‘ ' Chapter 5

Matchlngs and Independent Sets
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)) 5.1 Matchings

« Def: G: nonempty and loopless graph
— M= ¢c E(G) is called a matching in G iff V e, e,, € M, e,, e, are not adjacent
In G.
— VeeM,ife=(xY), X,y are said to be matched under M.
— VxeV(G),ifdee Ms.t e=(xY), then x is M-saturated, or say M saturates X;
otherwise, X Is M-unsaturated.
— A matching M is perfect If it saturates every vertices of G.

— M is maximum if ¥V matching M’ in G, [M| > [M’|

Note: Only discuss undirected graph.

ex: (a) (b)

Nd R
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5.1 Matchings

« Theorem 5.1: (Hall’s theorem) Let G = (X, Y, E) be a bipartite graph. Then
G contains a matching M that [M| = |X| < [S| £ [Ng(S)| V S X.
Proof. (1/2)
(=) Let M ={(x;, ¥i)| X; € X, y; € Y} be a matching of G which saturates
every x; € X = all y; are distinct
C.V S X Ng(S)2{yil V x € S}
=V Sc X, N(S)| 2 [8]
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| /’ 5.1 Matchings

« Theorem 5.1: (Hall’s theorem) Let G = (X, Y, E) be a bipartite graph. Then
G contains a matching M that [M| = |X| < [S| £ [Ng(S)| V S X.
Proof. (2/2)
(<) Suppose M is a maximum matching in G.
Construct a digraph D: V(D) = V(G) u {Xx, vy}
E(D) = {(x, x)| X; € X} U {(x;, ): % € X, yj € Y, xy; € EG)}U{(y; )l y; € Y}
¢o(X,y) = |[MJ. Let T be a minimum (X, y)-separating set of D.
By Menger’s theorem, |M| = {5(X, y) = x5(X y) = |T|
LetT,=TnX, T,=TNY.
= E;(X\T, Y\T,) = ¢
= N;*(X\T) < T,
= [M[ = [T] = [Ty| + [Ty
2 [Tq| + [Np"(X\Ty)]
= [Tyl + [Ng(X\Ty)| 2 [Ty + [X\Ty| = [X]
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)) 5.1 Matchings

« Def: F=(A, A, ..., A) Is a family of sets. An SDR of F is a sequence (a,, a,,
..., &) of distinct elements, such that a, e A, V 1 <i<n. (SDR /& System of
Distinct Representires )

« P. Hall’s Theorem:
F=(A, A, ....,A)hasan SDR < |uU
Proof. (1/3) (%)
(=) Suppose (a, ..., a,) isan SDR of F,
thenV I c {1, 2,...,n}: Ui, Al = |y {a} = [l

Azl VIc{l1,2,...,nh(s)

iel

iel
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) 5.1 Matchings

y/4

izt P. Hall’s Theorem:
F=(A,A,....,A) hasan SDR < |u;
Proof. (2/3)
(<) We may assume that F is a minimal family s.t. Hall’s
condition(«) holds.
claim: |A|=1,Vi=1,2,...,n.
(Then A, = {a;} and (a,, ..., a,) Is the desired SDR)
Assume 3 |Aj| > 2, say |A;| > 2, choose X #Yy In A,.
Consider F, = (A= {X}, A,, ..., A,),
Fy= (A -y}, Ay ooss A).

A=l VIc (1,2, ..., n}(#)

el
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) 5.1 Matchings

/4

« P. Hall’s Theorem:
F=(A, A, ...,A)hasan SDR & |,
Proof. (3/3)

a Al VIic{l,2,...,n}(s)
" Fisminimal, .. F,, F, does not satisfy ().
e.31,Jc{2,3,...,n}s.t. C= (U, A) U (A —{x}),

D = (UicsA) Y (A —{y})

— |C|<|l|+1,D|<|J|+1=IC|<|I],|D|<|J].

(Vi A) N (UjeJ Aj) 2 Vicins A
CuUD =ViquiumAi
[+ 9] 2|C| +|D[=|C D[ +|Cu D
>IN J+]lTudu {1}
=+ ]+ 1 >«
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)) 5.1 Matchings

Algorithm: Maximum Matching Algorithm for G = (X, Y, E)

M« g;

(1.0) Given label “¢” to all M-unsaturated vertex in X;
(1.1) If 3 no unscanned labels then STOP,

otherwise find a vertex i with unscanned label;

If 1 € X then goto (1.2), otherwise goto (1.3);
(1.2) Scan i € X by: V edge ij € E with j has no label,

label j by “i”’; Goto (1.1);
(1.3) Scan i €Y by: if i is exposed then goto (2),

otherwise identify the unique ij € M, label j by “1”’; Goto (1.1);
(2) Find P: @~-O—O ()~ )—D; M« M & P;

Remove all labels; Goto (1.0);

Time-Complexity for Max. Matching Algorithm for bipartite graph: O(|V| -

— 3
O(|V| ) (c) Spring 2016 Justie Su-Tzu Juan
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) 5.1 Matchings

: C is a vertex-covering of G = (V, E)
If Cc Vandevery edge xy € E eitherx e Cory € C.

