Computer Science and Information Engineering National Chi Nan University Chapter 4 Shortest Paths

§ 4.1 Shortest Path

4.1 Shortest Path

- Def:
(1) A digraph (directed graph) is an ordered pair $G=(V, E)$, where V is a finite set of elements, called vertices, and E is a set of ordered pairs of distinct vertices, called edges (ares).
(2) A weighted digraph (or network) is a digraph $G=(\boldsymbol{V}, \boldsymbol{E})$ with real valued weights (or lengths) assigned to each edge, i.e. $\exists w: E \rightarrow R$.
(3) The length of a path Q in a weighed digraph is the sum of the weights (lengths) of the edges on the path, denoted by $l_{Q}(x, y)$, i.e. $I_{Q}(x, y)=\Sigma_{e \in Q} w(e)$.
(4) A shortest path between a pair of vertices \boldsymbol{x} and \boldsymbol{y} in a weighted digraph is a path Q from x to y of least length, i.e. $l_{Q}(x, y)=$ $\min \left\{l_{Q^{\prime}}(x, y): Q^{\prime}\right.$ is a $x-y$ path $\}$.

4.1 Shortest Path

- Def:
(5) The distance from \boldsymbol{x} to \boldsymbol{y} in a weighted digraph is denoted by $d(x, y)=\min \left\{l_{Q}(x, y): Q\right.$ is a $x-y$ path $\}$. (the length of a shortest path from \boldsymbol{x} to \boldsymbol{y})
- Question:

Let $G=(V, E)$ be a weighted digraph that $\forall e \in E, w(e)>0$, and let $x, y \in V$, find the shortest path from x to y in G and its length, or show there is none.

Note: If $e=(x, y)$, write $w((x, y))$ as $w(x, y)$.

4.1 Shortest Path

- Algorithm: Dijkstra Algorithm

$$
\begin{aligned}
& f(x)=0 \text {; father }(x)=0 \text {; } \\
& \forall z \neq x: \int f(z)=w(x, z) ; \\
& \text { father }(z)=x \text {; } \\
& S=\{x\} ; \\
& \text { do while (} S \neq V \text {) } \\
& \text { choose } z^{*} \in V \backslash S \text { with } \min f\left(z^{*}\right) \text {; } \\
& S \leftarrow S \cup\left\{z^{*}\right\} ; \\
& \forall z \in V \backslash S \text { : } \\
& \text { if } f(z)>f\left(z^{*}\right)+w\left(z^{*}, z\right) \text { then } \\
& \left\{f(z)=f\left(z^{*}\right)+w\left(z^{*}, z\right) ;\right. \\
& \text { father }(z) \leftarrow z^{*} \text {; } \\
& \text { end }
\end{aligned}
$$

4.1 Shortest Path

- Note: If $(x, y) \notin E(G)$, let $w(x, y)=\infty, \forall x, y \in V(G)$.

4.1 Shortest Path

- Note: (1) $P: x=x_{0} \rightarrow x_{1} \rightarrow \ldots x_{r}=y$,

$$
\Sigma_{e \in P} w(e)=\Sigma_{i=0}^{r-1} w\left(x_{i}, x_{i+1}\right) .
$$

(2) Define $g: V \rightarrow R^{+}$s.t. $\{g(x)=0$,

$$
\{\overrightarrow{z w} \in E \Rightarrow g(w)-g(z) \leq w(z, w) .
$$

4.1 Shortest Path

- Thm (w.d.i): $d(x, y)=\min _{x-y} \operatorname{path} P\left(\Sigma_{e \in P} w(e)\right) \geq \max _{g \text { sat. }} \quad g(y)$. Proof.
$\forall x, y$ path $P, \forall g$ satisfy A.
Let $P: x_{0}=x \rightarrow x_{1} \rightarrow \ldots \rightarrow x_{r}=y$.
$\Sigma_{e \in P} w(e)=\Sigma_{i=0}^{r-1} w\left(x_{i}, x_{i+1}\right)$
$\geq \Sigma_{i=0}^{r-1}\left(g\left(x_{i+1}\right)-g\left(x_{i}\right)\right)$
$=g\left(x_{1}\right)-g\left(x_{0}\right)+g\left(x_{2}\right)-g\left(x_{1}\right)+\ldots+g\left(x_{r}\right)-g\left(x_{r-1}\right)$
$=g\left(x_{r}\right)-g\left(x_{0}\right)$
$=g(y)-g(x)$
$=g(y)$.
$\therefore \min _{x-y \text { path } P}\left(\Sigma_{e \in P} w(e)\right) \geq \max _{g \text { sat }} g(y)$.

