Computer Science and Information Engineering National Chi Nan University
 Combinatorial Optimization
 Dr. Justie Su-Tzu Juan

Lecture 2. Mathematical Preliminaries

§ 2.3 Linear Programming

Slides for a Course Based on the Text 1. Combinatorial Optimization by Cook, Cunningham, Pulleyblank and Schrijver
2. Combinatorial Optimization - Algorithms and Complexity by Papadimitriou and Steiglitz

2.3 Linear Programming

- Def:

1. Let \boldsymbol{A} be an $\boldsymbol{m} \times \boldsymbol{n}$ matrix, and let $b \in \mathbb{R}^{m}$. A linear programming (LP) problem is $\quad\left\{\right.$ Maximize $\boldsymbol{c}^{\boldsymbol{T}} \boldsymbol{x}$
that is, to determining: $\max \left\{c^{T} x: A x \leq b\right\} \quad$ (A.2)
2. \boldsymbol{x} is a feasible solution of (A.2) if x satisfies $A x \leq b$.
3. x is called an optimum(optimal) solution of (A.2) if x is a feasible solution and attains the maximum.
4. $c^{T}=\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ is the cost vector.
$c^{T} x$ is the objective function.
$A=\left(a_{i j}\right)$ is an $m \times n$ coefficient matrix
$b^{T}=\left(b_{1}, b_{2}, \ldots, b_{m}\right)$ is the constraint vector
$a_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right), A_{j}^{T}=\left(a_{1 j}, a_{2 j}, \ldots, a_{m j}\right)$
5. The dual LP problem of (A.2) is:
$\min \left\{y^{T} b: y \geq 0, y^{T} A=c^{T}\right\}$ where $y \in \mathbb{R}^{m}$.
(c) Spring 2022, Justie Su-Tzu Juan

2.3 Linear Programming

- Ex:

1. $\max 2 x_{1}+3 x_{2}$ subject to $\left\{\begin{array}{l}x_{1}+2 x_{2} \leq 8 \\ 3 x_{1}+2 x_{2} \leq 12\end{array}\right.$
\Rightarrow when $x_{1}=2, x_{2}=3$

$$
2 x_{1}+3 x_{2}=4+9=13 \text { is max. }
$$

i.e. $(2,3)$ is an optimum solution.

2. $\min 8 y_{1}+12 y_{2}$

$$
\text { subject to }\left\{\begin{array}{c}
y_{1}+3 y_{2}=2 \\
2 y_{1}+2 y_{2}=3 \\
y_{1} \geq 0 \\
y_{2} \geq 0
\end{array}\right.
$$

\Rightarrow when $y_{1}=5 / 4, y_{2}=1 / 4$.

$$
8 y_{1}+12 y_{2}=10+3=13 \text { is min. }
$$

(c) Spring 2022, Justie Su-Tzu Juan

2.3 Linear Programming

- Def:
- Theorem A.4: (Weak Duality Theorem)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^{m}, c \in \mathbb{R}^{m}$. Suppose \tilde{x} is a feasible solution to $A x \leq b$ and \tilde{y} is a feasible solution to $y \geq 0, y^{T} A=c^{T}$. Then $c^{T} \tilde{x} \leq \tilde{y}^{T} b$.
Proof.

$$
c^{T} \tilde{x}=\left(\tilde{y}^{T} A\right) \tilde{x}=\tilde{y}^{T}(A \tilde{x}) \leq \tilde{y}^{T} b .
$$

2.3 Linear Programming

- Theorem A.5: (Duality Theorem)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^{m}, c \in \mathbb{R}^{m}$. Then

$$
\max \left\{c^{T} x: A x \leq b\right\}=\min \left\{y^{T} b: y \geq 0, y^{T} A=c^{T}\right\}
$$

provided that both sets are nonempty.

