Computer Science and Information Engineering National Chi Nan University

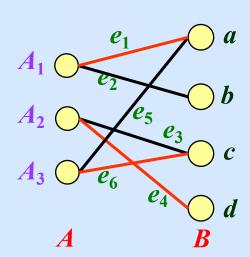
Chapter 3 Maximum Mathching Algorithm

§ 3.1 Maximum Matching in Bipartite Graph

(c) Fall 2023, Justie Su-Tzu Juan

- Def:
- ① bipartite graph $\equiv V$ can be partitioned into V_1 and V_2 , \forall edge $\{x, y\} \in E$, $|V_i \cap \{x, y\}| = 1$.
- ② matching \equiv a set of edges M s.t. $e_1, e_2 \in M, e_1 \neq e_2$ and $e_1 \cap e_2 = \phi$.
- Ex: bipartite graph G = (A, B, E),

 matching $M = \{e_1, e_4, e_6\}$, $\Rightarrow A_1 = \{a, b\} \rightarrow a$ $A_2 = \{c, d\} \rightarrow d$ $A_3 = \{a, c\} \rightarrow c$



- <u>Def</u>: $F = (A_1, A_2, ..., A_n)$ is a family of sets. An <u>SDR</u> of F is a sequence $(a_1, a_2, ..., a_n)$ of distinct elements, such that $a_i \in A_i$, $\forall 1 \le i \le n$. (SDR = <u>System of Distinct Representives</u>)
- P. Hall's Theorem:

```
F = (A_1, A_2, ..., A_n) has an SDR \Leftrightarrow |\bigcup_{i \in I} A_i| \ge |I|, \forall I \subset \{1, 2, ..., n\}.

Proof. (1/3)
```

(\Rightarrow) Suppose $(a_1, ..., a_n)$ is an SDR of F, then $\forall I \subset \{1, 2, ..., n\}: |\bigcup_{i \in I} A_i| \ge |\bigcup_{i \in I} \{a_i\}| = |I|$.

• P. Hall's Theorem:

$$F = (A_1, A_2, ..., A_n)$$
 has an SDR $\Leftrightarrow |\bigcup_{i \in I} A_i| \ge |I|, \forall I \subset \{1, 2, ..., n\}.$

Proof. (2/3)

(\Leftarrow) We may assume that F is a minimal family s.t. Hall's condition(\clubsuit) holds.

claim:
$$|A_i| = 1, \forall i = 1, 2, ..., n$$
.

(Then $A_i = \{a_i\}$ and $(a_1, ..., a_n)$ is the desired SDR)

Assume $\exists |A_j| \ge 2$, say $|A_1| \ge 2$, choose $x \ne y$ in A_1 .

Consider
$$F_x = (A_1 - \{x\}, A_2, ..., A_n),$$

$$F_y = (A_1 - \{y\}, A_2, ..., A_n).$$

• P. Hall's Theorem:

$$F = (A_1, A_2, ..., A_n)$$
 has an SDR $\Leftrightarrow |\bigcup_{i \in I} A_i| \ge |I|, \forall I \subset \{1, 2, ..., n\}.$

Proof. (3/3)

∴
$$F$$
 is $\underline{\text{minimal}}$, ∴ F_x , F_y does not satisfy (♣).
i.e. $\exists I, J \subseteq \{2, 3, ..., n\}$ s.t. $C = (\bigcup_{i \in I} A_i) \cup (A_1 - \{x\})$, $D = (\bigcup_{i \in J} A_i) \cup (A_1 - \{y\})$
 $\Rightarrow |C| < |I| + 1, |D| < |J| + 1 \Rightarrow |C| \le |I|, |D| \le |J|$.
∴ $(\bigcup_{i \in I} A_i) \cap (\bigcup_{j \in J} A_j) \supseteq \bigcup_{i \in I \cap J} A_i$, $C \cup D = \bigcup_{i \in I \cup J \cup \{1\}} A_i$,
∴ $|I| + |J| \ge |C| + |D| = |C \cap D| + |C \cup D|$
 $\ge |I \cap J| + |I \cup J \cup \{1\}|$
 $= |I| + |J| + 1$. $\Rightarrow \leftarrow$

- Def: $t \ge 0$ is integer. $(A_1, ..., A_n)$ is called a (t, n)-family if $|\bigcup_{i \in I} A_i| \ge t + |I|, \forall \phi \ne I \subseteq \{1, 2, ..., n\}$.
- Ex: $A_i^* = \{i, n+1, ..., n+t\}, (1 \le i \le n)$ $F^* = (A_1^*, A_2^*, ..., A_n^*).$
- Question: F* 有多少 SDR?

