Computer Science and Information Engineering National Chi Nan University Chapter 8 Other Problems on Trees

§ 8.1 Domination on Tree

(c) Fall 2023, Justie Su-Tzu Juan

8.1 Domination on Tree

- Def: A domination set of a graph $G=(V, E)$ is a subset D of V s.t. $\forall x \in V \backslash D, \exists y \in D$ with $x y \in E$.
- Ex:

Let $D_{1}=\left\{y_{1}, y_{2}\right\}$, $D_{2}=\left\{x_{1}, y_{2}, x_{4}\right\}$, then D_{1}, D_{2} are domination set of C_{6}.

- Notation: $\gamma(\boldsymbol{G})=\boldsymbol{\operatorname { m i n }}_{\forall \text { domination set } D}|\boldsymbol{D}|$
E. J. Cockayne, S. E. Goodman and S. T. Hedetniemi, "A linear algorithm for the domination number of a tree", Inform. Process. Lett. 4 (1975), 41-44.

8.1 Domination on Tree

- Linear-time algorithm for trees:

Cockayne, Goodman, Hedetniemi, IPL, 1975想法: (1/2)
Suppose D is an optimal domination set,
$\forall x$: a leaf adjacent to y :
(1) $y \in D \Rightarrow x \notin D$.

(o.w. $D \backslash\{x\}$ is also a dominating set with $|D \backslash\{x\}|<|D|)$
(2) $y \notin D \Rightarrow x \in D$

$$
\Rightarrow \text { let } D^{\prime}=(D \backslash\{x\}) \cup\{y\}
$$

be also a dominating set as $N[x] \subseteq N[y]$.

8．1 Domination on Tree

－Linear－time algorithm for trees：
Cockayne，Goodmen，Hedeteriemi，IPL， 1975想法：（2／2）
So，always \exists an optimal dominating set D
s．t．$y \in D$ and $x \notin D$ for any leaf x adj．to y ．
\Rightarrow Step 1：配合＂bound＂vertex $N[y] \quad B$
Step 2：產生＂free＂vertex $x \quad F$

Step 3：再產生＂required＂vertex $y \quad R$

8.1 Domination on Tree

- Def: $G=(V, E)$ is a graph, $L: V \rightarrow\{B, R, F\}$, (i.e., each vertex x has a label $L(x) \in\{B, R, F\}$.)
An L-dominating (mixed dominating) set of G is a subset $D \subseteq V(G)$ s.t. प $L(x)=R \Rightarrow x \in D$

$$
\text { ㄴ } L(x)=B \Rightarrow N[x] \cap D \neq \phi
$$

- Notation: $\mathcal{X}(G, L)=\min \{|D|: D$ is a L-dominating set of $G\}$.
- Ex: \boldsymbol{G}_{1}

8.1 Domination on Tree

- Note: If $L(v)=B, \forall v \in V(G)$,
an L-dominating set $=$ dominating set and $\gamma(G)=\gamma(G, L)$.
- Theorem: T has a leaf x adjacent to $y, T^{\prime} \leftarrow T-x$ then
(1) $L(x)=F \Rightarrow \gamma(T, L)=\gamma\left(T^{\prime}, L\right)$
(2) $L(x)=B \Rightarrow \gamma(T, L)=\gamma\left(T^{\prime}, L^{\prime}\right)$:

$$
L^{\prime}(v)=\left\{\begin{array}{l}
L(v), \quad \forall v \neq y \\
R, \quad v=y
\end{array}\right.
$$

(3) $L(x)=L(y)=R \Rightarrow \gamma(T, L)=\chi\left(T^{\prime}, L\right)+1$
(4) $L(x)=R$ but $L(y) \neq R \Rightarrow \gamma(T, L)=\gamma\left(T^{\prime}, L^{\prime}\right)+1$:

$$
L^{\prime}(v)=\left\{\begin{array}{l}
L(v), \quad \forall v \neq y \\
F, \quad v=y
\end{array}\right.
$$

8.1 Domination on Tree

- Thm: A tree T has a leaf x adjacent to vertex y, let $T^{\prime}=T-x$ then

$$
\text { (1) } L(x)=F \Rightarrow \gamma(T, L)=\gamma\left(T^{\prime}, L\right)
$$

