Computer Science and Information Engineering National Chi Nan University

> Chapter 4 Shortest Paths

§ 4.1 Shortest Path

Def:

- A digraph (directed graph) is an ordered pair G = (V, E), where V is a finite set of elements, called vertices, and E is a set of ordered pairs of distinct vertices, called edges (arcs).
- ② A weighted digraph (or network) is a digraph G = (V, E) with real valued weights (or lengths) assigned to each edge, i.e. ∃ $w: E \to R$.
- ③ The length of a path Q in a weighed digraph is the sum of the weights (lengths) of the edges on the path, denoted by l_Q(x, y), i.e. l_Q(x, y) = Σ_{e∈Q} w(e).
- A shortest path between a pair of vertices x and y in a weighted digraph is a path Q from x to y of least length, i.e. l_Q(x, y) = min{l_{Q'}(x, y) : Q' is a x-y path}.

Def:

(5) The distance from x to y in a weighted digraph is denoted by
d(x, y) = min{l_Q(x, y): Q is a x-y path}. (the length of a shortest path from x to y)

• <u>Question</u>:

Let G = (V, E) be a weighted digraph that $\forall e \in E, w(e) > 0$, and let $x, y \in V$, find the shortest path from x to y in G and its length, or show there is none.

<u>Note</u>: If e = (x, y), write w((x, y)) as w(x, y).

Algorithm: Dijkstra Algorithm f(x) = 0; father(x) = 0; $\forall z \neq x : [f(z) = w(x, z)]$ father(z) = x: $S = \{x\};$ do while $(S \neq V)$ choose $z^* \in V \setminus S$ with min $f(z^*)$; $S \leftarrow S \cup \{z^*\};$ $\forall z \in V \setminus S$: if $f(z) > f(z^*) + w(z^*, z)$ then $f(z) = f(z^*) + w(z^*, z);$ father(z) $\leftarrow z^*$:

end

• <u>Note</u>: If $(x, y) \notin E(G)$, let $w(x, y) = \infty, \forall x, y \in V(G)$.

Note:

$$P: x = x_0 \rightarrow x_1 \rightarrow \dots x_r = y,$$

$$\Sigma_{e \in P} w(e) = \Sigma_{i=0}^{r-1} w(x_i, x_{i+1}).$$

② Define
$$g: V \to R^+$$
 s.t. $\begin{cases} g(x) = 0, \\ \overline{zw} \in E \Rightarrow g(w) - g(z) \le w(z, w). \end{cases}$

• <u>Thm</u>(w.d.i): $d(x, y) = \min_{x-y \text{ path } P} (\sum_{e \in P} w(e)) \ge \max_{g \text{ sat. } \bullet} g(y)$. **Proof.**

$$\forall x, y \text{ path } P, \forall g \text{ satisfy } \blacklozenge.$$
Let $P : x_0 = x \rightarrow x_1 \rightarrow \dots \rightarrow x_r = y.$

$$\sum_{e \in P} w(e) = \sum_{i=0}^{r-1} w(x_i, x_{i+1})$$

$$\geq \sum_{i=0}^{r-1} (g(x_{i+1}) - g(x_i))$$

$$= g(x_1) - g(x_0) + g(x_2) - g(x_1) + \dots + g(x_r) - g(x_{r-1})$$

$$= g(x_r) - g(x_0)$$

$$= g(y) - g(x)$$

$$= g(y).$$

$$\therefore \min_{x \cdot y \text{ path } P} (\sum_{e \in P} w(e)) \geq \max_{g \text{ sat } \blacklozenge} g(y).$$

<justify Dijkstra Algorithm>

Assume f^* is the final output f, F^* is the final output father, then from F^* , we can find an x - y path $P: x = x_0, x_1, ..., x_r = y$, such that $\sum_{e \in P} w(e) = \sum_{i=1}^{r-1} w(x_i, x_{i+1}) = f^*(y)$. claim: f^* satisfies \clubsuit Then, $\sum_{e \in P} w(e) \ge d(x, y) \ge \max_{g \text{ sat } \bigstar} g(y) \ge f^*(y) = \sum_{e \in P} w(e)$. \therefore all " \ge " are " = ". $\Rightarrow \oplus f^*(y) = d(x, y)$. \bigcirc P is the shortest path from x to $y \rightarrow$ solve the Question.

Note: If $f^*(y) = \infty$ means there is none path from *x* to *y*.

Proof of claim (f^* satisfies \blacklozenge) We prove: at any iteration: $\textcircled{1} f(z) \leq f(z'), \forall z \in S, z' \notin S.$ $\textcircled{2} \forall \overrightarrow{zw} \in E, \{z, w\} \cap S \neq \phi \Rightarrow f(w) - f(z) \leq w(z, w)$ **Proof.** (1/6) prove by induction on |S|: P **①②** |S| = 1, O.K. Since w(e) > 0, $\forall e \in E$. Suppose it's hold for $|S| \leq |P|$. Now, when $S = P \cup \{z^*\}$. Let *f* means the *f*-function before $S = P \cup \{z^*\}$ be executed. Let f^* means the *f*-function after $S = P \cup \{z^*\}$ be executed.

