Computer Science and Information Engineering National Chi Nan University Chapter 10 NP-completeness

§ 10.3 Some NP-Complete Problems (2)

Def: <u>Clique Problem</u>: <u>input</u>: Graph G and k ∈ N. <u>output</u>: { "yes", if G has a clique of size k; "no", o.w..

- <u>Def</u>: *C* is a clique of G = (V, E)if $C \subseteq V$ and for any $x \in C$ and $y \in C, xy \in E$.
- <u>Theorem: SAT ∝ Clique (i.e. Clique is NP-complete)</u>

Def:

Vertex-cover Problem:

<u>input</u>: Graph G' and $k' \in N$. **<u>output</u>: \begin{cases} "yes", if G' has a vertex cover of size k'; \\ "no", o.w.. \end{cases}**

Recall

• **Def:** *C* is a vertex-cover of G = (V, E)

if $C \subseteq V$ and every edge $xy \in E$ either $x \in C$ or $y \in C$.

Theorem: Clique \propto Vertex-coverProof. (1/3)Given G and kLet $G' = G^C$ and k' = |V(G)| - kClaim: G has a clique of size $k \Leftrightarrow G'$ has a vertex-cover size k'.

Theorem: Clique ∝ Vertex-cover **Proof.** (2/3) **Claim:** G has a clique of size $k \Leftrightarrow G'$ has a vertex-cover size k'. **Proof.** (\Rightarrow) Suppose C is a clique of G with |C| = k. Let C' = V(G) - CThen |C'| = k'. $\forall xy \in E(G') = E(G^C)$ Assume $x \notin C', y \notin C'$, then $x \in C, y \in C$. \Rightarrow *xy* \in *E*(*G*) (since *C* is a clique) $\rightarrow \leftarrow$ (*xy* \in *E*(*G*^{*C*})) Hence $x \in C$ or $y \in C$ \therefore C' is a vertex cover.

Theorem: Clique ∝ Vertex-cover **Proof.** (3/3)**Claim:** G has a clique of size $k \Leftrightarrow G'$ has a vertex-cover size k'. **Proof.** (\Leftarrow) Suppose C' is a vertex cover of G' with |C'| = k'. Let C = V(G') - C' = V(G) - C'. Then $|C| = |V(G)| - k^2 = k$. $\forall x \in C, y \in C$, then $x \notin C', y \notin C'$. Assume $xy \notin E(G)$, then $xy \in E(G^C) = E(G^2)$. $\rightarrow \leftarrow xy \in E(G')$, but $x \notin C', y \notin C'$. Hence $xy \in E(G)$ Hence C is a clique of size k.

Def: Domination Problem:

 $\underbrace{input: \text{ Graph } G \text{ and } k \in N. } \\ \underbrace{output:}_{\text{("yes", if } \exists D \subseteq V(G), |D| = k \\ \text{ and } N[x] \cap D \neq \emptyset, \forall x \in V(G); \\ \text{("no", o.w..} }$

Recall

• <u>Def</u>: A domination set of a graph G = (V, E) is a subset D of Vs.t. $\forall x \in V \setminus D, \exists y \in D$ with $xy \in E$.

Theorem: 3 SAT \propto **Domination. Proof.** (1/5) Given $f = \prod_{i=1}^{r} (x_{i1} + x_{i2} + x_{i3})$ over $\{x_1, x_2, ..., x_n\}$. Consider G = (V, E) as $V = \{x_i, \neg x_i, y_i: 1 \le j \le n\} \cup \{(i,j): 1 \le i \le r, 1 \le j \le 4\}$ $E = \{x_i(\neg x_i), (\neg x_i)y_i, x_iy_i: 1 \le j \le n\} \cup$ $\{(i, 1)(i, 2), (i, 2)(i, 4), (i, 3)(i, 4), (i, 3)(i, 1): 1 \le i \le r\} \cup$ $\{x_i(i,k): x_i = x_{ik}\} \cup \{\neg x_i(i,k): (\neg x_i) = x_{ik}\}.$ Let k = n + r. claim: f is satisfiable \Leftrightarrow G has a dominating set of size k.

• **Theorem: 3 SAT ∝ Domination.**

<u>Theorem: 3 SAT ∞ Domination.</u>

11

• <u>Theorem: 3 SAT \propto Domination.</u>

Theorem: 3 SAT \propto **Domination. Proof.** (3/5) Claim: f is satisfiable \Leftrightarrow G has a dominating set of size k. **Proof.** (\Rightarrow) If we can assign $x_1, ..., x_n$ s.t. f is true, (:: *f* is true, :: $\forall 1 \le i \le r, \exists k_i \in \{1, 2, 3\} \ni x_{ik_i}$ is true.) then let $D = \{x_i: x_i \text{ is assign true}\} \cup$ $\{\neg x_i: x_i \text{ is assign false}\} \cup$ $\{(i, 5-k_i): 1 \le i \le r\}.$ Then it's easy to see that D is a dominating set of G and |D| = n + r = k.