« Thm: (Weak Duality Inequality, w.d.i.)
max [M| < min |C]|
Proof. (1/2)
V¥ matching M; V vertex cover C;
Define f: M — C by f(xy) =| x, if x € C,
{y, 0.W..
@ well-define:
If x ¢ C then C is vertex cover.
. by definition,y e C. (ow.xy e E,x g Candy ¢ C)
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| /’ 5.1 Matchings

"Thm: (Weak Duality Inequality, w.d.i.)
max [M| < min |C]|
Proof. (2/2)
@ 1-1:
If f(xy) = f(x'y"), but xy # X'y’ in M,
then 3 two different edges in M have a common end vertex.
—<« to M is a matching

s fis 1-1.
Hence |M| <|C|, .. max|M| < min|C|.
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) 5.1 Matchings

V7

“<justify Max. Matching Algorithm>

Assume M” is the final output M, and L is the set of all labeled vertices at final
Iteration.

LetC"=(X-L)u(YnL")
claim ®: M”is a matching.
claim @: C” is a vertex cover.
claim ®@: |C*| < |M7|
Then |C7| < M| £ max|M| £ min|C| <L |C7|,
~oall "< are "="
= @' M" is a max matching.
@' C” is a min vertex cover.
®'" max,,|M| = min;|C|.
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) 5.1 Matchings

¥

roof of claim. (1/2) (¥%)
® M” is a matching by (0) (2)
@VxyeE xeX yeY.
Supposex ¢ C*,y ¢ C”
= X € L, y ¢ L when we scan the labeled vertex x,
we MUST labeled y in (1.2).
= C” is a vertex cover.
® VxeC NnX=X-L=3e e M incident to x by (1.0).
* VyeC'NnY=YNnL=3e e M incidenttoy by (1.3).
[". Bk —XKiteration, . R&7E(1.1) ~ (1.3)i, A& EI(2)]
Define f: C"—> M by f(x) = the edge in M™ incident to x.

(c) Spring 2016 Justie Su-Tzu Juan 13



| /’ 5.1 Matchings

“Proof of claim. (2/2)
Define f: C*— M™ by f(x) = the edge in M incident to x.
(a) well-define:
M* is a matching Fz(¥%), 3! edge incident to x.
(b) 1-1:
Suppose f(x) = f(y) = e,
lLe.e=xywithxe X,y eY
when we scan y, we MUST label x by “y”

in (1.3) otherwise.

= |C7| < M7
Then @', @', @' holds.

(c) Spring 2016 Justie Su-Tzu Juan
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? 5.1 Matchings

 Corollary5.1.1: G=(X, Y, E) is a bipartite graph.
G has a perfect matching < |X| = |Y|and |S| < |Ng(S)| VS Xor Y.

Corollary 5.1.2: If G is a k-regular bipartite graph with k > 0, then G has a perfect
matching.

Proof.
Let G = (X, Y, E) be a k-regular bipartite graph.
@ . kX[ =K|Y|=[E|. .. |X|=]Y]
@ LetSc X, letE;, ={xy|x € Sand xy € E}
let E, = {Xy|y € N4(S) and xy e E}
= KIS = [E4| < [E;| = kINg(S)]
= [S| <[Ng(S)|
.. By ©® @ and Hall’s theorem, M is a perfect matching in G.
(Corollary 5.1.1)
(c) Spring 2016 Justie Su-Tzu Juan 15
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5.1 Matchings

« Corollary 5.1.3: Let G be an equally bipartite simple graph of order 2n.
AG) 2 n/2 = G has a perfect matching.

Proof.
Let G = (X, Y, E) be an equally bipartite simple graph.
Suppose 3 S c X s.t. |S| > |[Ng(S)]
X =Y L YANG(S) = @
“* Gissimple .. |S]|>|Ng(S)| = AG) =n/2
Let u € Y\Ng(S), then Ng(u) < X\S
= JG) <dg(u) = Ng(W| L X[ =S| <n/2 >«
SV S X S| L ING(S)
By Hall’s theorem, and |X| = |Y| .. G has a perfect matching.

(c) Spring 2016 Justie Su-Tzu Juan
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) 5.1 Matchings

/4

. Def:

— A component of a graph G is odd or even iff it has an odd or even number of
vertices.

— Denote by o(G) the number of odd components of G.