P **Proof of claim** (f^* satisfies \blacklozenge) We prove: at any iteration: $\textcircled{1} f(z) \leq f(z'), \forall z \in S, z' \notin S.$ $\textcircled{2} \forall \overrightarrow{zw} \in E, \{z, w\} \cap S \neq \phi \Rightarrow f(w) - f(z) \leq w(z, w)$ **Proof.** (2/6) $\textcircled{0} \forall z \in S, z' \notin S \Rightarrow z' \notin P; z \in P \text{ or } z = z^*.$ case1: $z \in P$. $(z' \notin P) \Rightarrow f^*(z) = f(z)$. By the induction hypothesis: $f(z) \le f(z')$. **If if holds:** $f^{*}(z') = f(z^{*}) + w(z^{*}z')$ $\Rightarrow f^{*}(z') \ge f(z^{*}) \ge f(z) = f^{*}(z);$ $\therefore w \ge 0$ \therefore I.H. for $\textcircled{0}, z^* \notin P, z \in P$ else : $f^{*}(z') = f(z') \ge f(z) = f^{*}(z)$. $\therefore f^*(z) \leq f^*(z').$

(c) Fall 2023, Justie Su-Tzu Juan

S

P **Proof of claim** (f^* satisfies \bigstar) We prove: at any iteration: $\textcircled{1} f(z) \leq f(z'), \forall z \in S, z' \notin S.$ $\textcircled{2} \forall \overline{zw} \in E, \{z, w\} \cap S \neq \phi \Rightarrow f(w) - f(z) \leq w(z, w)$ **Proof.** (3/6) $\textcircled{0} \forall z \in S, z' \notin S \Rightarrow z' \notin P; z \in P \text{ or } z = z^*.$ case2: $z = z^* (z' \notin P)$ $\Rightarrow f^*(z) = f^*(z^*) = f(z^*).$ If if holds: $f^{*}(z') = f(z^{*}) + w(z^{*}, z') \ge f(z^{*});$: $f^{*}(z') = f(z') \ge f(z^{*})$. $(z^{*} \text{ with min. } f \text{ in } V \setminus P)$ else $\therefore f^*(z) \leq f^*(z').$

S

(c) Fall 2023, Justie Su-Tzu Juan

S

S

(c) Fall 2023, Justie Su-Tzu Juan

S

Computer Science and Information Engineering National Chi Nan University

Chapter 5 Dynamic Programming

§ 5.1 Knapsack Problem

5.1 Knapsack Problem

• <u>Def</u>: Knapsack Problem

$$f(n, b) = \max v_1 x_1 + v_2 x_2 + \dots + v_n x_n$$

s.t. $c_1 x_1 + c_2 x_2 + \dots + c_n x_n \le b$,
where each $x_i =$ non-negative integer; $v_i \in R^+$;
 $c_i \in R^+, b \in Z^+$.

Sol.

 $f(k, a) = \max\{f(k - 1, a), f(k, a - c_k) + v_k\},\$ for $0 \le k \le n, 0 \le a \le b.$

Computer Science and Information Engineering National Chi Nan University

Chapter 5 Dynamic Programming

§ 5.2 Max. Consecutive Sum Problem

5.2 Max. Consecutive Sum Problem

<u>Def</u>: Max. Consecutive Sum Problem Given $x_1, x_2, ..., x_n \in R$, $sum(i, j) = \sum_{k=i}^{j} x_k$. Find $max_{1 \le i \le j \le n} sum(i, j)$.

$$\mathbf{Ex:}\ \mathbf{1,-1,3,4,-8,-2,3,7,-4,3,5}$$

5.2 Max. Consecutive Sum Problem

Sol 2.

 $sum(i, i) = x_i, \forall 1 \le i \le n$ for d = 1 to n - 1for $1 \le i \le n - d$ sum $(i, i + d) = sum(i, i + d - 1) + x_{i+d}$ 取 sum(i, j)的max. $1 \le i \le j \le n$ $\longrightarrow O(n^2)$

Sol 3. O(n)

Exercise 4 (10/17): Design an *O*(*n*)**-algorithm for the Max. Consecutive Sum Problem.** Computer Science and Information Engineering National Chi Nan University

Chapter 5 Dynamic Programming

§ 5.3 Matrix Multiplication Problem

5.3 Matrix Multiplication Problem

<u>Def</u>: Matrix Multiplication Problem
 求M₁ · M₂ · ... · M_n用最少乘法次數之法,
 where M_i has size a_{i-1} × a_i.

Ex 1: $A_{2\times 2} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, B_{2\times 3} = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix}$ $AB = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} & a_{11}b_{13} + a_{12}b_{23} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} & a_{21}b_{13} + a_{22}b_{23} \end{bmatrix}$ $\Rightarrow need \ 12 = 2 \times 2 \times 3$ $(\because (AB)_{ij} = \sum_{k=1}^{2} a_{ik}b_{kj}, \forall i = 1, 2; j = 1, 2, 3)$

5.3 Matrix Multiplication Problem

• <u>Ex 2</u>:

$A_{1 \times 10^5} \cdot B_{10^5 \times 10^{10}}$	$\cdot C_{10^{10} \times 1}$
$= (\underline{AB})C$	$=A(\underline{BC})$
$1 \times 10^{5} \times 10^{10}$	$10^{5} \times 10^{10} \times 1$
$1 \times 10^{10} \times 1$	1×10 ⁵ ×1
$\Rightarrow 10^{15} + 10^{10}$	$\Rightarrow 10^{15} + 10^5$

Sol.

Let
$$f(i, j) = M_i \dots M_j$$
 最少相乘次數.
 $f(i, i) = 0, \forall 1 \le i \le n.$
for $d = 1$ to $n - 1$
for $i = 1$ to $n - d$
 $f(i, i + d) = \min_{i \le k \le i + d - 1} \{f(i, k) + f(k + 1, i + d) + a_{i-1} \cdot a_k \cdot a_{i+d}\};$
end
end
 $\longrightarrow O(n^3)$