- Def: Given an LP in general form, called the primal, the dual is defined as follows:

Primal Dual
$\max c^{T} \boldsymbol{x}$
s.t. $a_{i}{ }^{T} x=b_{i} \quad i \in M \quad$ s.t. y_{i} unrestricted

$$
a_{i}{ }^{T} x \leq b_{i}
$$

$$
x_{j} \geq \mathbf{0}
$$

x_{j} unrestricted

	$\min y^{T} b$
$i \in M$	s.t. y_{i} unrestricted
$i \in \bar{M}$	$y_{i} \geq 0$
$j \in \frac{N}{N}$	$y^{T} A_{j} \geq c_{j}$
$j \in \bar{N}$	$y^{T} A_{j}=c_{j}$

2.3 Linear Programming

- Theorem 3.1: If an LP has an optimal solution, so does its dual, and at optimality their costs are equal.
- Theorem 3.2: The dual of the dual is the primal.

Computer Science and Information Engineering National Chi Nan University

Combinatorial Optimization

Dr. Justie Su-Tzu Juan

Lecture 2. Mathematical Preliminaries

§ 2.4 Domination Problem

Slides for a Course Based on the Text Combinatorial Optimization by Cook, Cunningham, Pulleyblank and Schrijver

2．4 Domination Problem

－Source：chessboard problem，firehouse problem，location problem．
－Ex：In $m \times n$ chessboard，need $\lceil m / 3\rceil \times\lceil n / 3\rceil$ kings to＂dominate＂all．

（1）$x \leq\lceil m / 3\rceil\lceil n / 3\rceil$ ：找一個方法（easy）
（2）$x \geq\lceil m / 3\rceil\lceil n / 3\rceil$ ：找最多格子使得没有任雨格可能被同一個kings控制到
Primal－dual

格子 \rightarrow vertex
可控制 \rightarrow edge

2.4 Domination Problem

- Def: A dominating set of a graph $G=(V, E)$ is a subset D of V such that $\forall x \in V-D, \exists y \in D$ with $x y \in E$.
- Ex.

$$
\begin{aligned}
& \text { Let } D_{1}=\left\{y_{1}, y_{2}\right\}, D_{2}=\left\{x_{1}, y_{2}, x_{4}\right\} \text {, } \\
& \text { then } D_{1}, D_{2} \text { are dominating sets of } C_{6} \text {. }
\end{aligned}
$$

- Notation: domination number of $\boldsymbol{G} \gamma(G)=\min \{|D|: D$ is a dominating set of \boldsymbol{G} \}.
- The Minimum Dominating Set Problem in general graph G is NPcomplete.

Computer Science and Information Engineering National Chi Nan University
 Combinatorial Optimization
 Dr. Justie Su-Tzu Juan

Lecture 3. Domination Problem in Tree

§3.1 Method 1 : L-dominating

Slides for a Course Based on the Paper E. J. Cockayne, S. E. Goodman and S. T. Hedetniemi, "A linear algorithm for the domination number of a tree", Inform. Process. Lett. 4 (1975), 41-44.

3．1 Method 1：L－dominating

－Note ：
Suppose D is an optimal dominating set of tree T ．
$\forall x$ ：a leaf，adjacent to vertex y ：

（1）$y \in D \Rightarrow x \notin D$
（o．w．$D-\{x\}$ is also a dominating set with $|D-\{x\}|<|D| \rightarrow \leftarrow$ ）
（2）$y \notin D \Rightarrow x \in D$
\Rightarrow let $D^{\prime}=(D-\{x\}) \cup\{y\}$ is also a dominating set as $N[x] \subseteq N[y]$
So，always \exists an optimal dominating set D such that $y \in D$ and $x \notin D$ ，
for any leaf x adjacent to vertex y
\Rightarrow Step 1：配合＂bound＂vertex $N[y] \quad B$
Step 2：産生＂free＂vertex $x \quad F$
Step 3：再產生＂required＂vertex y R

3.1 Method 1: L-dominating

- Def: $G=(V, E)$ is a graph, $L: V \rightarrow\{B, R, F\}$, (i.e., each vertex x has a label $L(x) \in\{B, R, F\}$.)
An L-dominating (mixed dominating) set of G is a subset $D \subseteq V(G)$
s.t. (1) $L(x)=R \Rightarrow x \in D$
(2) $L(x)=B \Rightarrow N[x] \cap D \neq \phi$
- Notation: $\mathcal{\gamma}(G, L)=\min \{|D|: D$ is a L-dominating set of $G\}$.