Theorem: 3 SAT \propto **Domination. Proof.** (4/5)claim: f is satisfiable \Leftrightarrow G has a dominating set of size k. **Proof.** (\Leftarrow) Suppose G has a dominating set D of size n + r. Then $|D \cap \{y_i, x_i, (\neg x_i)\}| = 1 \forall 1 \le j \le n$ and $|D \cap \{(i,k)\}: 2 \le k \le 4| = 1 \forall 1 \le i \le r$ $(:: \exists y_i, \exists (i, 4) \forall 1 \le j \le n, 1 \le i \le r)$ Assign $x_j = \int \text{true}, \text{ if } x_j \in D;$ false, if $\neg x_i \in D$ or $y_i \in D$. check: $x_{i1} + x_{i2} + x_{i3}$ is true, $\forall 1 \le i \le r$.

• <u>Theorem: 3 SAT</u> ∝ Domination.

Proof. (5/5)

<u>claim</u>: f is satisfiable \Leftrightarrow G has a dominating set of size k. Proof.

(\Leftarrow) <u>check</u>: $x_{i1} + x_{i2} + x_{i3}$ is true, $\forall 1 \le i \le r$. let $D \cap \{(i, k): 2 \le k \le 4\} = (i, k_i)$ Note that (i, k_i) can't dominate $(i, 5 - k_i)$ with $1 \le 5 - k_i \le 3$. i.e. $(i, 5 - k_i)$ adjacent to some x_j or $(\neg x_j)$ in D $\Rightarrow x_{i5-k_i}$ is true for all $1 \le i \le r$, for some $1 \le 5 - k_i \le 3$ $\Rightarrow x_{i1} + x_{i2} + x_{i3}$ is true, $\forall 1 \le i \le r$.

- Corollary:
- **O** Clique Problem is *NP*-complete.
- **②** Vertex-cover Problem is *NP*-complete.
- **③ Domination Problem is** *NP***-complete.**
- <u>Note</u>: Need to prove
- **①** Clique Problem $\in NP$.
- ② Vertex-cover Problem ∈ *NP*.
- **③ Domination Problem** $\in NP$.

• <u>Thm</u>: vertex-cover problem ∝ domination problem on bipartite graph.

Proof. (1/5)

Given graph G = (V, E) and $k \in N$ for vertex-cover problem. Consider bipartite graph G' = (X, Y, E') as:

$$X = \{\alpha\} \cup V$$

$$Y = \{\beta\} \cup E$$

$$E' = \{\alpha\beta, \beta x : x \in V\} \cup \{xe : x \in V, e \in E, x \in e\}$$

Let $k' = k + 1$
Claim: G has a vertex-cover C of size $k, k \leq |V|$
 $\Leftrightarrow G'$ has a dominating set D of size $k' = k + 1, k' \leq |X|$.

• <u>Thm</u>: vertex-cover problem ∝ domination problem on bipartite graph.

• <u>Thm</u>: vertex-cover problem ∝ domination problem on bipartite graph.

Proof. (3/5)

<u>Claim</u>: *G* has a vertex-cover *C* of size $k, k \leq |V|$

 \Leftrightarrow G' has a dominating set D of size $k' = k + 1, k' \le |X|$. Proof.

 (\Rightarrow) Given *C*, let $D = \{\beta\} \cup C$

It's easy to see that D is a dominating set of G' with size k'.
(⇐) Suppose |D| = k' = k + 1, D is a dominating set of G'.
① If β ∉ D, then α ∈ D.
Let D' = (D - {α}) ∪ {β} be also a dominating set of G' with size k'.

 \therefore We may assume $\beta \in D$.

• <u>Thm</u>: vertex-cover problem ∝ domination problem on bipartite graph.

Proof. (4/5)

<u>Claim</u>: *G* has a vertex-cover *C* of size $k, k \le |V|$

 \Leftrightarrow G' has a dominating set D of size $k' = k + 1, k' \le |X|$. Proof.

(\Leftarrow) Suppose |D| = k' = k + 1, *D* is a dominating set of *G*'.

$$(2) If \exists e = xy \in D, x \in X, y \in X,$$

then let $D' = (D - \{e\}) \cup \{x\}$ is also a dominating set of *G'* with size *k'* (or *k'* - 1, if $x \in D$. If so, since $k' \leq |X|$, then let $D' = (D - \{e\}) \cup \{z\}$, for some $z \in V - D$.)

: We may assume $D \cap E = \emptyset$.

• <u>Thm</u>: vertex-cover problem ∝ domination problem on bipartite graph.

Proof. (5/5)

<u>Claim</u>: *G* has a vertex-cover *C* of size $k, k \leq |V|$

 \Leftrightarrow G' has a dominating set D of size $k' = k + 1, k' \le |X|$. Proof.

(\Leftarrow) Suppose |D| = k' = k + 1, *D* is a dominating set of *G*'.

 $\therefore \text{ Set } C = D \cap V.$

Then *C* is clearly a vertex cover of *G* with |C| = k.

<u>Corollary</u>: Domination Problem for bipartite graph is NP-complete. (Need to prove Domination Problem for bipartite graph \in NP.)