Computer Science and Information Engineering National Chi Nan University

Combinatorial Optimization Dr. Justie Su-Tzu Juan

Lecture 2. Mathematical Preliminaries

§ 2.1 Graphs and digraphs

Slides for a Course Based on the Text Combinatorial Optimization -Networks and Matroids by Eugene Lawler

- **Def**:
 - A graph is an ordered pair G = (V, E), where
 - V(G) = V is a finite non-empty set of vertices (or nodes) and
 - E(G) = E is a set of un-ordered pairs of vertices, called edges (or links).
 - If $\{x, y\}, \{y, z\} \in E$, then we say
 - 1. *x* and *y* are adjacent;
 - 2. x is incident to $\{x, y\}$;
 - **3.** {*x*, *y*} and {*y*, *z*} are adjacent;
 - 4. denote $\{x, y\}$ by (x, y) or xy.

<u>Def</u>:

A digraph or directed graph is an ordered pair D = (V, A), where
 V(D) = V is a finite non-empty set of vertices (or nodes) and
 A(D) = A is a set of ordered pairs of vertices, called arcs (or edges).

• If $(x, y) \in A$, then we say

1. (x, y) are incident from x and incident to y.

2. *x* is adjacent to *y*, *y* is adjacent from *x*.

<u>Def</u>:

The incidence matrix of a graph G, M(G) = (b_{ik}), is defined as follows:

 1, if node *i* is incident to edge *k*,

$$b_{ik} = \begin{cases} 1, n \text{ house } i \text{ is inc} \\ 0, \text{ otherwise.} \end{cases}$$

• In the case of a digraph, the incidence matrix, $M(G) = (b_{ik})$ is defined as follows:

$$b_{ik} = \begin{cases} -1, \text{ if arc } k \text{ is incident to node } i, \\ 1, \text{ if arc } k \text{ is incident from node } i, \\ 0, \text{ otherwise.} \end{cases}$$

⁽c) Spring 2022, Justie Su-Tzu Juan

Def:

- The adjacency matrix of a graph $G, A(G) = (a_{ij})$, is defined as : $a_{ij} = \begin{cases} 1, \text{ if node } i \text{ is adjacent to node } j, \\ 0, \text{ otherwise.} \end{cases}$
- The adjacency matrix of a digraph $D, A(G) = (a_{ij})$ is defined as : $a_{ij} = \begin{cases} 1, \text{ if there is an arc } (i, j) \text{ from node } i \text{ to node } j, \\ 0, \text{ otherwise.} \end{cases}$

- **<u>Def</u>**:
 - multiple edges:
 - loop:
 - simple graph: a graph with no multiple edges and loop.
 (本課程中若無特別説明,所稱 graph 皆指 simple graph)
- <u>Def</u>:
 - In a graph $G = (V, E), \forall x \in V$:
 - **1. neighbor of** x: $N(x) = \{y \mid xy \in E\}$
 - **2. closed neighbor of** $x: N[x] = \{x\} \cup N(x)$
 - **3. degree of** x: deg(x) = |N(x)|

<u>Def</u>:

• In a digraph $D = (V, A), \forall x \in V$:

1. the out-neighbor of $x \equiv N^+(x) = \{y \in V \mid \exists (x, y) \in A\}$

- 2. the in-neighbor of $x \equiv N^{-}(x) = \{y \in V \mid \exists (y, x) \in A\}$
- 3. the out-degree of $x \equiv deg^+(x) = |N^+(x)|$

4. the in-degree of $x \equiv deg^{-}(x) = |N^{-}(x)|$

• <u>Note</u>:

1. For incidence matrix of a graph $G, M(G) = (b_{ik})$:

$$deg(i) = \sum_k b_{ik}$$

2. For incidence matrix of a digraph D, $M(D) = (b_{ik})$: $deg^+(i) - deg^-(i) = \sum_k b_{ik}$.

- <u>Def</u>: G = (V, E) is a graph, $x, y \in V$
 - An *x*-*y* walk with length *r* is a sequence $x_0, x_1, ..., x_r$ such that $x = x_0, y = x_r$, and $x_{i-1}x_i \in E, \forall 1 \le i \le r$.
 - An *x*-*y* trail is an *x*-*y* walk in which all edges are distinct.
 - An cycle is an x-y walk in which all vertices are distinct except x
 = y.
 - An *x*-*y* path is an *x*-*y* walk in which all vertices are distinct.
- <u>Def</u>: A graph G = (V, E) is connected if $\forall x, y \in V, \exists x y$ path (or x-y walk) in G.
- <u>Remark</u>: For any two vertices *x*, *y* of *G*, $\exists x$ -*y* walk $\Rightarrow \exists x$ -*y* path.

- <u>Def</u>: Given graph G = (V, E), define relation ~ on V by $x \sim y$ iff $\exists x \cdot y$ walk.
- <u>Note</u>:
 - ~ is an equivalent relation, i.e.

