\left(\boldsymbol{T}_{1}, x\right)+\gamma_{2}\left(\boldsymbol{T}_{2}, y\right)\right\}$.

Proof. (1)
D is a dominating set of T with $x \in D \Leftrightarrow D=D_{1} \cup D_{2}$
where D_{1} is a dominating set of T_{1} with $x \in D_{1}$,
D_{2} is either a dominating set of T_{2} with $y \in D_{2}$ or a dominating set of $T_{2}-y$.
Hence $\gamma_{1}(T, x)=\gamma_{1}\left(T_{1}, x\right)+\min \left\{\gamma_{1}\left(T_{2}, y\right), \gamma_{3}\left(T_{2}, y\right)\right\}$.
Proof. (2)
D is a dominating set of T with $x \notin D \Leftrightarrow D=D_{1} \cup D_{2}$ where either $y \in D_{2}$ is dominating set of T_{2} and D_{1} is a dominating set of $T_{1}-x$,
or $y \notin D_{2}$ is dominating set of T_{2}
and D_{1} is a dominating set of T_{1} with $x \notin D_{1}$.
$\therefore \gamma_{2}(T, x)=\min \left\{\gamma_{3}\left(T_{1}, x\right)+\gamma_{1}\left(T_{2}, y\right), \gamma_{2}\left(T_{1}, x\right)+\gamma_{2}\left(T_{2}, y\right)\right\}$.

3.3 Method 3 : Dynamic Programming

- Thm: (3) $\gamma_{3}(T, x)=\gamma_{3}\left(T_{1}, x\right)+\gamma\left(T_{2}, y\right)$.

Proof. (3)

D is a dominating set of $T-x \Leftrightarrow D=D_{1} \uplus D_{2}$ such that
D_{1} is a dominating set of $T_{1}-x, D_{2}$ is a dominating set of T_{2}
$\therefore \gamma_{3}(T, x)=\gamma_{3}\left(T_{1}, x\right)+\gamma\left(T_{2}, y\right)$.

3.3 Method 3 : Dynamic Programming

- Algorithm 3.2:

Given tree ordering $\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ of T
for $\boldsymbol{i}=\mathbf{1}$ to \boldsymbol{n} do

$$
\begin{aligned}
& \gamma_{1}\left(v_{i}\right)=\mathbf{1} \\
& \gamma_{2}\left(v_{i}\right)=\infty \\
& \gamma_{3}\left(v_{i}\right)=0
\end{aligned}
$$

for $\boldsymbol{i}=1$ to $\boldsymbol{n}-\mathbf{1}$ do
choose $j>i$ which $v_{i} v_{j} \in E$;
$\gamma_{1}\left(v_{j}\right)=\gamma_{1}\left(v_{j}\right)+\min \left\{\gamma_{1}\left(v_{i}\right), \gamma_{3}\left(v_{i}\right)\right\}$
$\gamma_{2}\left(v_{j}\right)=\min \left\{\gamma_{3}\left(v_{j}\right)+\gamma_{1}\left(v_{i}\right), \gamma_{2}\left(v_{j}\right)+\gamma_{2}\left(v_{i}\right)\right\}$
$\gamma_{3}\left(v_{j}\right)=\gamma_{3}\left(v_{j}\right)+\min \left\{\gamma_{1}\left(v_{i}\right), \gamma_{2}\left(v_{i}\right)\right\}$
Output $\min \left\{\gamma_{1}\left(v_{n}\right), \gamma_{2}\left(v_{n}\right)\right\}$

- Time complexity $=\mathcal{O}(n)$.

3.3 Method 3 : Dynamic Programming

- Ex:
- (1)
$(1, \infty, 0)$

$(1, \infty, 0)$
$(1, \infty, 0)$
$(1, \infty, 0) \quad(1, \infty, 0)$

$$
\begin{aligned}
& \gamma_{1}\left(v_{j}\right)=\gamma_{1}\left(v_{j}\right)+\min \left\{\gamma_{1}\left(v_{i}\right), \gamma_{3}\left(v_{i}\right)\right\} \\
& \gamma_{2}\left(v_{j}\right)=\min \left\{\gamma_{3}\left(v_{j}\right)+\gamma_{1}\left(v_{i}\right), \gamma_{2}\left(v_{j}\right)+\gamma_{2}\left(v_{i}\right)\right\} \\
& \gamma_{3}\left(v_{j}\right)=\gamma_{3}\left(v_{j}\right)+\min \left\{\gamma_{1}\left(v_{i}\right), \gamma_{2}\left(v_{i}\right)\right\}
\end{aligned}
$$

3.3 Method 3 : Dynamic Programming

- Exercise 2 (3/23): Use dynamic programming to solve the vertex covering problem.