« Theorem 5.2: (Tutte’s theorem) A graph G has a perfect matching
< 0(G-95)<L|S|,VScV(G)

o(G=-5)=3>1=|3]
.". G having no perfect matching.
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5.1 Matchings

« Corollary 5.2.1: Every k-regular (k — 1)-edge connected graph of even order has a
perfect matching V k> 1.

Proof. (1/2) (v2)
Let G be a k-regular (k — 1)-dege connected graph of even order.
If k =1, the result holds clearly.
Suppose k=2, let Sc V(G) and S # V(G)
1.1fS=¢, "." Gisevenorder,.. 0o(G-S)=0<0=|[S|.
2.1fS# ¢ let G, G,, ..., G, be all odd components of G — S, and
let m; = |[(V(G;), S)|, vi = [V(G))|.
CAG)zk-1, . .m=2k-1Vi=1,2,...,n
If3i(1<i<n)st.m=k-1,then
&G) =(kv,—k+1)/2=Kk(v;—=1)/2+1/12 ¢ Z >«
>m2kVi=1,2,...,n
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:‘ 5.1 Matchings

« Corollary 5.2.1: Every k-regular (k — 1)-edge connected graph of even order has a
perfect matching V k> 1.

Proof. (2/2)
Suppose k> 2, let Sc V(G) and S # V(G)
2.1fS# ¢, let G, G,, ..., G, be all odd components of G — S, and
let m; = [(V(G)), s>|, vi = V(G|
=>m2kVi=1,2,.
= 0(G - S)—n_ kZm Zd (u)=19).

By Tutte’s theorem .". G has a perfect matching.

« Corollary 5.2.2: Every 2-edge connected and 3-regular graph has a perfect
matching.

« Note: Hall’s theorem < Menger’s theorem <> Tutte’s theorem < Konig’s theorem
(c) Spring 2016 Justie Su-Tzu Juan 19



« Def: G: aloopless graph.
@ K# ¢ V(G) is a (vertex-) covering of G if Ve € E(G), 3 x € Ks.t.
X Is an end-vertex of e.
@ A covering K is minimum if |[K| £ |[K’| V¥ any covering K’ of G.
® A covering K is minimal if K\{x} is not a covering of G, V x € K.
@ The covering number of G, A(G) = {x| x € K, K is a minimum covering}|
® The matching number of G, a'(G) = |{e| e € M, M is a maximum matching}|

Il B,

mlnlmal covering & minimum covering
@ BAK)=n-1 - a'(K.)=Ln/2]
AC.)=[ni2] . a'(C.)=Ln/2]
BK, ) =min{m, n}; a'(K,,) = min{m, n}
(c) Spring 2016 Justie Su-Tzu Juan 20



5.1 Matchings

Remark: V loopless graph G, a’(G) < A(G).

Theorem 5.3: (Konig’s theorem) V bipartite graph G, a'(G) = p(G).
Proof. (v%)
By remark, we need to only prove a'(G) > S(G).
Let {X, Y} be a bipartition of G, K is a minimum covering of G.
LetS=KnNnX, T=KNY,S'=X\S, T'"=Y\T
By definition of S, [S', T '] = ¢.
Consider H=G[SU T'], "." Kisminimum .. VR c S, |R| £ |N4(R)|
= By Hall’s theorem, H has a matching M, saturating S.
Similarly, G[S’ U T] has a matching M,, saturating T.
= M, U M, is a matching of G and M; " M, = @.
"o BG) = K| = [S| +[T] = [My| + M| = [M; U M,| < a'(G)

(c) Spring 2016 Justie Su-Tzu Juan

21




|

’ 5.1 Matchings

Theorem 5.3: (Konig’s theorem) V bipartite graph G, a'(G) = A(G).

« Corollary 5.3: Let G be an equally bipartite simple graph of order 2n,
e>(k-1)nfork21= a'(G) = f(G) 2 k.

Proof.
By Konig’s theorem, need to only prove £(G) > k.
"." G issimple and equally bipartite, .". ¥V x € V(G), dg(X) < n.
Suppose B(G) <k —-1,then (k—-1) - n < &G)
<BG)-A
<BG)-n
<(k=1)-n >«
. PG) 2 k.
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”)) 5.1 Matchings

Corollary 5.1.1: G = (X, Y, E) is a bipartite graph.
G has a perfect matching < |X| = |Y| and |S| < |[Ng(S)| VS Xor Y.

« Example5.1.1: It is impossible, using 1 x 2 rectangles, to exactly cover an 4 x 4
square from which two opposite 1 x 1 corner squares have been removed.

Sol.
Construct a simple graph G as: I_(._
4 5 6:= 7;
& ul

The problem can be reduced to proving that G has no perfect matching.

