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2.1 Graphs and digraphs

 Def: 

 A graph is an ordered pair G = (V, E), where 

V(G) = V is a finite non-empty set of vertices (or nodes) and 

E(G) = E is a set of un-ordered pairs of vertices, called edges

(or links).

 If {x, y}, {y, z}  E, then we say

1. x and y are adjacent;

2. x is incident to {x, y};

3. {x, y} and {y, z} are adjacent;

4. denote {x, y} by (x, y) or xy.

 Ex. 1 2 3

4 5 6

7 8 9

V = {1, 2, 3, 4, 5, 6, 7, 8, 9}

E = {12, 23, 14, 25, 36, 45, 56, 47, 

58, 69, 78, 89}
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2.1 Graphs and digraphs

 Def:

 A digraph or directed graph is an ordered pair D = (V, A), where 

V(D) = V is a finite non-empty set of vertices (or nodes) and 

A(D) = A is a set of ordered pairs of vertices, called arcs

(or edges).

 If (x, y)  A, then we say

1. (x, y) are incident from x and incident to y.

2. x is adjacent to y, y is adjacent from x.
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2.1 Graphs and digraphs

 Def:

 The incidence matrix of a graph G, M(G) = (bik), is defined as 

follows:

bik = 

 In the case of a digraph, the incidence matrix, M(G) = (bik) is 

defined as follows:

bik = 

 Ex.

1, if node i is incident to edge k,

0, otherwise.

–1, if arc k is incident to node i,

1, if arc k is incident from node i,

0, otherwise.
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2.1 Graphs and digraphs

 Def:

 The adjacency matrix of a graph G, A(G) = (aij), is defined as :

aij = 

 The adjacency matrix of a digraph D, A(G) = (aij) is defined as :

aij = 

 Ex.

1, if node i is adjacent to node j,

0, otherwise.

1, if there is an arc (i, j) from node i to node j,

0, otherwise.
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2.1 Graphs and digraphs

 Def: 

 multiple edges:

 loop:

 simple graph: a graph with no multiple edges and loop.

(本課程中若無特別說明，所稱 graph 皆指 simple graph)

 Def: 

 In a graph G = (V, E),  x  V:

1. neighbor of x: N(x) = {y  xy  E}

2. closed neighbor of x: N[x] = {x}  N(x)

3. degree of x: deg(x) = |N(x)|

:
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2.1 Graphs and digraphs

 Def: 

 In a digraph D = (V, A),  x  V:

1. the out-neighbor of x  N+(x) = {y  V   (x, y)  A}

2. the in-neighbor of x  N–(x) = {y  V   (y, x)  A}

3. the out-degree of x  deg+(x) = |N+(x)|

4. the in-degree of x  deg–(x) = |N–(x)|

 Note:

1. For incidence matrix of a graph G, M(G) = (bik):

deg(i) = k bik.

2. For incidence matrix of a digraph D, M(D) = (bik):

deg+(i) – deg–(i) = k bik.
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2.1 Graphs and digraphs

 Def: G = (V, E) is a graph,  x, y  V

 An x-y walk with length r is a sequence x0, x1, …, xr such that x

= x0, y = xr, and xi–1xi  E,  1  i  r. 

 An x-y trail is an x-y walk in which all edges are distinct.

 An cycle is an x-y walk in which all vertices are distinct except x

= y.

 An x-y path is an x-y walk in which all vertices are distinct.

 Def: A graph G = (V, E) is connected if  x, y  V,  x-y path (or x-y

walk) in G.

 Remark: For any two vertices x, y of G,  x-y walk   x-y path.
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2.1 Graphs and digraphs

 Def: Given graph G = (V, E), define relation  on V by x  y iff  x-y

walk.

 Note:

  is an equivalent relation, i.e.

(1) x  x,  x  V;

(2) x  y  y  x,  x, y  V;

(3) x  y and y  z  x  z,  x, y, z  V

 Say the equivalence classes are V1, V2, …, Vr, i.e. 
ri

iVV



1
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2.1 Graphs and digraphs

 Def: 

 A graph H = (U, F) is a subgraph of a graph G = (V, E) iff U 

V and F  E.

 For a graph G = (V, E) and a set S  V:

A subgraph of G induced by S is the graph G[S] or GS whose 

vertex set is S and edge set is {xy  E  x, y  S}.

 Def: A (connected) component of a graph G is the subgraph of G

induced by an equivalent class of .

 Remark: If G has r components G[Vi], 1  i  r, then

and , where Ei is the edge set of G[Vi].


ri

iVV
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2.1 Graphs and digraphs

 Def: 

 The complete graph Kn is a graph with n nodes and 

 x, y  V(Kn), {x, y}  E(Kn)

 A graph G = (V, E) is called a bipartite graph G = (S, T, E) 

(1) V = S  T and S  T = ;

(2)  (x, y)  E, either x  S, y  T; or x  T, y  S.

 The complete bipartite graph Kp,q is a bipartite graph G = (S, T, E) 

with |S| = p, |T| = q, and |E| = pq.

 Def:

 A complete subgraph  a subgraph of G is a complete graph.

 A maximal complete subgraph is called a clique.
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2.2 Trees

 Def: A tree is a connected acyclic (i.e. without cycle) graph.

 Thm: The following statements are equivalent (TFSAE), for a 

graph G = (V, E):

(1) G is a tree.