Computer Science and Information Engineering National Chi Nan University

Combinatorial Optimization

Dr. Justie Su-Tzu Juan

Lecture 4. The Domination Problems on Interval Graphs §4.1 Introduction to interval graph

4.1 Introduction to interval graph

- Def: An interval graph is the intersection graphs of some (closed) intervals in the real lines.
i.e. $G=(V, E)$ is an interval graph for $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ if $\exists \mathcal{I}=\left\{I_{1}\right.$, $\left.I_{2}, \ldots, I_{n}\right\}$, each $I_{i}=\left[a_{i}, b_{i}\right] \in R$ such that $E=\left\{v_{i} v_{j} \mid i \neq j\right.$ and $\left.I_{i} \cap I_{j} \neq \phi\right\}$.
- Ex:

The representation of interval graph G

4.1 Introduction to interval graph

- Def: Given graph $G=(V, E)$, an interval ordering of G is an ordering $\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ of V, such that

$$
\begin{equation*}
i<j<k \text { and } v_{i} v_{k} \in E \Rightarrow v_{j} v_{k} \in E \tag{*}
\end{equation*}
$$

- Theorem: G is an interval graph iff \exists an interval ordering of G. Proof. (1/2)
(\Rightarrow) Let \boldsymbol{G} be the intersection graph of $\left\{I_{i}=\left[a_{i}, b_{i}\right]: 1 \leq i \leq n\right\}$.
We may assume that $b_{1} \leq b_{2} \leq \ldots \leq b_{n}$
If $i<j<\boldsymbol{k} \Rightarrow \boldsymbol{b}_{\boldsymbol{i}} \leq \boldsymbol{b}_{j} \leq \boldsymbol{b}_{\boldsymbol{k}}$ $v_{i} v_{k} \in E \Rightarrow I_{i} \cap I_{k} \neq \phi \Rightarrow a_{k} \leq b_{i}$

$\because a_{k} \leq b_{i} \leq b_{j} \leq b_{k} \Rightarrow I_{j} \cap I_{k} \neq \phi\left(\right.$ Since $\left.b_{j} \in\left[a_{k}, b_{k}\right]\right)$

$$
\Rightarrow v_{j} v_{k} \in E
$$

4.1 Introduction to interval graph

- Theorem: G is an interval graph iff \exists an interval ordering of G.

Proof. (2/2)
(\Leftarrow)
Let i^{*} be the smallest index such that $v_{i^{*}} \in N\left[v_{i}\right]$.
Let $I_{i}=\left[i^{*}, i\right], \forall i=1,2, \ldots, n$.
for any $i<j$:
(1) if $v_{i} v_{j} \in E$, then by def., $\therefore j^{*} \leq i<j \Rightarrow I_{i} \cap I_{j} \neq \phi$
(2) if $I_{i} \cap I_{j} \neq \phi$, then $j^{*} \leq i<j$
\because by def, $v_{j *} v_{j} \in E$
\therefore by ($*$), $v_{i} v_{j} \in E$.
$i<j<k$ and $v_{i} v_{k} \in E \Rightarrow v_{i} v_{k} \in E$
Hence G is the intersection graph of $\left\{I_{i} \mid 1 \leq i \leq n\right\}$.
i.e. G is an interval graph.

4.1 Introduction to interval graph

- Remark: Booth and Lneker in 1976 gave an $\mathcal{O}(|V|+|E|)$-time algorithm for recognizing an interval graph and constructing.
- Note: For any interval graph G, there is no $C_{k}, k \geq 4$, be an induced subgraph of \boldsymbol{G}.
(i.e. interval graph is chordal graph)
- Ex:

(c) Spring 2022, Justie Su-Tzu Juan

Computer Science and Information Engineering National Chi Nan University

Combinatorial Optimization

 Dr. Justie Su-tzu Juan
Lecture 4. The Domination Problems on Interval Graphs §4.2 Primal-Dual Method

4.2 Primal-Dual Method

- Algorithm 4.1:

