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Chapter 5
Matchings and Independent Sets

§ 5.1 Matchings
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5.1 Matchings

• Def: G: nonempty and loopless graph

– M    E(G) is called a matching in G iff  e1, e2,  M, e1, e2 are not adjacent 

in G.

–  e  M, if e = (x, y), x, y are said to be matched under M.

–  x  V(G), if  e  M s.t. e = (x, y), then x is M-saturated, or say M saturates x; 

otherwise, x is M-unsaturated.

– A matching M is perfect if it saturates every vertices of G.

– M is maximum if  matching M in G, |M|  |M|

• Note: Only discuss undirected graph.

• ex: (a)                                           (b)
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5.1 Matchings

• Theorem 5.1: (Hall’s theorem) Let G = (X, Y, E) be a bipartite graph. Then 

G contains a matching M that |M| = |X|  |S|  |NG(S)|  S  X.

Proof. (1/2)

() Let M = {(xi, yi)| xi  X, yi  Y} be a matching of G which saturates 

every xi  X  all yi are distinct 

∴  S  X, NG(S)  {yi|  xi  S}

 S  X, |NG(S)|  |S|
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5.1 Matchings

• Theorem 5.1: (Hall’s theorem) Let G = (X, Y, E) be a bipartite graph. Then 

G contains a matching M that |M| = |X|  |S|  |NG(S)|  S  X.

Proof. (2/2)

() Suppose M is a maximum matching in G.

Construct a digraph D: V(D) = V(G)  {x, y}

E(D) = {(x, xi)| xi  X}  {(xi, yj): xi  X, yj  Y, xiyj  E(G)}  {(yj, y)| yj  Y}

D(x, y) = |M|. Let T be a minimum (x, y)-separating set of D.

By Menger’s theorem, |M| = D(x, y) = D(x y) = |T|

Let T1 = T  X, T2 = T  Y.

 ED(X\T1, Y\T2) = 

 ND
+(X\T1)  T2

 |M| = |T| = |T1| + |T2|

 |T1| + |ND
+(X\T1)|

= |T1| + |NG(X\T1)|  |T1| + |X\T1| = |X|         

x
y

X Y

T1

T2
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5.1 Matchings

• Def: F = (A1, A2, …, An) is a family of sets. An SDR of F is a sequence (a1, a2,

…, an) of distinct elements, such that ai Ai,  1  i  n. ( SDR 是 System of

Distinct Representires )

• P. Hall’s Theorem: 

F = (A1, A2, …, An) has an SDR  |iI Ai|  |I|, I  {1, 2, …, n}.()

Proof. (1/3) (略)

() Suppose (a1, …, an) is an SDR of F, 

then  I  {1, 2, …, n}: |iI Ai|  |iI {ai}| = |I|. 
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5.1 Matchings

• P. Hall’s Theorem: 

F = (A1, A2, …, An) has an SDR  |iI Ai|  |I|, I  {1, 2, …, n}.()

Proof. (2/3)

() We may assume that F is a minimal family s.t. Hall’s 

condition() holds.

claim: |Ai| = 1,  i = 1, 2, …, n.

(Then Ai = {ai} and (a1, …, an) is the desired SDR)

Assume  |Aj|  2, say |A1|  2, choose x  y in A1.

Consider Fx = (A1 – {x}, A2, …, An),

Fy = (A1 – {y} , A2, …, An).
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5.1 Matchings

• P. Hall’s Theorem: 

F = (A1, A2, …, An) has an SDR  |iI Ai|  |I|, I  {1, 2, …, n}.()

Proof. (3/3)

∵ F is minimal,  Fx, Fy does not satisfy ().

i.e.  I, J  {2, 3, …, n} s.t. C = (iI Ai)  (A1 – {x}), 

D = (iJAi)  (A1  {y}) 

 C < I + 1, D < J + 1  C  I, D  J.

(iI Ai)  (jJ Aj)  iIJ Ai,

C  D = iIJ{1} Ai, 

I + J  C + D = C  D + C  D

 I  J + I  J  {1}| 

= I + J + 1.  
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• Algorithm: Maximum Matching Algorithm for G = (X, Y, E)

(0) M   ;

(1.0) Given label “” to all M-unsaturated vertex in X;

(1.1) If  no unscanned labels then STOP,

otherwise find a vertex i with unscanned label; 

If i  X then goto (1.2), otherwise goto (1.3);

(1.2) Scan i  X by:  edge ij  E with j has no label, 

label j by “i”; