Computer Science and Information Engineering National Chi Nan University

Combinatorial Optimization Dr. Justie Su-Tzu Juan

Lecture 3. Domination Problem in Tree §3.3 Method 3 : Dynamic Programming

<u>Def</u>:

- A rooted tree T rooted at r is denoted by T(r).
- Given two rooted trees $T_1(r)$ and $T_2(s)$, compose them into a rooted tree T(r) by adding an edge rs into $T_1 \cup T_2$, denoted by $T(r) = T_1(r) \otimes T_2(s)$.

• <u>Def</u>: Given a rooted tree T(x),

② $\gamma_2(T, x) = \min\{|D|: x \notin D \text{ is a dominating set of } T\}$

(3) $\gamma_3(T, x) = \min\{|D|: D \text{ is a dominating set of } T - x\}$

• Note:
$$\gamma(T) = \min\{\gamma_1(T, x), \gamma_2(T, x)\}$$

• Thm: For any rooted tree
$$T(x) = T_1(x) \otimes T_2(y)$$
:
① $\gamma_1(T, x) = \gamma_1(T_1, x) + \min\{\gamma_1(T_2, y), \gamma_3(T_2, y)\};$
② $\gamma_2(T, x) = \min\{\gamma_3(T_1, x) + \gamma_1(T_2, y), \gamma_2(T_1, x) + \gamma_2(T_2, y)\};$
③ $\gamma_3(T, x) = \gamma_3(T_1, x) + \gamma(T_2, y).$

• Thm: ①
$$\gamma_1(T, x) = \gamma_1(T_1, x) + \min\{\gamma_1(T_2, y), \gamma_3(T_2, y)\}.$$

② $\gamma_2(T, x) = \min\{\gamma_3(T_1, x) + \gamma_1(T_2, y), \gamma_2(T_1, x) + \gamma_2(T_2, y)\}.$
Proof. ①
D is a dominating set of *T* with $x \in D \Leftrightarrow D = D_1 \cup D_2$
where D_1 is a dominating set of T_1 with $x \in D_1$,
 D_2 is either a dominating set of T_2 with $y \in D_2$
or a dominating set of T_2 -y.
Hence $\gamma_1(T, x) = \gamma_1(T_1, x) + \min\{\gamma_1(T_2, y), \gamma_3(T_2, y)\}.$
Proof. ②
D is a dominating set of *T* with $x \notin D \Leftrightarrow D = D_1 \cup D_2$ where
either $y \in D_2$ is dominating set of T_2
and D_1 is a dominating set of T_1 with $x \notin D_1$.
 $\therefore \gamma_2(T, x) = \min\{\gamma_3(T_1, x) + \gamma_1(T_2, y), \gamma_2(T_1, x) + \gamma_2(T_2, y)\}.$

• <u>Thm</u>: ③ $\gamma_3(T, x) = \gamma_3(T_1, x) + \gamma(T_2, y)$. Proof. ③

 T_1

D is a dominating set of $T-x \Leftrightarrow D = D_1 \cup D_2$ such that D_1 is a dominating set of T_1-x , D_2 is a dominating set of T_2 $\therefore \gamma_3(T, x) = \gamma_3(T_1, x) + \gamma(T_2, y).$

Algorithm 3.2:

Given tree ordering $[v_1, v_2, ..., v_n]$ of T for i = 1 to n do $\gamma_1(v_i) = 1$ $\gamma_2(v_i) = \infty$ $\gamma_3(v_i) = 0$ for i = 1 to n-1 do choose j > i which $v_i v_j \in E$; $\gamma_1(v_i) = \gamma_1(v_i) + \min\{\gamma_1(v_i), \gamma_3(v_i)\}$ $\gamma_{2}(v_{i}) = \min\{\gamma_{3}(v_{i}) + \gamma_{1}(v_{i}), \gamma_{2}(v_{i}) + \gamma_{2}(v_{i})\}$ $\gamma_3(v_i) = \gamma_3(v_i) + \min\{\gamma_1(v_i), \gamma_2(v_i)\}$ Output min{ $\gamma_1(v_n), \gamma_2(v_n)$ }

• Time complexity = $\mathcal{O}(n)$.

 $\begin{aligned} \gamma_1(v_j) &= \gamma_1(v_j) + \min\{\gamma_1(v_i), \gamma_3(v_i)\} \\ \gamma_2(v_j) &= \min\{\gamma_3(v_j) + \gamma_1(v_i), \gamma_2(v_j) + \gamma_2(v_i)\} \\ \gamma_3(v_j) &= \gamma_3(v_j) + \min\{\gamma_1(v_i), \gamma_2(v_i)\} \end{aligned}$

• <u>Exercise 2 (3/23)</u>: Use dynamic programming to solve the vertex covering problem.

Computer Science and Information Engineering National Chi Nan University

Combinatorial Optimization Dr. Justie Su-Tzu Juan

Lecture 4. The Domination Problems on Interval Graphs §4.1 Introduction to interval graph

<u>Def</u>: An interval graph is the intersection graphs of some (closed) intervals in the real lines.

i.e. G = (V, E) is an interval graph for $V = \{v_1, v_2, ..., v_n\}$ if $\exists \mathcal{I} = \{I_1, I_2, ..., I_n\}$, each $I_i = [a_i, b_i] \in \mathbb{R}$ such that $E = \{v_i v_j \mid i \neq j \text{ and } I_i \cap I_j \neq \phi\}$.