Given the interval set $\left\{I_{i}=\left[a_{i}, b_{i}\right] \mid 1 \leq i \leq n\right\}$, where $b_{1} \leq b_{2} \leq \ldots \leq b_{n}$ according to the interval ordering of G.
$D^{*} \leftarrow \phi ;$
$S^{*} \leftarrow \phi ;$
(for $i=1$ to n do
if $N\left[v_{i}\right] \cap D^{*}=\phi$ then
Let $j \geq i$ such that $I_{i} \cap I_{j} \neq \phi$ and b_{j} is largest;

$$
\begin{aligned}
& D^{*} \leftarrow D^{*} \cup\left\{v_{j}\right\} \\
& S^{*} \leftarrow S^{*} \cup\left\{v_{i}\right\}
\end{aligned}
$$

- Time Complexity =?

4.2 Primal-Dual Method

- Ex:

$$
\begin{array}{ll}
D^{*}=\{4,8,10 & \} \\
S^{*}=\{1,6,9 & \}
\end{array}
$$

```
if \(N\left[v_{i}\right] \cap D^{*}=\phi\) then
    Let \(j \geq i\) such that \(I_{i} \cap I_{j} \neq \phi\) and \(b_{j}\) is largest;
    \(D^{*} \leftarrow D^{*} \cup\left\{v_{j}\right\} ;\)
    \(S^{*} \leftarrow S^{*} \cup\left\{v_{i}\right\}\)
```


4.2 Primal-Dual Method

- Thm: (1) D^{*} is a dominating set.
(2) $\left|D^{*}\right| \leq\left|S^{*}\right|$.
(3) S^{*} is a 2-stable set.
- Note: (1) D^{*} is a optimal dominating set.
(2) $\alpha_{2}(G)=\gamma(G)$.
(3) S^{*} is a optimal 2 -stable set.
$\because\left|S^{*}\right| \leq \alpha_{2}(G) \leq \gamma(G) \leq\left|D^{*}\right| \leq\left|S^{*}\right|$
\therefore all " $\leq "$ are "=".

4．2 Primal－Dual Method

－Thm：（1）D^{*} is a dominating set．
（2）$\left|D^{*}\right| \leq\left|S^{*}\right|$ ．
Proof．
（1）$\forall v_{i} \in V$ ，if $N\left[v_{i}\right] \cap D^{*}=\phi$ ，then
algorithm 會加入 v_{j} 到 D^{*} 中，where
$\because I_{i} \cap I_{j} \neq \phi, \therefore v_{i} v_{j} \in E$ ．
i．e．對最後的 D^{*} 而言，$N\left[v_{i}\right] \cap D^{*} \neq \phi$ ．
（2）Algorithm中，每次加入 v_{j} 到 D^{*} 中時，必加一新點 v_{i} 到 S^{*} 中
$\therefore\left|S^{*}\right| \geq\left|D^{*}\right|$ ．
－Notation：$x \sim y$ 表示 $x \in N[y]$（also，$y \in N[x])$

4．2 Primal－Dual Method

－Thm：（3）S^{*} is a 2 －stable set．

Proof．

（3）Suppose $\exists v_{i}, v_{i^{\prime}} \in S^{*}$ ，for $i<i^{\prime}$ and $d\left(v_{i}, v_{i}\right) \leq 2$ ．
i．e．$\exists j^{\prime}$ such that $v_{i} \sim v_{j^{\prime}}$ and $v_{j} \sim v_{i^{\prime}}$ ，當algorithm執行到 i iteration 時：
會找出 v_{j} 放入 D^{*} 中，其中 j 霂足 $v_{i} v_{j} \in E, j \geq i$ is largest．當algorithm執行到 i^{\prime} iteration 時：$v_{j} \in D^{*}$

Case 1：$i<i^{\prime} \leq j$
$\operatorname{By}(*), v_{i}, \sim v_{j}$, since $v_{i} \sim v_{j}$.
Case 2：$i \leq j<i^{\prime}$
By the choice of \boldsymbol{j} ，we have $j^{\prime} \leq j$
$\because j^{\prime} \leq j<i^{\prime}$ and $v_{i}, \sim v_{j^{\prime}}$
$\therefore \mathrm{By}(*), v_{j} \sim v_{i}{ }^{\prime}$.
In both case，$v_{i} \sim v_{j}$ and $v_{j} \in D^{*}$
\therefore 不會將 v_{i} ，放入 S^{*} 中。 $\rightarrow \leftarrow$