- Exercise 1 (10/3): Suppose $F = (A_1, ..., A_n)$ is a minimal (t, n)-family, i.e. \mathbb{O} F is a (t, n)-family,
 - ② the removal of any element from any set A_i results a family that isn't (t, n)-family.

Then $|A_i| = t + 1, \forall i \in \{1, 2, ..., n\}.$

• Conjecture: F^* 是有最少 SDR 的(t, n)-family, 當 $t \ge 2$. (t = 2 已證出) (Europ. J. Comb. 10(1989) 231-234)

- Thm: G = (X, Y, E): bipartite graph, G has a matching of size $|X| \Leftrightarrow |\mathrm{Adj}(S)| \geq |S|, \forall S \subseteq X$. **Proof.** (1/4) (⇒) o.k. (\Leftarrow) Suppose M is a maximum matching. If |M| = |X|, then we are done, otherwise, suppose |M| < |X|. Choose $v \in X$ s.t. v is not incident to any edge in M.
 - Let $U = \{u \in X \cup Y : \exists v u \text{ (alternating path)}\}.$

Let $S^* = U \cap X$, $T^* = U \cap Y$.

claim: $|Adj(S^*)| < |S^*|$ (then $\rightarrow \leftarrow$)

Thm: G = (X, Y, E): bipartite graph, G has a matching of size $|X| \Leftrightarrow |\mathrm{Adj}(S)| \geq |S|, \forall S \subseteq X$. **Proof.** (2/4) claim: $|Adj(S^*)| < |S^*|$ (then $\rightarrow \leftarrow$) check: ① $Adj(S^*) \subseteq T^*$ $|S^*| \ge |T^*| + 1$ (then $|S^*| > |T^*| \ge |Adj(S^*)|$.) **Proof.** ① $\forall y \in Adj(S^*)$ $\Rightarrow \exists x \in S^* = U \cap X, xy \in E$ let *P* = **v** - case 2: $y \notin P$: $\exists P \cup \{xy\}$: ψ i.e. $y \in U, y \in T^*$.

• Thm: G = (X, Y, E): bipartite graph, G has a matching of size $|X| \Leftrightarrow |\mathrm{Adj}(S)| \ge |S|, \forall S \subseteq X$. Proof. (3/4) Check: ② $|S^*| > |T^*| + 1$

Check:
$$|S^*| \ge |T^*| + 1$$

Proof.
$$\forall y \in T^*, \exists P = \emptyset$$

If y is not incident to any edge in M (exposed),

then
$$\exists M' = M \oplus P \equiv (M - P) \cup (P - M)$$
,

M' is a matching of size |M| + 1. $\rightarrow \leftarrow$

$$X \quad Y \quad X \quad Y \quad X \quad Y \quad X \quad Y$$

Hence $\forall y \in T^*, \exists yy^* \in M$. Also $y^* \in S^*$.

(since
$$\exists P: v - - - v - v$$
)

• Thm: G = (X, Y, E): bipartite graph, G has a matching of size $|X| \Leftrightarrow |\operatorname{Adj}(S)| \ge |S|, \forall S \subseteq X$. Proof. (4/4) Check: ② $|S^*| \ge |T^*| + 1$ Proof. Consider $f: T^* \to S^*$ by $f(y) = y^*$. f is 1-1: $\because M$ matching. f is not onto: $\because v$ exposed.

 $|T^*| < |S^*|, \text{ i.e. } |S^*| \ge |T^*| + 1.$

Algorithm: Maximum Matching Algorithm for G = (X, Y, E)

```
M \leftarrow \phi;
(1.0) Given label "\phi" to all M-exposed vertex in X;
(1.1) If \exists no unscanned labels then STOP,
    otherwise find a vertex i with unscanned label;
    If i \in X then goto (1.2), otherwise goto (1.3);
(1.2) Scan i \in X by: \forall edge ij \in E with j has no label,
     label j by "i"; Goto (1.1);
(1.3) Scan i \in Y by: if i is exposed then goto (2),
     otherwise identify the unique ij \in M, label j by "i"; Goto (1.1);
Remove all labels; Goto (1.0);
```