= G is a bipartite graph with X ={1, 3, 4,6, 9, 11, 12, 14}, Y = {2, 5, 7, 8, 10, 13}.
cand |X|=8>6=|Y|,

.". G has no perfect matching by Corollary 5.1.1.
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’ 5.1 Matchings

Example 5.1.2: skip

#* itHall's Thm, Tutte's Thm 2 Koénig's Thmehg &#P - %3 -

Note: Exercise 5.1.4, 5.1.5 are Hall’s Thm 7% 3}

(c) Spring 2016 Justie Su-Tzu Juan
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:’ 5.2 Independent Sets

« Def: G: aloopless graph.
— I# @< V(G) is called an independent set of G iIff V X,y € I, xy ¢ E(G)
— |l is called maximum if V independent set I’ of G, |I| > |I'|
— lis called maximal if V x € V(G)\I, | U {x} is not an independent set.
— The independent number of G, a(G) = {X| X € I, I is a maximum indep. set}|

» Note: Only discuss simple undirected graph.

- o

N . .
maximal |n((e'pendent set'ﬁammum Independent set
(b) a(Kn) = 11 a(CZn) =n= a(C2n+1) (Or a(Cn) = |—n/2J)
a(K,, n) = max{m, n}
(c) Spring 2016 Justie Su-Tzu Juan 26



:’ 5.2 Independent Sets

Theorem 5.4: | c V(G) is an independent set of a loopless graph G <

V(G)\I is a covering of G.
Proof.
| i1s an independent set of G
S VVXYyel xyegE(G)
SVXxyeEG),xegloryegl
<&V xy e E(G), xe V(G\lory e V(G
< V(G)\I is a covering of G.

Corollary 5.4.1: 1 c V(G) is a maximal (maximum) independent set of G <

V(G)\I is a minimal (minimum) covering of G.

Corollary 5.4.2: V loopless graph G, a(G) + B(G) = YG)

(c) Spring 2016 Justie Su-Tzu Juan
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) 5.2 Independent Sets

« Def:
— L c E(G) is called an edge-covering of G iff
V x € V(G),d e € Ls.t. xisan end-vertex of e.
— The edge-covering number of G, #'(G) = {e| e € L, L is a minimum edge-
covering of G}

« Note: G has an edge-covering < G contains no isolated vertex

« ex: B'(K)=In/2],
B'(C,) =[n/2]
B' (K, ) = max{m, n}.
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5.2 Independent Sets

Theorem 5.5: V graph G with &G) >0, a'(G) + B'(G) = LG).
Proof. (1/2) (v2)
@ Let M be a maximum matching of G and
U be the set of M-unsaturated vertices of G.
T &G) >0,
J.VxeU, e s.t.xincidentto e,
LetE'={e |V X € U} M
= M U E' is an edge-covering of G.
S.a't ' <M+ MU E/|
—a'+[a't(v-2a')]
=y

(c) Spring 2016 Justie Su-Tzu Juan
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5.2 Independent Sets

Theorem 5.5: V graph G with &G) >0, a'(G) + B'(G) = LG).

Proof. (2/2)
@ Let L be a minimum edge-covering of G,
Let H = G[L],
Let M be a maximum matching of H and
Let U be the set of M-unsaturated vertices in H.
"." H[U] has no edge,
oL = M) = LM
> |U|
= v-2|M|
>a'+tp'2|L|+|M|>v ‘/\.
By ® @, 2'(G) + 8'(G) = ©G).

(c) Spring 2016 Justie Su-Tzu Juan
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| ) 5.2 Independent Sets

} Theorem 1.9: G: a simple undirected graph of v > 3.
dg(x) +dg(y)2v, V X,y € V(G), Xy ¢ E(G) = G is hamiltonian

« Corollary 5.5: V bipartite graph with §G) >0, a(G) = B'(G)

* Note: If G is nonempty, a'(G) = a(L(G))

« Theorem 5.6: G: simple undirected graph
V X,y € V(G), xy ¢ E(G), d5(x) + dg(y) = v= a(G) < x(G)

« Corollary 5.6: G: simple graph with &G) > V2 = a(G) < x(G)

« Theorem 5.7: G: simple undirected graph of order v= 3.
a(G) < x(G) = G is hamiltonian.

« Note: Theorem 5.6 + 5.7 = Theorem 1.9
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) 5.2 Independent Sets
)

o Def:
— S# ¢ V(G) Is called a dominating set of G <
vV XxeV(G)\S, Ty e Ss.t. xy e E(G).
— Siscalled to be minimal if VS’ < S, S’ isnota dominating set.
— The domination number of G, ¥(G) = min {|S|: S is a dominating set of G}

« Note: @ S is a minimal dominating set of G = V(G)\S is a dominating set (&G) > 0)
@ y(G) < (1/2)AG)
® An independent set S of G is a dominating set of G &
S is a maximal independent set.
@ a(G) 2 ¥ (G)
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5.2 Independent Sets

WRE KR

an ind. set and dom. set an ind. set but not dom. set not minimal dom. set
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