4.1 Shortest Path

- <justify Dijkstra Algorithm>

Assume f^{*} is the final output f, F^{*} is the final output father, then from F^{*}, we can find an $x-y$ path $P: x=x_{0}, x_{1}, \ldots, x_{r}=y$, such that $\Sigma_{e \in P} w(e)=\Sigma_{i=1}^{r-1} w\left(x_{i}, x_{i+1}\right)=f^{*}(y)$.
claim: f^{*} satisfies
Then, $\Sigma_{e \in P} w(e) \geq d(x, y) \geq \max _{g \text { sat }} g(y) \geq f^{*}(y)=\Sigma_{e \in P} w(e)$.
\therefore all " \geq " are " $=$ ".
\Rightarrow (1) $f^{*}(y)=d(x, y)$.
(2) P is the shortest path from x to $y \rightarrow$ solve the Question.

- Note: If $f^{*}(y)=\infty$ means there is none path from x to y.

4.1 Shortest Path

- Proof of claim (f^{*} satisfies \boldsymbol{A})

We prove: at any iteration:
(1) $f(z) \leq f\left(z^{\prime}\right), \forall z \in S, z^{\prime} \notin S$.
(2) $\forall \overrightarrow{z w} \in E,\{z, w\} \cap S \neq \phi \Rightarrow f(w)-f(z) \leq w(z, w)$

Proof. (1/6)
prove by induction on $|S|$:
(1) (2) $|S|=1, \mathbf{O}$.K. Since $w(e)>0, \forall e \in E$.

Suppose it's hold for $|S| \leq|P|$.
Now, when $S=P \cup\left\{z^{*}\right\}$.

Let f means the f-function before $S=P \cup\left\{z^{*}\right\}$ be executed. Let f^{*} means the f-function after $S=P \cup\left\{z^{*}\right\}$ be executed.

4.1 Shortest Path

- Proof of claim (f^{*} satisfies \boldsymbol{A})

We prove: at any iteration:
(1) $f(z) \leq f\left(z^{\prime}\right), \forall z \in S, z^{\prime} \notin S$.

(2) $\forall \overrightarrow{z w} \in E,\{z, w\} \cap S \neq \phi \Rightarrow f(w)-f(z) \leq w(z, w)$

Proof. (2/6)
(1) $\forall z \in S, z^{\prime} \notin S \Rightarrow z^{\prime} \notin P ; z \in P$ or $z=z^{*}$ 。
case1: $z \in P .\left(z^{\prime} \notin P\right) \Rightarrow f^{*}(z)=f(z)$.
By the induction hypothesis: $f(z) \leq f\left(z^{\prime}\right)$.
If if holds: $f^{*}\left(z^{\prime}\right)=f\left(z^{*}\right)+w\left(z^{*} z^{\prime}\right)$

$$
\begin{aligned}
\Rightarrow f^{*}\left(z^{\prime}\right) \geq f\left(z^{*}\right) \geq f(z)=f^{*}(z) \\
\because w \geq 0 \quad \because \text { I.H. for }\left(\mathbb{Q}, z^{*} \notin P, z \in P\right.
\end{aligned}
$$

else $\quad: f^{*}\left(z^{\prime}\right)=f\left(z^{\prime}\right) \geq f(z)=f^{*}(z)$.
$\therefore f^{*}(z) \leq f^{*}\left(z^{\prime}\right)$.

4.1 Shortest Path

- Proof of claim (f^{*} satisfies \boldsymbol{A})

We prove: at any iteration:
(1) $f(z) \leq f\left(z^{\prime}\right), \forall z \in S, z^{\prime} \notin S$.

(2) $\forall \overrightarrow{z w} \in E,\{z, w\} \cap S \neq \phi \Rightarrow f(w)-f(z) \leq w(z, w)$

Proof. (3/6)
(1) $\forall z \in S, z^{\prime} \notin S \Rightarrow z^{\prime} \notin P ; z \in P$ or $z=z^{*}$.
case2: $z=z^{*}\left(z^{\prime} \notin P\right)$
$\Rightarrow f^{*}(z)=f^{*}\left(z^{*}\right)=f\left(z^{*}\right)$.
If if holds: $f^{*}\left(z^{\prime}\right)=f\left(z^{*}\right)+w\left(z^{*}, z^{\prime}\right) \geq f\left(z^{*}\right)$;
else $\quad: f^{*}\left(z^{\prime}\right)=f\left(z^{\prime}\right) \geq f\left(z^{*}\right) .\left(z^{*}\right.$ with $\min . f$ in $\left.V \backslash P\right)$
$\therefore f^{*}(z) \leq f^{*}\left(z^{\prime}\right)$.