Ex:

(c) Fall 2023, Justie Su-Tzu Juan

- Def: C is a vertex-cover of G = (V, E)if $C \subseteq V$ and every edge $xy \in E$ either $x \in C$ or $y \in C$.
- Thm: (Weak Duality Inequality, w.d.i.) $\max |M| \le \min |C|$

Proof. (1/2)

 \forall matching M; \forall vertex cover C;

Define $f: M \to C$ by $f(xy) = \begin{cases} x, & \text{if } x \in C, \\ y, & \text{o.w.} \end{cases}$

① well-define:

If $x \notin C$ then C is vertex cover.

 \therefore by definition, $y \in C$. (o.w. $xy \in E, x \notin C$ and $y \notin C$)

• Thm: (Weak Duality Inequality, w.d.i.) $\max |M| \le \min |C|$ Proof. (2/2)

② <u>1-1</u>:

If f(xy) = f(x'y'), but $xy \neq x'y'$ in M, then \exists two different edges in M have a common end vertex.

 $\rightarrow \leftarrow$ to M is a matching

 $\therefore f \text{ is 1-1.}$ Hence $|M| \leq |C|, \therefore \max |M| \leq \min |C|$.

• <justify Max. Matching Algorithm>

Assume M^* is the final output M, and L^* is the set of all labeled vertices at final iteration.

Let
$$C^* = (X - L^*) \cup (Y \cap L^*)$$

claim \bigcirc : M^* is a matching.

claim 2: C* is a vertex cover.

claim $\Im: |C^*| \leq |M^*|$

Then $|C^*| \leq |M^*| \leq \max|M| \leq \min|C| \leq |C^*|$,

- ∴ all "≤" are "="
- $\Rightarrow \mathbb{O}' M^*$ is a max matching.
 - 2' C* is a min vertex cover.
 - $\Im' \max_M |M| = \min_C |C|$.

- Proof of claim. (1/2)
 - \bigcirc M^* is a matching by (0) and (2)
 - ② $\forall xy \in E, x \in X, y \in Y$. Suppose $x \notin C^*, y \notin C^*$
 - $\Rightarrow x \in L, y \notin L$ when we scan the labeled vertex x, we MUST labeled y in (1.2).
 - \Rightarrow C^* is a vertex cover.
 - ③ $\forall x \in C^* \cap X = X L \Rightarrow \exists e \in M^* \text{ incident to } x \text{ by (1.0)}.$ $\forall y \in C^* \cap Y = Y \cap L \Rightarrow \exists e \in M^* \text{ incident to } y \text{ by (1.3)}.$ [:是最後一次iteration, :只會在(1.1) ~ (1.3)跑,不會到(2)] Define $f: C^* \to M^*$ by $f(x) = \text{the edge in } M^* \text{ incident to } x.$

• Proof of claim. (1/2)

Define $f: C^* \to M^*$ by f(x) = the edge in M^* incident to x.

(a) well-define:

 M^* is a matching 及(大), \exists ! edge incident to x.

(b) 1-1:

Suppose f(x) = f(y) = e,

i.e. e = xy with $x \in X$, $y \in Y$

when we scan y, we MUST label x by "y"

 \rightarrow in (1.3) otherwise.

$$\Rightarrow |C^*| \leq |M^*|$$

Then ①', ②', ③' holds.

- Time-Complexity for Max. Matching Algorithm for bipartite graph: $O(|V| \cdot |E|) = O(|V|^3)$.
- Homework 1: (Due day: 10/3)

將Maximum Matching Algorithm for G = (X, Y, E)實作出來。

Computer Science and Information Engineering National Chi Nan University

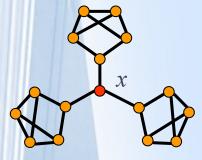
Chapter 3 Maximum Mathching Algorithm

§ 3.2 Maximum Matching in General Graph

(c) Fall 2023, Justie Su-Tzu Juan

3.2 Maximum Matching in General Graph

Ex:



沒有 perfect matching; (由 cut vertex 觀之)

<u>Def</u>: 1. A matching M is called a perfect matching if 2|M| = |V|.

- 2. A component of a graph G is odd or even iff it has an odd or even number of vertices.
- 3. Denote by o(G) the number of odd components of G.