(c) Spring 2022, Justie Su-Tzu Juan

3.1 Method 1: L-dominating

- Note: If $L(v)=B, \forall v \in V(G)$, an L-dominating set = dominating set and $\gamma \boldsymbol{G})=\gamma(\boldsymbol{G}, L)$.
- Thm: A tree T has a leaf x adjacent to vertex y, let $T^{\prime}=T-x$ then
(1) $L(x)=F \Rightarrow \gamma(T, L)=\gamma\left(T^{\prime}, L\right)$
(2) $L(x)=B \Rightarrow \gamma(T, L)=\gamma\left(T^{\prime}, L^{\prime}\right)$ where $L^{\prime}(v)=\left\{\begin{array}{l}L(v), \forall v \neq y \\ \text { (3) } L(x)=L(y)=R \Rightarrow \gamma(T, L)=\gamma\left(T^{\prime}, L\right)+1\end{array}, \quad v=y\right.$
(4) $L(x)=R$, but $L(y) \neq R \Rightarrow \gamma(T, L)=\gamma\left(T^{\prime}, L^{\prime}\right)+1$ where

$$
L^{\prime}(v)=\left\{\begin{array}{lr}
L(v), & \forall v \neq y \\
F, & v=y
\end{array}\right.
$$

3.1 Method 1: L-dominating

- Thm: A tree T has a leaf x adjacent to vertex y, let $T^{\prime}=T-x$ then (1) $L(x)=F \Rightarrow \gamma(T, L)=\gamma\left(T^{\prime}, L\right)$

Proof.

Choose a L-dominating set D of $T-x$ such that $|D|=\gamma\left(T^{\prime}, L\right)$,
then D is also a L-dominating set of T.
Hence $\gamma(T, L) \leq|D|=\gamma\left(T^{\prime}, L\right)$.
Choose a L-dominating set D of T such that $|D|=\chi(T, L)$,
Case 1: $x \notin D \Rightarrow D$ is also a L-dominating set of $T-x$

$$
\Rightarrow \gamma(T, L)=|D| \geq \gamma\left(T^{\prime}, L\right) .
$$

Case 2: $x \in D$, consider $D^{\prime}=(D-\{x\}) \cup\{y\}$
D^{\prime} is a L-dominating set of $T-x$
$\left(\forall v \in V(T-x): 1 . v \neq y, L(v)=B: \exists u \in D-\{x\} \subseteq D^{\prime}\right.$, s.t. $u v \in E(T)$.
2. $v \neq y, L(v)=R: \because v \in D \Rightarrow v \in D^{\prime}=(D-\{x\}) \cup\{y\}$.
3. $v=y: \because y \in D^{\prime}, \therefore N[y] \cap D^{\prime} \neq \phi$.

Also, $\left|D^{\prime}\right| \leq|D|, \chi(T, L)=|D| \geq\left|D^{\prime}\right| \geq \gamma\left(T^{\prime}, L\right)$.
So, $\chi(T, L)=\chi\left(T^{\prime}, L\right)$.
(c) Spring 2022, Justie Su-Tzu Juan

3.1 Method 1: L-dominating

- Thm: A tree T has a leaf x adjacent to vertex y, let $T^{\prime}=T-x$ then (4) $L(x)=R$, but $L(y) \neq R \Rightarrow \gamma(T, L)=\gamma\left(T^{\prime}, L^{\prime}\right)+1$ where

$$
L^{\prime}(v)= \begin{cases}L(v), & \forall v \neq y \\ F, & v=y\end{cases}
$$

Proof.
Let D be a minimum L^{\prime}-dominating set of $T-x$.
$D \cup\{x\}$ is a L-dominating set of T,

$$
\therefore \gamma(T, L) \leq|D|+1=\gamma\left(T^{\prime}, L^{\prime}\right)+1 .
$$

