Computer Science and Information Engineering National Chi Nan University

Combinatorial Optimization Dr. Justie Su-Tzu Juan

Lecture 2. Mathematical Preliminaries

§ 2.3 Linear Programming

Slides for a Course Based on the Text 1. Combinatorial Optimization by Cook, Cunningham, Pulleyblank and Schrijver 2. Combinatorial Optimization - Algorithms and Complexity by Papadimitriou and Steiglitz

Def:

1. Let *A* be an $m \times n$ matrix, and let $b \in \mathbb{R}^m$. A linear

programming (LP) problem is $\begin{cases} Maximize c^T x & (A.1) \\ subject to Ax \le b \end{cases}$

that is, to determining: $\max\{c^T x : Ax \le b\}$ (A.2)

- **2.** *x* is a feasible solution of (A.2) if *x* satisfies $Ax \le b$.
- 3. *x* is called an optimum(optimal) solution of (A.2) if *x* is a feasible solution and attains the maximum.
- 4. $c^T = (c_1, c_2, ..., c_n)$ is the cost vector. $c^T x$ is the objective function. $A = (a_{ij})$ is an $m \times n$ coefficient matrix $b^T = (b_1, b_2, ..., b_m)$ is the constraint vector $a_i = (a_{i1}, a_{i2}, ..., a_{in}), A_j^T = (a_{1j}, a_{2j}, ..., a_{mj})$ 5. The dual LP problem of (A.2) is: $\min\{y^T b: y \ge 0, y^T A = c^T\}$ where $y \in \mathbb{R}^m$.

Ex:
1. max
$$2x_1 + 3x_2$$

subject to $\begin{cases} x_1 + 2x_2 \le 8 \\ 3x_1 + 2x_2 \le 12 \end{cases}$
 \Rightarrow when $x_1 = 2, x_2 = 3$
 $2x_1 + 3x_2 = 4 + 9 = 13$ is max.
i.e. (2, 3) is an optimum solution.

2. min
$$8y_1 + 12y_2$$

subject to $y_1 + 3y_2 = 2$
 $2y_1 + 2y_2 = 3$
 $y_1 \ge 0$
 $y_2 \ge 0$
 \Rightarrow when $y_1 = 5/4, y_2 = 1/4$.
 $8y_1 + 12y_2 = 10 + 3 = 13$ is min.

- **<u>Def</u>**:
- <u>Theorem A.4</u>: (Weak Duality Theorem)

Let *A* be an $m \times n$ matrix, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^m$. Suppose \tilde{x} is a feasible solution to $Ax \leq b$ and \tilde{y} is a feasible solution to $y \geq 0$, $y^T A = c^T$. Then $c^T \tilde{x} \leq \tilde{y}^T b$.

Proof.

 $c^T \widetilde{x} = (\widetilde{y}^T A) \widetilde{x} = \widetilde{y}^T (A \widetilde{x}) \leq \widetilde{y}^T b.$

Theorem A.5: (Duality Theorem)
 Let A be an m × n matrix, b ∈ ℝ^m, c ∈ ℝ^m. Then
 max{c^Tx: Ax ≤ b} = min{y^Tb: y ≥ 0, y^TA = c^T}
 provided that both sets are nonempty.

<u>Def</u>: Given an LP in general form, called the primal, the dual is defined as follows:

Primal		Dual
$\max c^T x$		min $y^T b$
s.t. $a_i^T x = b_i$	$i \in M$	s.t. y _i unrestricted
$a_i^T x \leq b_i$	$i \in \overline{M}$	$y_i \ge 0$
$x_j \ge 0$	$j \in N$	$y^T A_j \ge c_j$
x_j unrestricted	$j \in \overline{N}$	$y^T A_j = c_j$

- <u>Theorem 3.1</u>: If an LP has an optimal solution, so does its dual, and at optimality their costs are equal.
- <u>Theorem 3.2</u>: The dual of the dual is the primal.

Computer Science and Information Engineering National Chi Nan University

Combinatorial Optimization Dr. Justie Su-Tzu Juan

Lecture 2. Mathematical Preliminaries

§ 2.4 Domination Problem

Slides for a Course Based on the Text Combinatorial Optimization by Cook, Cunningham, Pulleyblank and Schrijver

2.4 Domination Problem

- Source: <u>chessboard problem</u>, firehouse problem, location problem.
- Ex: In $m \times n$ chessboard, need $\lceil m/3 \rceil \times \lceil n/3 \rceil$ kings to "dominate" all.

(1) x ≤ [m/3] [n/3]: 找一個方法 (easy)
(2) x ≥ [m/3] [n/3]: 找最多格子使得沒有任 丙格可能被同一個kings控制到
Primal-dual

格子 → vertex

可控制→edge

2.4 Domination Problem

• <u>Def</u>: A dominating set of a graph G = (V, E) is a subset *D* of *V* such that $\forall x \in V - D, \exists y \in D$ with $xy \in E$.

Let $D_1 = \{y_1, y_2\}, D_2 = \{x_1, y_2, x_4\},$ then D_1, D_2 are dominating sets of C_6 .

- Notation: domination number of $G \gamma(G) = \min\{|D|: D \text{ is a dominating set of } G\}.$
- The Minimum Dominating Set Problem in general graph *G* is NP-complete.

Computer Science and Information Engineering National Chi Nan University

Combinatorial Optimization Dr. Justie Su-Tzu Juan

Lecture 3. Domination Problem in Tree

§3.1 Method 1 : *L*-dominating

Slides for a Course Based on the Paper E. J. Cockayne, S. E. Goodman and S. T. Hedetniemi, *"A linear algorithm for the domination number of a tree"*, Inform. Process. Lett. 4 (1975), 41-44.

■ <u>Note</u> :

Suppose *D* is an optimal dominating set of tree *T*.

 $\forall x$: a leaf, adjacent to vertex y:

(o.w. $D - \{x\}$ is also a dominating set with $|D - \{x\}| < |D| \rightarrow \leftarrow$)

 \Rightarrow let $D' = (D - \{x\}) \cup \{y\}$ is also a dominating set as $N[x] \subseteq N[y]$

So, always \exists an optimal dominating set *D* such that $y \in D$ and $x \notin D$, for any leaf *x* adjacent to vertex *y*

⇒ <u>Step 1</u>: 配合 "bound" vertex N[y] B <u>Step 2</u>: 產生 "free" vertex x F Step 3: 再產生 "required" vertex y R

- Def: G = (V, E) is a graph, L : V → {B, R, F}, (i.e., each vertex x has a label L(x) ∈ {B, R, F}.)
 An L-dominating (mixed dominating) set of G is a subset D ⊆ V(G) s.t. ① L(x) = R ⇒ x ∈ D
 ② L(x) = B ⇒ N[x] ∩ D ≠ φ
- Notation: $\gamma(G, L) = \min\{|D| : D \text{ is a } L \text{-dominating set of } G\}.$

⁽c) Spring 2022, Justie Su-Tzu Juan

- <u>Note</u>: If L(v) = B, $\forall v \in V(G)$, an *L*-dominating set = dominating set and $\gamma(G) = \gamma(G, L)$.
- <u>Thm</u>: A tree *T* has a leaf *x* adjacent to vertex *y*, let T' = T x then (1) $L(x) = F \Rightarrow \gamma(T, L) = \gamma(T', L)$ (2) $L(x) = B \Rightarrow \gamma(T, L) = \gamma(T', L')$ where $L'(v) = \begin{cases} L(v), \forall v \neq y \\ R, v = y \end{cases}$ (3) $L(x) = L(y) = R \Rightarrow \gamma(T, L) = \gamma(T', L) + 1$ (4) L(x) = R, but $L(y) \neq R \Rightarrow \gamma(T, L) = \gamma(T', L') + 1$ where $L'(v) = \begin{cases} L(v), \forall v \neq y \\ F, v = y \end{cases}$

Thm: A tree *T* has a leaf *x* adjacent to vertex *y*, let T' = T - x then (1) $L(x) = F \Rightarrow \gamma(T, L) = \gamma(T', L)$

Proof.

Choose a *L*-dominating set *D* of T - x such that $|D| = \gamma(T', L)$, then D is also a L-dominating set of T. Hence $\gamma(T, L) \leq |D| = \gamma(T', L)$. Choose a *L*-dominating set *D* of *T* such that $|D| = \gamma(T, L)$, Case 1: $x \notin D \Rightarrow D$ is also a *L*-dominating set of T - x $\Rightarrow \gamma(T,L) = |D| \ge \gamma(T',L).$ Case 2: $x \in D$, consider $D' = (D - \{x\}) \cup \{y\}$ D' is a L-dominating set of T - x $(\forall v \in V(T-x): 1. v \neq y, L(v) = B : \exists u \in D - \{x\} \subseteq D', \text{ s.t. } uv \in E(T).$ 2. $v \neq y, L(v) = R : \because v \in D \Rightarrow v \in D' = (D - \{x\}) \cup \{y\}.$ 3. v = y: $\therefore y \in D', \therefore N[y] \cap D' \neq \phi$ Also, $|D'| \leq |D|$, $\gamma(T, L) = |D| \geq |D'| \geq \gamma(T', L)$. So, $\gamma(T, L) = \gamma(T', L)$.

Thm: A tree T has a leaf x adjacent to vertex y, let T' = T - x then $\underbrace{L(x) = R, \text{ but } L(y) \neq R \Rightarrow \gamma(T, L) = \gamma(T', L') + 1 \text{ where}}_{L'(v) = \begin{cases} L(v), \forall v \neq y \\ F, v = y \end{cases}}$

Proof.

Let D be a minimum L'-dominating set of T - x. $D \cup \{x\}$ is a *L*-dominating set of *T*, $\therefore \gamma(T,L) \leq |D| + 1 = \gamma(T',L') + 1.$ Let *D* is a minimum *L*-dominating set of *T*. By definition, $x \in D$. $L'(y) = F \implies \therefore$ no matter $y \in D$ or $y \notin D$, $D' = D - \{x\}$ is a L'-dominating set of T - x. $\gamma(T',L') \leq |D'| = |D| - 1 = \gamma(T,L) - 1.$ Hence $\gamma(T, L) = \gamma(T', L') + 1$.

Algorithm 3.1:

```
Given tree ordering [x_1, x_2, ..., x_n] of T

D \leftarrow \phi;

for i = 1 to n do L(x_i) = B.

(for i = 1 to n - 1 do

choose j > i such that x_i x_j \in E;

if (L(x_i) = B) then L(x_j) \leftarrow R;

(if (L(x_i) = R) then

D \leftarrow D \cup \{x_i\};

if (L(x_j) = B) then L(x_j) \leftarrow F;

if (L(x_n) \neq F) then D \leftarrow D \cup \{x_n\};
```

• Time complexity = $\mathcal{O}(n)$.

- <u>Exercise 1 (3/15)</u>: Develop a labeling algorithm for the vertex covering program on a tree.
- <u>Def</u>: A vertex cover of a graph G = (V, E) is a subset $C \subseteq V$ such that \forall edge $xy \in E, \{x, y\} \cap C \neq \phi$.
- Notation: $\beta(G) = \min\{|C|: C \text{ is a vertex cover of } G\}$

Computer Science and Information Engineering National Chi Nan University

Combinatorial Optimization Dr. Justie Su-tzu Juan

Lecture 3. Domination Problem in Tree

§3.2 Method 2 : Primal-dual method

• <u>Def</u>: *I* is a 2-stable set in a graph G(V, E) if $\forall x \neq y \text{ in } I, d(x, y) > 2$

• Def:
$$\gamma(G) = \min\{|D|: \bigcup_{x \in D} N[x] = V\}$$

 $\alpha_2(G) = \max\{|I|: I \text{ is a 2-stable set}\}$

• <u>Weakly duality inequality</u>: \forall 2-stable set I, \forall dominating set D, $|I| \leq |D|$.

Proof.

Define $f: I \rightarrow D$ by $f(x) = \text{some } y \text{ with } x \in N[y] \text{ for some } y \in D$ Suppose $x, x' \in I, f(x) = y = y' = f(x')$ $d(x, y) \leq 1, \because x \in N[y]$ $d(x', y') \leq 1, \because x' \in N[y']$ $d(x, x') \leq d(x, y) + d(x', y) = d(x, y) + d(x', y') \leq 2.$ By the fact that I is a 2-stable set, x = x'Hence f is 1-1 function So $|I| \leq |D|$.

• <u>Corollary</u>: $\alpha_2(G) \le \gamma(G)$

• <u>Note</u>: If we find a 2-stable set I^* and a dominating set D^* such that $|D^*| = |I^*|$,

then $|I^*| \le \alpha_2(T) \le \gamma(T) \le |D^*| = |I^*|$.

That imply all "≤" are "=". i.e.

1. I^* is a maximum 2-stable set, $|I^*| = \alpha_2(G)$.

2. D^* is a minimum dominating set, $|D^*| = \gamma(G)$.

3. $\gamma(G) = \alpha_2(G) = |D^*| = |I^*|$.

Algorithm 3.2:

Given tree ordering $[v_1, v_2, ..., v_n]$ of T $D^* \leftarrow \phi;$ $I^* \leftarrow \phi;$ do i = 1 to nchoose j > i which $v_i v_j \in E$; (for i = n choose j = n) if $N_T[v_i] \cap D^* = \phi$ then $\begin{cases} D^* \leftarrow D^* \cup \{v_j\}; \\ I^* \leftarrow I^* \cup \{v_i\} \end{cases}$ end

• Time complexity = $\mathcal{O}(n)$.

• <u>Thm</u>:

V_i

① *D**: dominating set:

 $∵ 若N_T[v_i] \cap D^* = \phi$,則把 v_j 放入 D^* 中 $∴ D^*$ 為domination set ② |D^*| ≤ |I^*|:

∴每次 nv_i 入 D^* 就加新的 v_i 入 I^* : $|I^*| \ge |D^*|$

③ *I** is 2-stable set:

If $\exists v_i, v_{i'} \in I^*$, such that $d(v_i, v_i) \le 2$. W.L.O.G., say i < i'. 當 algorithm做到 v_i 時:由 algorithm知, 當時將 v_j 放入 D^*, v_i 放入 I^* . Since v_i is a leaf of $T[v_i, v_{i+1}, ..., v_n]$ and $v_i v_j \in E$, $d(v_i, v_i) \le 2 \Rightarrow d(v_i, v_i) \le 1$, i.e. $v_i \in N[v_i]$

 $d(v_i, v_i) \le 2 \Rightarrow d(v_j, v_i) \le 1, \text{ i.e. } v_j \in N[v_i]$ 當 algorithm 做到 *i*'時: :: $v_j \in D^*$,此時 $N_T[v_i] \cap D^* \neq \phi$ 因此,不能將 v_i ,放入 *I** 中 →←

∴ *I** 為 2-stable set.

choose j > i which $v_i v_j \in E$; (for i = n choose j = n) if $N_T[v_i] \cap D^* = \phi$ then $D^* \leftarrow D^* \cup \{v_j\}$; $I^* \leftarrow I^* \cup \{v_i\}$