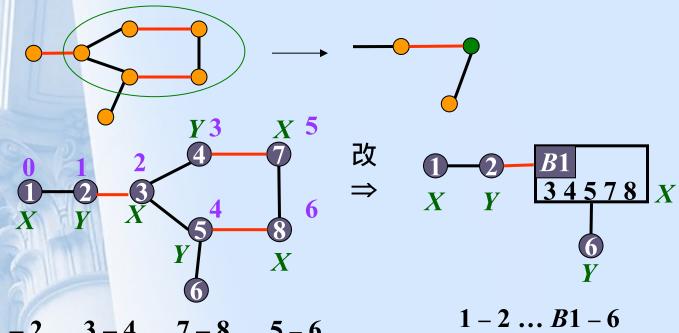
Theorem 5.2: (Tutte's theorem) A graph G has a perfect matching $\Leftrightarrow o(G-S) \leq |S|, \forall S \subseteq V(G)$

Let $S = \{x\}, : o(G - S) = 3 > 1 = |S|$ ∴ G having no perfect matching.

(c) Fall 2023, Justie Su-Tzu Juan

3.2 Maximum Matching in General Graph

Def: J. Edmonds (Blossom) Algorithm: C_{2k+1} : k edges $\in M$. (因為是odd cycle,兩條path中必有一條為even!)

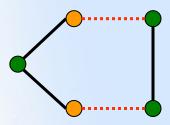


$$1-2...3-4...7-8...5-6$$

3.2 Maximum Matching in General Graph

• Note: $\max_{M} |M| \neq \min_{C} |C|$ (#bipartite graph)

• Ex:



Computer Science and Information Engineering National Chi Nan University

Chapter 3 Maximum Mathching Algorithm

§ 3.3 Odd-Set Cover

(c) Fall 2023, Justie Su-Tzu Juan

3.3 Odd-Set Cover

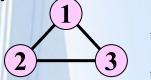
• Def: G = (V, E): graph, $\ell = \{v_1, v_2, ..., v_r, S_1, S_2, ..., S_t\}$ is an odd-set cover of G iff ① $r \ge 0$, $v_i \in V \forall 1 \le i \le r$; $t \ge 0$, $S_j \subseteq V$, $|S_j|$: odd $\ge 3 \forall 1 \le i \le t$. ② $\forall xy \in E$, either $x = \text{some } v_i$ or $y = \text{some } v_i$

or $\{xy\} \subseteq \text{some } S_i$.

- Note: Vertex cover is an odd-set cover.
- <u>Def</u>: value(ℓ) = $r + \sum_{j=1}^{t} (|S_j| 1) / 2$.

3.3 Odd-Set Cover

Ex:

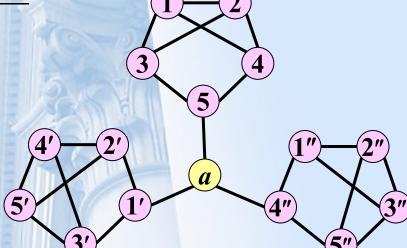


$$\ell_1 = \{1, 2\} \qquad \qquad \ell_2 = \{\{1, 2, 3\}\} \ \lor$$

$$\ell_3 = \{1, \{2, 3\}\} \ \times$$

$$\ell_2 = \{\{1, 2, 3\}\}$$

Ex:



①
$$\ell = \{a, \{1, 2, 3, 4, 5\}, \{1', 2', 3', 4', 5'\}, \{1'', 2'', 3'', 4'', 5''\}\}$$

② value(
$$\ell$$
) = 1 + 3 × (5 – 1) / 2
= 7

3.3 Odd-Set Cover

- Weak Duality Inequality: $\max_{M} |M| \le \min_{\ell} \text{ value } (\ell)$.
- Exercise 2 (10/17):

 Prove Weak Duality Inequality: $\max_{M} |M| \le \min_{\ell} \text{ value } |\ell|$.
- Exercise 3 (10/17):

 Use strong duality equality (for matching in general graph) $\max_{M} |M| = \min_{\ell} \text{ value } |\ell| \text{ to prove Tutte theorem.}$

分組

- A(奇立), B(國城), C(聿辰), D(俊傑), E(翊豪), F(昀卲), G(文廷), H(烜嘉), I(安惠)
- · 第一次: AB, CE, DH, GI, F
- · 第二次: AC, BE, DF, GH, I
- 第三次: AI, BC, DE, FG, H