4.1 Shortest Path

- Proof of claim (\boldsymbol{f}^{*} satisfies \boldsymbol{A})

We prove: at any iteration:
(1) $f(z) \leq f\left(z^{\prime}\right), \forall z \in S, z^{\prime} \notin S$.

(2) $\forall \overrightarrow{z w} \in E,\{z, w\} \cap S \neq \phi \Rightarrow f(w)-f(z) \leq w(z, w)$

Proof. (4/6)
(2) $\forall \overrightarrow{z w} \in E,\{z, w\} \cap S \neq \phi$.
case 1: $\{z, w\} \subseteq S$

$$
f^{*}(w)-f^{*}(z)=f(w)-f(z) \leq w(z, w) .
$$

case2: $z \notin S$ and $w \in S(z \notin P)$

$$
\begin{aligned}
& \text { By (1): } f^{*}(w) \leq f^{*}(z) . \\
& \therefore f^{*}(w)-f^{*}(z) \leq 0 \leq w(z, w) .
\end{aligned}
$$

4.1 Shortest Path

- Proof of claim (\boldsymbol{f}^{*} satisfies \boldsymbol{A})

We prove: at any iteration:
(1) $f(z) \leq f\left(z^{\prime}\right), \forall z \in S, z^{\prime} \notin S$.

(2) $\forall \overrightarrow{z w} \in E,\{z, w\} \cap S \neq \phi \Rightarrow f(w)-f(z) \leq w(z, w)$

Proof. (5/6)
(2) $\forall \overrightarrow{z w} \in E,\{z, w\} \cap S \neq \phi$.
case 3: $z \in S$, and $w \notin S$
case 3.1: $z \neq z^{*}$

$$
\begin{aligned}
& \because f^{*}(w) \leq f(w) ; f^{*}(z)=f(z) . \\
& \therefore f^{*}(w)-f^{*}(z) \leq f(w)-f(z) \leq w(z, w) . \\
& \quad \text { by I.H © (}\left(\because\{w, z\} \cap\left(S-z^{*}\right) \neq \varnothing\right)
\end{aligned}
$$

4.1 Shortest Path

- Proof of claim $\left(f^{*}\right.$ satisfies $\left.\boldsymbol{A}\right)$

We prove: at any iteration:
(1) $f(z) \leq f\left(z^{\prime}\right), \forall z \in S, z^{\prime} \notin S$.

(2) $\forall \overrightarrow{z w} \in E,\{z, w\} \cap S \neq \phi \Rightarrow f(w)-f(z) \leq w(z, w)$

Proof. (6/6)
(2) $\forall \overrightarrow{z w} \in E,\{z, w\} \cap S \neq \phi$.
case 3: $z \in S$, and $w \notin S$

$$
\text { case 3.2: } z=z^{*}:
$$

$$
\begin{aligned}
& f^{*}(w) \leq f\left(z^{*}\right)+w\left(z^{*}, w\right) \\
&=f(z)+w(z, w) ; \\
& \because f^{*}(z)=f(z) .
\end{aligned}
$$

$$
\therefore f^{*}(w)-f^{*}(z)=f^{*}(w)-f(z)
$$

$$
\leq w(z, w)
$$

Computer Science and Information Engineering National Chi Nan University Chapter 5
Dynamic Programming

§ 5.1 Knapsack Problem

5.1 Knapsack Problem

- Def: Knapsack Problem

$$
\begin{aligned}
f(n, b)= & \max v_{1} x_{1}+v_{2} x_{2}+\ldots+v_{n} x_{n} \\
& \text { s.t. } c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n} \leq b,
\end{aligned}
$$

$$
\text { where each } x_{i}=\text { non-negative integer; } v_{i} \in R^{+} ;
$$

$$
c_{i} \in R^{+}, b \in Z^{+} .
$$

Sol.

$$
\begin{aligned}
& f(k, a)=\max \left\{f(k-1, a), f\left(k, a-c_{k}\right)+v_{k}\right\}, \\
& \text { for } 0 \leq k \leq n, 0 \leq a \leq b .
\end{aligned}
$$

Computer Science and Information Engineering National Chi Nan University Chapter 5
Dynamic Programming

§ 5.2 Max. Consecutive Sum Problem

5.2 Max. Consecutive Sum Problem

- Def: Max. Consecutive Sum Problem

Given $x_{1}, x_{2}, \ldots, x_{n} \in R, \operatorname{sum}(i, j)=\Sigma_{k}{ }_{=i} x_{k}$.
Find $\max _{1 \leq i \leq j \leq n} \operatorname{sum}(i, j)$.