Proof. (1/2)
Choose a L-dominating set D of $T-x$ such that $|D|=\gamma\left(T^{\prime}, L\right)$, then D is also a L-dominating set of T.
Hence $\gamma(T, L) \leq|D|=\gamma\left(T^{\prime}, L\right)$.
Choose a L-dominating set D of T such that $|D|=\chi(T, L)$,
Case 1: $x \notin D \Rightarrow D$ is also a L-dominating set of $T-x$

$$
\Rightarrow \gamma(T, L)=|D| \geq \chi\left(T^{\prime}, L\right) .
$$

Case 2: $x \in D$, consider $D^{\prime}=(D-\{x\}) \cup\{y\}$
D^{\prime} is a L-dominating set of $T-x$

8.1 Domination on Tree

- Thm: A tree T has a leaf x adjacent to vertex y, let $T^{\prime}=T-x$ then (1) $L(x)=F \Rightarrow \gamma(T, L)=\gamma\left(T^{\prime}, L\right)$

Proof. (2/2)
Case 2: $x \in D$, consider $D^{\prime}=(D-\{x\}) \cup\{y\}$
D^{\prime} is a L-dominating set of $T-x$
$\left(\forall v \in V(T-x): 1 . v \neq y, L(v)=B: \exists u \in D-\{x\} \subseteq D^{\prime}\right.$, s.t. $u v \in E(T)$.
2. $v \neq y, L(v)=R: \because v \in D \Rightarrow v \in D^{\prime}=(D-\{x\}) \cup\{y\}$.
3. $v=y: \because y \in D^{\prime}, \therefore N[y] \cap D^{\prime} \neq \phi$.

Also, $\left|D^{\prime}\right| \leq|D|, \chi(T, L)=|D| \geq\left|D^{\prime}\right| \geq \chi\left(T^{\prime}, L\right)$.
So, $\gamma(T, L)=\chi\left(T^{\prime}, L\right)$.

8.1 Domination on Tree

- Thm: A tree T has a leaf x adjacent to vertex y, let $T^{\prime}=T-x$ then (4) $L(x)=R$, but $L(y) \neq R \Rightarrow \gamma(T, L)=\gamma\left(T^{\prime}, L^{\prime}\right)+1$ where $\begin{cases}L(v), & v \neq y \\ L^{\prime}(v) & v=v\end{cases}$

Proof.
Let D be a minimum L^{\prime}-dominating set of $T-x$.
$D \cup\{x\}$ is a L-dominating set of T,

$$
\therefore \gamma(T, L) \leq|D|+1=\gamma\left(T^{\prime}, L^{\prime}\right)+1 .
$$

Let D is a minimum L-dominating set of T. By definition, $x \in D$.
$\because L^{\prime}(y)=F \Rightarrow \therefore$ no matter $y \in D$ or $y \notin D$,

$$
\begin{aligned}
& D^{\prime}=D-\{x\} \text { is a } L^{\prime} \text {-dominating set of } T-x . \\
& \chi\left(T^{\prime}, L^{\prime}\right) \leq\left|D^{\prime}\right|=|D|-1=\chi(T, L)-1 .
\end{aligned}
$$

Hence $\gamma(T, L)=\gamma\left(T^{\prime}, L^{\prime}\right)+1$.

8.1 Domination on Tree

- Algorithm:

$$
\begin{aligned}
& \text { Given tree ordering }\left[x_{1}, x_{2}, \ldots, x_{n}\right] \text { of } T \\
& D \leftarrow \phi ; \\
& \text { for } i=1 \text { to } n \text { do } L\left(x_{i}\right)=B \text {. } \\
& \text { for } i=1 \text { to } n-1 \text { do } \\
& \text { choose } j \square i \text { such that } x_{i} x_{j} \in E ; \\
& \text { if }\left(L\left(x_{i}\right)=B\right) \text { then } L\left(x_{j}\right) \leftarrow R ; \\
& \qquad \begin{array}{c}
\text { if }\left(L\left(x_{i}\right)=R\right) \text { then } \\
\text { if }\left(L\left(x_{j}\right)=B\right) \text { then } L\left(x_{j}\right) \leftarrow F ; \\
D \leftarrow D \cup\left\{x_{i}\right\} ; \\
\text { if }\left(L\left(x_{n}\right) \neq F\right) \text { then } D \leftarrow D \cup\left\{x_{n}\right\} ;
\end{array}
\end{aligned}
$$

- Time complexity $=\mathbf{O}(n)$.

8.1 Domination on Tree

- Ex:
(1)

8.1 Domination on Tree

- Ex:
(1)

8.1 Domination on Tree

Computer Science and Information Engineering National Chi Nan University Chapter 8 Other Problems on Trees

§ 8.2 Total Interval Number

Thomas M. Kratzke and Douglas B. West,
The Total Interval Number of a Graph II: Trees and Complexity SIAM J. Dis. Math. 9 (1996) p.p. 339-348

8.2 Total Interval Number

- Def:
(1) A graph $G=(V, E)$ is called an interval graph if \exists intervals $\left\{I_{x}: x \in V\right\}$ s.t. $x \neq y \in V, x y \in E \Leftrightarrow I_{x} \cap I_{y} \neq \varnothing$.
- Ex:
(a)

(b)

8.2 Total Interval Number

- Def:
(2) A multiple-interval representation of $G=(V, E)$ is a function $f: V \rightarrow\{$ Uintervals $\}$ s.t. $x \neq y \in V, x y \in E \Leftrightarrow f(x) \cap f(y) \neq \varnothing$.
(3) total interval number (or TIN) of G :
$I(G)=\min _{f} \sum_{x \in V}(\#$ of intervals in $f(x))=\min _{f} \sum_{x \in V}|f(x)|$.
- Remark: G is an interval graph $\Leftrightarrow I(G)=|\boldsymbol{V}|$.
- Ex:

8.2 Total Interval Number

Note: In a tree G, x is a leaf.
If f is an optimal solution (multiple-interval representation) of
$G=(V, E)$ then $|f(x)|=1$.
Sol.
$\because \operatorname{deg}(x)=1$.

- Def: Given a graph $G=(V, E)$. Let $L: V \rightarrow\{N C, F P, F B\}$ s.t. $\forall x \in V, L(x)=\left\{\begin{array}{l}\mathrm{NC}:(\text { non-constrained) } \\ \mathrm{FP}:(\text { free portion) }\end{array}\right.$ FB: (free boundary)

8.2 Total Interval Number

- Def:
(1) An L-multiple-interval representation of \boldsymbol{G} is a multiple- interval representation f with $L: V \rightarrow\{\mathrm{NC}, \mathrm{FP}, \mathrm{FB}\}$ s.t.
(i) $L(x)=F P \Rightarrow f(x)$ has an interval having a free portion.
(ii) $L(x)=\mathrm{FB} \Rightarrow f(x)$ has an interval having a free boundary.
(2) $\quad I(G, L)=\min _{f} \sum_{x \in V}|f(x)|$ (L-total interval number)

Note: If $L(x)=$ NC for all vertex x of G,
(1) an L-multiple-interval representation $=$ multiple-interval representation.
(2) $I(G)=I(G, L)$.

8．2 Total Interval Number

－Theorem：G has a leaf x adj．to $y, G^{\prime} \leftarrow G-x$ and define L^{\prime} on G^{\prime} by $L^{\prime}:\left\{\begin{array}{l}L(z), \text { if } z \neq y \\ (\uparrow), \text { if } z=y\end{array}\right.$
Case 1：$L(x)=L(y)=$ NC：
$(\uparrow)=F P$ and $I(G, L)=I\left(G^{\prime}, L^{\prime}\right)+1$.

Proof．（1／2）
(\geq) If f is an optimal solution for $I(G, L)$ ；
$f(y)$ 有一段只 $\cap f(x)$ ．
Let $f^{\prime}(v)=f(v), \forall v \in V\left(G^{\prime}\right)$
$\Rightarrow f^{\prime}(y)$ has a FP and $I(G, L)=\sum_{v \in V}|f(v)|$

$$
\begin{aligned}
& =\sum_{v \in V-x}|f(v)|+|f(x)| \\
& \geq I\left(G^{\prime}, L^{\prime}\right)+\mathbf{1} .
\end{aligned}
$$

8．2 Total Interval Number

－Theorem：G has a leaf x adj．to $y, G^{\prime} \leftarrow G-x$ and define L^{\prime} on G^{\prime} by $L^{\prime}:\left\{\begin{array}{l}L(z), \text { if } z \neq y \\ (\uparrow), \text { if } z=y\end{array}\right.$
Case 1：$L(x)=L(y)=$ NC：
$(\uparrow)=F P$ and $I(G, L)=I\left(G^{\prime}, L^{\prime}\right)+1$.

Proof．（2／2）
（ $\left(\right.$ ）If f^{\prime} is an optimal solution for $I\left(G^{\prime}, L^{\prime}\right)$ ；
$f^{\prime}(y)$ 有一段 $\mathrm{FP}: J_{y}$ ．
Let $f(v)=\left\{\begin{array}{lr}f^{\prime}(v), & \text { if } v \neq x \\ \text { an interval } \subseteq J_{y}, & \text { if } v=x\end{array}\right.$
$\Rightarrow I(G, L) \leq I\left(G^{\prime}, L^{\prime}\right)+1$ ．

8.2 Total Interval Number

- Theorem: G has a leaf x adj. to $y, G^{\prime} \leftarrow G-x$ and define L^{\prime} on G^{\prime} by $L^{\prime}:\left\{\begin{array}{l}L(z), \text { if } z \neq y \\ (\uparrow), \text { if } z=y\end{array}\right.$
Case 1: $L(x)=L(y)=N C$

$$
\Leftrightarrow(\uparrow)=F P \text { and } I(G, L)=I\left(G^{\prime}, L^{\prime}\right)+1 .
$$

Case 2: $L(x)=\mathrm{FP}, L(y)=\mathrm{NC}$
$\Leftrightarrow(A)=\mathrm{FB}$ and $I(G, L)=I\left(G^{\prime}, L^{\prime}\right)+1$.
Case 3: $L(x)=\mathrm{FB}, L(y)=\mathrm{NC}$

$$
\Leftrightarrow(A)=F B \text { and } I(G, L)=I\left(G^{\prime}, L^{\prime}\right)+1 .
$$

Case 4: $L(x)=$ NC, $L(y)=$ FP
$\Leftrightarrow(\uparrow)=F P$ and $I(G, L)=I\left(G^{\prime}, L^{\prime}\right)+1$.

8.2 Total Interval Number

- Theorem: G has a leaf x adj. to $y, G^{\prime} \leftarrow G-x$ and define L^{\prime} on G^{\prime} by $L^{\prime}:\left\{\begin{array}{l}L(z), \text { if } z \neq y \\ (A), \text { if } z=y\end{array}\right.$
Case 5: $L(x)=$ FP, $L(y)=$ FP
$\Leftrightarrow(A)=F B$ and $I(G, L)=I\left(G^{\prime}, L^{\prime}\right)+1$.

Case 6: $L(x)=$ FB, $L(y)=$ FP

$$
\Leftrightarrow(A)=F B \text { and } I(G, L)=I\left(G^{\prime}, L^{\prime}\right)+1
$$

Case 7: $L(x)=$ NC, $L(y)=\mathrm{FB}$
$\Leftrightarrow(\uparrow)=F B$ and $I(G, L)=I\left(G^{\prime}, L^{\prime}\right)+1$.
Case 8: $L(x)=$ FP, $L(y)=$ FB
$\Leftrightarrow(\uparrow)=N C$ and $I(G, L)=I\left(G^{\prime}, L^{\prime}\right)+2$.
Case 9: $L(x)=\mathrm{FB}, L(y)=\mathrm{FB}$
$\Leftrightarrow(\boldsymbol{A})=\mathrm{NC}$ and $I(G, L)=I\left(G^{\prime}, L^{\prime}\right)+2$.

8.2 Total Interval Number

- Algorithm:

Given tree ordering $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ of T $I(G, L) \leftarrow n ;$
for $i=1$ to n do $L\left(x_{i}\right)=\mathrm{NC}$;
for $\boldsymbol{i}=1$ to $\boldsymbol{n}-1$ do
choose $j \square i$ such that $x_{i} x_{j} \in E ;$ if $\left(L\left(x_{j}\right)=F B\right)$ then if $\left(L\left(x_{i}\right) \neq N C\right)$ then $\left[L\left(x_{j}\right) \leftarrow \mathrm{NC} ;\right.$ $I(G, L) \leftarrow I(G, L)+1 ;$
else if $\left(L\left(x_{i}\right)=\right.$ NC $)$ then $L\left(x_{j}\right) \leftarrow$ FP; else $L\left(x_{j}\right) \leftarrow \mathrm{FB}$;

Time complexity $=\mathbf{O}(n)$.

8.2 Total Interval Number

Ex:
(a)

(b)

NC
FB FB

$L(x)$	$L(y)$	$L^{\prime}(y)$	I
NC	NC	FP	
FP	NC	FB	
FB	NC	FB	
NC	FP	FP	
FP	FP	FB	
FB	FP	FB	
NC	FB	FB	
FP	FB	NC	1
FB	FB	NC	1

$$
I(G, L)=4
$$

$$
I(G, L)=\searrow 8
$$

8．2 Total Interval Number

Ex：
（c）

Exercise $7(11 / 14)$ ：只有綠色區域的 Tree $T+22$ 時，為何 $I(T, L)=7$ ？該如何修改演算法？（c）Fall 2023，Justie Su－Tzu Juan