Let D is a minimum L-dominating set of T. By definition, $x \in D$.
$\because L^{\prime}(y)=F \Rightarrow \therefore$ no matter $y \in D$ or $y \notin D$,

$$
\begin{aligned}
& D^{\prime}=D-\{x\} \text { is a } L^{\prime} \text {-dominating set of } T-x . \\
& \mathcal{\gamma}\left(T^{\prime}, L^{\prime}\right) \leq\left|D^{\prime}\right|=|D|-1=\chi(T, L)-1 .
\end{aligned}
$$

Hence $\gamma(T, L)=\gamma\left(T^{\prime}, L^{\prime}\right)+1$.

3.1 Method 1: L-dominating

- Algorithm 3.1:

Given tree ordering $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ of T
$D \leftarrow \phi$,
for $i=1$ to n do $L\left(x_{i}\right)=B$.
(for $i=1$ to $n-1$ do
choose $j>i$ such that $x_{i} x_{j} \in E$;
if $\left(L\left(x_{i}\right)=B\right)$ then $L\left(x_{j}\right) \leftarrow R$;
if $\left(L\left(x_{i}\right)=R\right)$ then
$D \leftarrow D \cup\left\{x_{i}\right\} ;$
if $\left(L\left(x_{j}\right)=B\right)$ then $L\left(x_{j}\right) \leftarrow F$;
if $\left(L\left(x_{n}\right) \neq F\right)$ then $D \leftarrow D \cup\left\{x_{n}\right\}$;

- Time complexity $=\boldsymbol{\mathcal { O }}(\mathrm{n})$.

3.1 Method 1: L-dominating

- Ex:

(c) Spring 2022, Justie Su-Tzu Juan

3.1 Method 1: L-dominating

- Exercise 1 (3/15): Develop a labeling algorithm for the vertex covering program on a tree.
- Def: A vertex cover of a graph $G=(V, E)$ is a subset $C \subseteq V$ such that \forall edge $x y \in E,\{x, y\} \cap C \neq \phi$.
- Notation: $\beta(G)=\boldsymbol{m i n}\{|C|: C$ is a vertex cover of $\boldsymbol{G}\}$

Computer Science and Information Engineering National Chi Nan University
 Combinatorial Optimization

Dr. Justie Su-tzu Juan

Lecture 3. Domination Problem in Tree

§3.2 Method 2 : Primal-dual method

3.2 Method 2 : Primal-dual method

- Def: I is a 2-stable set in a graph $G(V, E)$ if

$$
\forall x \neq y \text { in } I, d(x, y)>2
$$

- Def: $\boldsymbol{\gamma}(\boldsymbol{G})=\min \{|\boldsymbol{D}|: \bigcup N[x]=V\}$

$$
\alpha_{2}(G)=\max \{|I|: I \in D \text { is a 2-stable set }\}
$$

- Ex:

3.2 Method 2 : Primal-dual method

- Weakly duality inequality: $\forall 2$-stable set I, \forall dominating set D, $|I| \leq|D|$.
Proof.
Define $f: I \rightarrow D$ by

$$
f(x)=\text { some } y \text { with } x \in N[y] \text { for some } y \in D
$$

Suppose $x, x^{\prime} \in I, f(x)=y=y^{\prime}=f(x)$

$$
d(x, y) \leq 1, \because x \in N[y]
$$

$$
d\left(x^{\prime}, y^{\prime}\right) \leq 1, \because x^{\prime} \in N[y]
$$

$$
d\left(x, x^{\prime}\right) \leq d(x, y)+d\left(x^{\prime}, y\right)=d(x, y)+d\left(x^{\prime}, y^{\prime}\right) \leq 2 .
$$

By the fact that I is a 2 -stable set, $x=x^{\prime}$
Hence f is $\mathbf{1 - 1}$ function
So $|I| \leq|D|$.