- Ex: 1, - 1, 3, 4, - 8, - 2, 3, 7, - 4, 3, 5

Sol 1.

for $1 \leq i \leq n$ for $i \leq j \leq n$

$$
\left.\max _{1 \leq i \leq j \leq n}\left(\Sigma_{k=i}^{j} x_{k}\right)\right)
$$

$$
\begin{aligned}
& \operatorname{sum}(i, j)=0 \\
& \text { for } i \leq k \leq j \\
& \quad \operatorname{sum}(i, j)=\operatorname{sum}(i, j)+x_{k}
\end{aligned}
$$

取 $\operatorname{sum}(i, j)$ 的max. $\quad 1 \leq i \leq j \leq n \quad \longrightarrow O\left(n^{3}\right)$

5.2 Max. Consecutive Sum Problem

Sol 2.

$$
\begin{align*}
& \operatorname{sum}(i, i)=x_{i}, \forall 1 \leq i \leq n \\
& \text { for } d=1 \text { to } n-1 \\
& \quad \text { for } 1 \leq i \leq n-d \\
& \quad \operatorname{sum}(i, i+d)=\operatorname{sum}(i, i+d-1)+x_{i+d} \\
& \text { 取 } \operatorname{sum}(i, j) \text { 的max. } 1 \leq i \leq j \leq n \tag{2}
\end{align*}
$$

Sol 3.
$O(n)$

Exercise 4 (10/17):

Design an $\boldsymbol{O}(\boldsymbol{n})$-algorithm for the Max. Consecutive Sum Problem.

Computer Science and Information Engineering National Chi Nan University Chapter 5 Dynamic Programming

§ 5.3 Matrix Multiplication Problem

5．3 Matrix Multiplication Problem

－Def：Matrix Multiplication Problem求 $M_{1} \cdot M_{2} \cdot \ldots \cdot M_{n}$ 用最少乘法次數之法， where M_{i} has size $a_{i-1} \times a_{i}$ ．
－Ex 1：

$$
\begin{aligned}
& A_{2 \times 2}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right], B_{2 \times 3}=\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23}
\end{array}\right] \\
& A B=\left[\begin{array}{lll}
a_{11} b_{11}+a_{12} b_{21} & a_{11} b_{12}+a_{12} b_{22} & a_{11} b_{13}+a_{12} b_{23} \\
a_{21} b_{11}+a_{22} b_{21} & a_{21} b_{12}+a_{22} b_{22} & a_{21} b_{13}+a_{22} b_{23}
\end{array}\right]
\end{aligned}
$$

\Rightarrow need $12=2 \times 2 \times 3$
$\left(\because(A B)_{i j}=\Sigma_{k=1}{ }^{2} a_{i k} b_{k j}, \forall i=1,2 ; j=1,2,3\right)$

5．3 Matrix Multiplication Problem

－Ex 2：

$$
\begin{array}{ll}
A_{1 \times 10^{5}} \cdot B_{10^{5} \times 10^{10} 0} \cdot C_{10^{10} 0_{\times 1}} \\
=(A B) C & =A(B C) \\
1 \times\left(0^{5} \times 10^{10}\right. & \frac{10^{5} \times 10^{10} \times 1}{1 \times 10^{10} \times 1}
\end{array}
$$

Sol．
Let $f(i, j)=M_{i} \ldots M_{j}$ 最少相乘次數．
$f(i, i)=0, \forall 1 \leq i \leq n$ ．
for $\boldsymbol{d}=1$ to $\boldsymbol{n}-1$
for $\boldsymbol{i}=1$ to $\boldsymbol{n}-\boldsymbol{d}$

$$
f(i, i+d)=\min _{i \leq k \leq i+d-1}\left\{f(i, k)+f(k+1, i+d)+a_{i-1} \cdot a_{k} \cdot a_{i+d}\right\} ;
$$

end
end