• <u>Def</u>: Given graph G = (V, E), an interval ordering of G is an ordering $[v_1, v_2, ..., v_n]$ of V, such that

- <u>Theorem</u>: *G* is an interval graph iff \exists an interval ordering of *G*. Proof. (1/2)
- (⇒)Let *G* be the intersection graph of $\{I_i = [a_i, b_i]: 1 \le i \le n\}$.

We may assume that $b_1 \le b_2 \le \dots \le b_n$ If $i < j < k \Rightarrow b_i \le b_j \le b_k$ $v_i v_k \in E \Rightarrow I_i \cap I_k \neq \phi \Rightarrow a_k \le b_i$ $\therefore a_k \le b_i \le b_j \le b_k \Rightarrow I_j \cap I_k \neq \phi$ (Since $b_j \in [a_k, b_k]$) $\Rightarrow v_j v_k \in E$

• <u>Theorem</u>: *G* is an interval graph iff \exists an interval ordering of *G*. Proof. (2/2)

(⇐)

Let i^* be the smallest index such that $v_{i^*} \in N[v_i]$. Let $I_i = [i^*, i], \forall i = 1, 2, ..., n$. for any i < j: ① if $v_i v_j \in E$, then by def., $\therefore j^* \le i < j \Rightarrow I_i \cap I_j \neq \phi$ ② if $I_i \cap I_j \neq \phi$, then $j^* \le i < j$ \therefore by def, $v_{j^*} v_j \in E$ \therefore by $(*), v_i v_j \in E$. Hence *G* is the intersection graph of $\{I_i \mid 1 \le i \le n\}$.

i.e. G is an interval graph.

- <u>Remark</u>: Booth and Lneker in 1976 gave an $\mathcal{O}(|V|+|E|)$ -time algorithm for recognizing an interval graph and constructing.
- <u>Note</u>: For any interval graph G, there is no C_k, k ≥ 4, be an induced subgraph of G.

(i.e. interval graph is chordal graph)

Computer Science and Information Engineering National Chi Nan University

Combinatorial Optimization Dr. Justie Su-tzu Juan

Lecture 4. The Domination Problems on Interval Graphs §4.2 Primal-Dual Method

Algorithm 4.1:

Given the interval set $\{I_i = [a_i, b_i] \mid 1 \le i \le n\}$, where $b_1 \le b_2 \le ... \le b_n$ according to the interval ordering of G. $D^* \leftarrow \phi;$ $S^* \leftarrow \phi;$ for i = 1 to n do if $N[v_i] \cap D^* = \phi$ then Let $j \ge i$ such that $I_i \cap I_j \ne \phi$ and b_j is largest; $D^* \leftarrow D^* \cup \{v_j\};$ $S^* \leftarrow S^* \cup \{v_i\}$

Time Complexity = ?

Ex:

$$D^* = \{4, 8, 10 \}$$
$$S^* = \{1, 6, 9\}$$

if $N[v_i] \cap D^* = \phi$ then Let $j \ge i$ such that $I_i \cap I_j \ne \phi$ and b_j is largest; $D^* \leftarrow D^* \cup \{v_j\};$ $S^* \leftarrow S^* \cup \{v_i\}$

- <u>Thm</u>: **(D** D^* is a dominating set.
 - $|D^*| \le |S^*|.$
 - **③** *S** is a 2-stable set.
- <u>Note</u>: **①** *D** is a optimal dominating set.
 - $\ \mathbf{2} \ \alpha_2(G) = \gamma(G).$
 - **8** *S** is a optimal 2-stable set.
 - $\therefore |S^*| \le \alpha_2(G) \le \gamma(G) \le |D^*| \le |S^*|$
 - ∴ all "≤" are "=".

- <u>Thm</u>: **①** *D** is a dominating set.
 - $\textcircled{D}^*|\leq |S^*|.$

Proof.

① $\forall v_i \in V, \text{ if } N[v_i] \cap D^* = \phi, \text{ then}$ algorithm 會加入 v_j 到 $D^* \oplus, \text{ where}$ $\therefore I_i \cap I_j \neq \phi, \therefore v_i v_j \in E.$ i.e. 對最後的 D^* 而言, $N[v_i] \cap D^* \neq \phi.$ ② Algorithm 中,每次加入 v_j 到 $D^* \oplus \oplus, 必加一新點v_i$ 到 $S^* \oplus$ $\therefore |S^*| \ge |D^*|.$

■ <u>Notation</u>: $x \sim y$ 表 $\pi x \in N[y]$ (also, $y \in N[x]$)

<u>Thm</u>: ③ S* is a 2-stable set.
 Proof.

③ Suppose $\exists v_i, v_{i'} \in S^*$, for i < i' and $d(v_i, v_{i'}) \le 2$. i.e. $\exists j'$ such that $v_i \sim v_{j'}$ and $v_{j'} \sim v_{i'}$. 當algorithm執行到 i iteration 時: 會找出 v_i 放入 D^* 中,其中j满足 $v_iv_i \in E, j \ge i$ is largest. 當algorithm執行到 *i*'iteration 時 : $v_i \in D^*$ Case 1: $i < i' \leq j$ By (\bigstar), $v_{i'} \sim v_i$, since $v_i \sim v_i$. Case 2: $i \le j < i'$ By the choice of *j*, we have $j' \leq j$ $\therefore j' \leq j < i' \text{ and } v_{i'} \sim v_{i'}$ $\therefore \operatorname{By}(\bigstar), v_i \sim v_{i'}.$ In both case, $v_{i'} \sim v_i$ and $v_i \in D^*$:. 不會將 v_i , 放入S*中. → ←