(1)
$$x \sim x, \forall x \in V$$
;

(2)
$$x \sim y \Rightarrow y \sim x, \forall x, y \in V;$$

(3)
$$x \sim y$$
 and $y \sim z \Rightarrow x \sim z, \forall x, y, z \in V$

• Say the equivalence classes are $V_1, V_2, ..., V_r$, i.e. $V = \bigcup_{1 \le i \le r} V_i$

<u>Def</u>:

- A graph H = (U, F) is a subgraph of a graph G = (V, E) iff $U \subseteq V$ and $F \subseteq E$.
- For a graph G = (V, E) and a set S ⊆ V:
 A subgraph of G induced by S is the graph G[S] or G_S whose
 - vertex set is *S* and edge set is $\{xy \in E \mid x, y \in S\}$.
- <u>Def</u>: A (connected) component of a graph G is the subgraph of G induced by an equivalent class of ~.
- <u>Remark</u>: If *G* has *r* components $G[V_i]$, $1 \le i \le r$, then $V = \bigcup_{1 \le i \le r} V_i$ and $E = \bigcup_{1 \le i \le r} E_i$, where E_i is the edge set of $G[V_i]$.

Def:

• The complete graph K_n is a graph with *n* nodes and

 $\forall x, y \in V(K_n), \{x, y\} \in E(K_n)$

- A graph G = (V, E) is called a bipartite graph $G = (S, T, E) \equiv$ (1) $V = S \cup T$ and $S \cap T = \phi$;
 - (2) \forall (*x*, *y*) \in *E*, either *x* \in *S*, *y* \in *T*; or *x* \in *T*, *y* \in *S*.
- The complete bipartite graph $K_{p,q}$ is a bipartite graph G = (S, T, E)with |S| = p, |T| = q, and |E| = pq.
- <u>Def</u>:
 - A complete subgraph \equiv a subgraph of *G* is a complete graph.
 - A maximal complete subgraph is called a clique.

Computer Science and Information Engineering National Chi Nan University

Combinatorial Optimization Dr. Justie Su-Tzu Juan

Lecture 2. Mathematical Preliminaries

§ 2.2 Trees

Slides for a Course Based on the Text Combinatorial Optimization -Networks and Matroids by Eugene Lawler

- Def: A tree is a connected acyclic (i.e. without cycle) graph.
- <u>Thm</u>: The following statements are equivalent (TFSAE), for a graph G = (V, E):

(1) G is a tree.

- (2) *G* is connected and |E| = |V| 1.
- (3) *G* is acyclic and |E| = |V| 1.
- (4) $\forall x, y \text{ in } G, \exists \text{ unique } x \text{-} y \text{ path in } G.$
- (5) We can order *V* into $v_1, v_2, ..., v_n$ such that v_i is a leaf (a vertex with degree 1) of $G[\{v_i, v_{i+1}, ..., v_n\}]$ for $1 \le i \le n 1$, called tree ordering.

Lemma T1: Every tree with at least 2 vertices has at least 2 leaves. Proof.

Let T = (V, E) is a tree with $|V| \ge 2$.

Choose a path $P: x_0, x_1, ..., x_r$ in the tree such that r is maximum.

 \therefore $|V| \ge 2$ and *T* is connected \therefore $r \ge 1$.

 $\therefore x_1 \in N(x_0) \quad \therefore \ deg(x_0) \ge 1.$

Suppose $deg(x_0) \ge 2$, then $\exists x \neq x_1$ such that $xx_0 \in E$

<u>Case 1</u>: $x = \text{some } x_j$, for some $j \ge 2$, \exists cycle $x_0, x_1, ..., x_j, x_0 \rightarrow \leftarrow$ <u>Case 2</u>: x is not in the path P

Then $x, x_0, x_1, ..., x_r$ is a larger path in Tcontradicting to the choice of the path $P \rightarrow \leftarrow$ Therefore, $deg(x_0) = 1$, i.e. x_0 is a leaf. Similarly, x_r is a leaf.

- Note: Every acyclic graph with at least 2 vertices and one edge has at least 2 leaves.
- <u>Notation</u>: $G = (V, E), S \subseteq V, x \in V$:

$$\mathbf{G} - \mathbf{S} = \mathbf{G}[V - \mathbf{S}]$$

 $G - x = G[V - \{x\}]$

Lemma T2: If x is a leaf of a tree T = (V, E), then T - x is a tree. **Proof.**

A: T is acyclic $\Rightarrow T - x$ is acyclic **B**: \forall two vertices *y*, *z* in *T* – *x* \Rightarrow *y* \neq *x* and *z* \neq *x*, and *y*, *z* \in *V*(*T*) $\therefore \exists y - z \text{ path in } T \text{ say } P: y = x_0, x_1, \dots, x_r = z$ Case 1: $x \in P$, i.e. $x = x_i$ for some i (0 < i < r) $|\{x, y, z\}| = 3 \quad \therefore r \ge 2$ Then $x_{i-1}, x_{i+1} \in N_T(x_i)$ $\Rightarrow deg(x_i) \ge 2 \quad \rightarrow \leftarrow (\therefore x_i = x \text{ is a leaf})$ Case 2: $x \notin P$ $\therefore P$ is a y-z path in T - xThen, T - x is connected. By A, B, T - x is a tree.

Computer Science and Information Engineering National Chi Nan University

Combinatorial Optimization Dr. Justie Su-Tzu Juan

Lecture 2. Mathematical Preliminaries

§ 2.3 Linear Programming

Slides for a Course Based on the Text 1. Combinatorial Optimization by Cook, Cunningham, Pulleyblank and Schrijver 2. Combinatorial Optimization - Algorithms and Complexity by Papadimitriou and Steiglitz

Def:

1. Let *A* be an $m \times n$ matrix, and let $b \in \mathbb{R}^m$. A linear

programming (LP) problem is $\begin{cases} Maximize c^T x & (A.1) \\ subject to Ax \le b \end{cases}$

that is, to determining: $\max\{c^T x : Ax \le b\}$ (A.2)

- **2.** *x* is a feasible solution of (A.2) if *x* satisfies $Ax \le b$.
- 3. *x* is called an optimum(optimal) solution of (A.2) if *x* is a feasible solution and attains the maximum.
- 4. $c^T = (c_1, c_2, ..., c_n)$ is the cost vector. $c^T x$ is the objective function. $A = (a_{ij})$ is an $m \times n$ coefficient matrix $b^T = (b_1, b_2, ..., b_m)$ is the constraint vector $a_i = (a_{i1}, a_{i2}, ..., a_{in}), A_j^T = (a_{1j}, a_{2j}, ..., a_{mj})$ 5. The dual LP problem of (A.2) is: $\min\{y^T b: y \ge 0, y^T A = c^T\}$ where $y \in \mathbb{R}^m$.

Ex:
1. max
$$2x_1 + 3x_2$$

subject to $\begin{cases} x_1 + 2x_2 \le 8 \\ 3x_1 + 2x_2 \le 12 \end{cases}$
 \Rightarrow when $x_1 = 2, x_2 = 3$
 $2x_1 + 3x_2 = 4 + 9 = 13$ is max.
i.e. (2, 3) is an optimum solution.

2. min
$$8y_1 + 12y_2$$

subject to
 $y_1 + 3y_2 = 2$
 $2y_1 + 2y_2 = 3$
 $y_1 \ge 0$
 $y_2 \ge 0$
 \Rightarrow when $y_1 = 5/4, y_2 = \frac{1}{4}$.
 $8y_1 + 12y_2 = 10 + 3 = 13$ is min.

- **<u>Def</u>**:
- <u>Theorem A.4</u>: (Weak Duality Theorem)

Let *A* be an $m \times n$ matrix, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^m$. Suppose \tilde{x} is a feasible solution to $Ax \leq b$ and \tilde{y} is a feasible solution to $y \geq 0$, $y^T A = c^T$. Then $c^T \tilde{x} \leq \tilde{y}^T b$.

Proof.

 $c^T \widetilde{x} = (\widetilde{y}^T A) \widetilde{x} = \widetilde{y}^T (A \widetilde{x}) \leq \widetilde{y}^T b.$

Theorem A.5: (Duality Theorem)
 Let A be an m × n matrix, b ∈ ℝ^m, c ∈ ℝ^m. Then
 max{c^Tx: Ax ≤ b} = min{y^Tb: y ≥ 0, y^TA = c^T}
 provided that both sets are nonempty.

<u>Def</u>: Given an LP in general form, called the primal, the dual is defined as follows:

Primal		Dual
$\max c^T x$	min $y^T b$	
s.t. $a_i^T x = b_i$	$i \in M$	s.t. y _i unrestricted
$a_i^T x \leq b_i$	$i \in \overline{M}$	$y_i \ge 0$
$x_j \ge 0$	$j \in N$	$y^T A_j \ge c_j$
x_j unrestricted	$j \in \overline{N}$	$y^T A_j = c_j$

- <u>Theorem 3.1</u>: If an LP has an optimal solution, so does its dual, and at optimality their costs are equal.
- Theorem 3.2: The dual of the dual is the primal.

Computer Science and Information Engineering National Chi Nan University

Combinatorial Optimization Dr. Justie Su-Tzu Juan

Lecture 2. Mathematical Preliminaries

§ 2.4 Domination Problem

Slides for a Course Based on the Text Combinatorial Optimization by Cook, Cunningham, Pulleyblank and Schrijver

2.4 Domination Problem

- Source: <u>chessboard problem</u>, firehouse problem, location problem.
- Ex: In $m \times n$ chessboard, need $\lceil m/3 \rceil \times \lceil n/3 \rceil$ kings to "dominate" all.

(1) x ≤ [m/3] [n/3]: 找一個方法 (easy)
(2) x ≥ [m/3] [n/3]: 找最多格子使得沒有任 兩格可能被同一個kings控制到
Primal-dual

格子 → vertex

可控制→edge

2.4 Domination Problem

■ <u>Def</u>:

- Given a graph G = (V, E), a dominating set of G is a subset $D \subseteq V$, such that $V = \bigcup N[x]$
- The domination number of G: γ(G) = min{|D|: D is a dominating set of G}.