(2) G is connected and |E| = |V| – 1.

(3) G is acyclic and |E| = |V| – 1.

(4)  x, y in G,  unique x-y path in G.

(5) We can order V into v1, v2, …, vn such that vi is a leaf (a vertex 

with degree 1) of G[{vi, vi+1, …, vn}] for 1  i  n – 1, called tree 

ordering. 
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2.2 Trees

 Ex: 

v12
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2.2 Trees

Lemma T1: Every tree with at least 2 vertices has at least 2 leaves.

Proof. 

Let T = (V, E) is a tree with |V|  2.

Choose a path P: x0, x1, …, xr in the tree such that r is maximum.

∵ |V|  2 and T is connected  r  1.

∵ x1  N(x0)  deg(x0)  1.

Suppose deg(x0)  2, then  x  x1 such that xx0  E

Case 1: x = some xj, for some j  2,  cycle x0, x1, …, xj, x0 

Case 2: x is not in the path P

Then x, x0, x1, …, xr is a larger path in T

contradicting to the choice of the path P 

Therefore, deg(x0) = 1, i.e. x0 is a leaf.

Similarly, xr is a leaf.
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2.2 Trees

 Note: Every acyclic graph with at least 2 vertices and one edge has 

at least 2 leaves.

 Notation: G = (V, E), S  V, x  V:

 G – S = G[V – S]

 G – x = G[V – {x}]
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2.2 Trees

Lemma T2: If x is a leaf of a tree T = (V, E), then T – x is a tree.

Proof. 

A: ∵ T is acyclic  T – x is acyclic

B:  two vertices y, z in T – x

 y  x and z  x, and y, z  V(T)

  y – z path in T say P: y = x0, x1, …, xr = z

Case 1: x  P, i.e. x = xi for some i (0  i  r)

∵|{x, y, z}| = 3  r  2

Then xi–1, xi+1  NT(xi)

 deg(xi)  2  (∵xi = x is a leaf)

Case 2: x  P  P is a y-z path in T – x

Then, T – x is connected.

By A, B, T – x is a tree.
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2.3 Linear Programming

 Def:

1. Let A be an m  n matrix, and let b  Rm. A linear 

programming (LP) problem is Maximize cTx (A.1)

subject to Ax  b

that is, to determining: max{cTx: Ax  b} (A.2)

2. x is a feasible solution of (A.2) if x satisfies Ax  b.

3. x is called an optimum(optimal) solution of (A.2) if x is a feasible 

solution and attains the maximum.

4. cT = (c1, c2, …, cn) is the cost vector.

cTx is the objective function.

A = (aij) is an m  n coefficient matrix

bT = (b1, b2, …, bm) is the constraint vector

ai = (ai1, ai2, …, ain), Aj
T = (a1j, a2j, …, amj)

5. The dual LP problem of (A.2) is:

min{yTb: y  0, yTA = cT} where y  Rm.



(c) Spring 2022, Justie Su-Tzu Juan 20

2.3 Linear Programming

 Ex:

1. max 2x1 + 3x2

subject to      x1 + 2x2  8

3x1 + 2x2  12

 when x1 = 2, x2 = 3

2x1 +3x2 = 4 + 9 = 13 is max.

i.e. (2, 3) is an optimum solution.

2. min 8y1 + 12y2

subject to     y1 + 3y2 = 2

2y1 + 2y2 = 3

y1  0

y2  0

 when y1 = 5/4, y2 = ¼ .

8y1 + 12y2 = 10 + 3 = 13 is min.

x2

x1
0

(2, 3)

y1

y2

0

(5/4, 1/4)
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2.3 Linear Programming

 Def:

 Theorem A.4: (Weak Duality Theorem)

Let A be an m  n matrix, b  Rm, c  Rm. Suppose x is a feasible 

solution to Ax  b and y is a feasible solution to y  0, yTA = cT. Then 

cT x  yTb.

Proof.

cT x = (yTA) x = y T(Ax)  yTb.
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2.3 Linear Programming

 Theorem A.5: (Duality Theorem)

Let A be an m  n matrix, b  Rm, c  Rm. Then 

max{cTx: Ax  b} = min{yTb: y  0, yTA = cT} 

provided that both sets are nonempty.

 Def: Given an LP in general form, called the primal, the dual is 

defined as follows:

Primal Dual

max cTx min yTb

s.t. ai
Tx = bi i  M s.t. yi unrestricted

ai
Tx  bi i  M yi  0

xj  0 j  N yTAj  cj

xj unrestricted j  N yTAj = cj
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2.3 Linear Programming

 Theorem 3.1: If an LP has an optimal solution, so does its dual, and 

at optimality their costs are equal.

 Theorem 3.2: The dual of the dual is the primal.
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2.4 Domination Problem

 Source: chessboard problem, firehouse problem, location problem.

 Ex: In m  n chessboard, need m/3  n/3 kings to “dominate” all.

(1) x  m/3 n/3: 找一個方法 (easy)

(2) x  m/3 n/3: 找最多格子使得沒有任
兩格可能被同一個kings控制到* *

* *

 

 

Primal-dual

格子 vertex

可控制 edge
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2.4 Domination Problem

 Def:

 Given a graph G = (V, E), a dominating set of G is a subset D 

V, such that 

 The domination number of G: (G) = min{|D|: D is a 

dominating set of G}.


Dx

xNV
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