- Corollary: $\alpha_{2}(G) \leq \gamma(G)$
(c) Spring 2022, Justie Su-Tzu Juan

3.2 Method 2 : Primal-dual method

- Note: If we find a 2 -stable set I^{*} and a dominating set D^{*} such that $\left|D^{*}\right|=\left|I^{*}\right|$, then $\left|I^{*}\right| \leq \alpha_{2}(T) \leq \gamma(T) \leq\left|D^{*}\right|=\left|I^{*}\right|$.
That imply all " \leq " are "=". i.e.
$1 . I^{*}$ is a maximum 2 -stable set, $\left|I^{*}\right|=\alpha_{2}(G)$.

2. D^{*} is a minimum dominating set, $\left|D^{*}\right|=\gamma(\mathbf{G})$.
3. $\gamma(\mathbf{G})=\alpha_{2}(G)=\left|D^{*}\right|=|I *|$.

3.2 Method 2 : Primal-dual method

- Algorithm 3.2:

Given tree ordering $\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ of T
$D^{*} \leftarrow \phi$,
$I^{*} \leftarrow \phi ;$
do $i=1$ to n choose $j>i$ which $v_{i} v_{j} \in E ;($ for $i=n$ choose $j=n)$

$$
\text { if } N_{T}\left[v_{i}\right] \cap D^{*}=\phi \text { then }\left\{\begin{array}{l}
D^{*} \leftarrow D^{*} \cup\left\{v_{j}\right\} ; \\
I^{*} \leftarrow I^{*} \cup\left\{v_{i}\right\}
\end{array}\right.
$$

end

- Time complexity $=\mathcal{O}(n)$.

3．2 Method 2 ：Primal－dual method

－Thm：
（1）D^{*} ：dominating set：
\because 若 $N_{T}\left[v_{i}\right] \cap D^{*}=\phi$ ，則把 v_{j} 放入 D^{*} 中 $\quad \therefore D^{*}$ 為domination set （2）$\left|D^{*}\right| \leq\left|I^{*}\right|:$
\because 每次加 $v_{j} \lambda D^{*}$ 就加新的 $v_{i} \lambda I^{*} \quad \therefore\left|I^{*}\right| \geq\left|D^{*}\right|$
（3）$I *$ is 2－stable set：
If $\exists v_{i}, v_{i^{\prime}} \in I^{*}$ ，such that $d\left(v_{i}, v_{i}\right) \leq 2$ ．W．L．O．G．，say $i<i^{\prime}$ ．
當 algorithm做到 v_{i} 時：由 algorithm知，當時將 v_{j} 放入 $D^{*}, ~ v_{i}$ 放入 I^{*} 。
Since v_{i} is a leaf of $T\left[v_{i}, v_{i+1}, \ldots, v_{n}\right]$ and $v_{i} v_{j} \in E$ ，

$$
d\left(v_{i}, v_{i}\right) \leq 2 \Rightarrow d\left(v_{j}, v_{i}\right) \leq 1, \text { i.e. } v_{j} \in N\left[v_{i}\right]
$$

當 algorithm 做到 i^{\prime} 時：$\because v_{j} \in D^{*}$ ，此時 $N_{T}\left[v_{i}\right] \cap D^{*} \neq \phi$因此，不能將 v_{i} ，放入 I^{*} 中 $\rightarrow \leftarrow$
$\therefore I^{*}$ 為 2－stable set．

3.2 Method 2 : Primal-dual method

- Ex:
- (1)

D^{*}	$=\{$
$I^{*}=\{$	$\}$

$$
\begin{aligned}
D^{*} & =\{ \\
I^{*} & =\{
\end{aligned}
$$

choose $j>\boldsymbol{i}$ which $v_{i} v_{j} \in E ;($ for $i=n$ choose $j=n)$

$$
\text { if } \begin{array}{ll}
N_{T}\left[v_{i}\right] \cap D^{*}=\phi \text { then } & D^{*} \leftarrow D^{*} \cup\left\{v_{j}\right\} ; \\
& I^{*} \leftarrow I^{*} \cup\left\{v_{i}\right\}
\end{array}
$$

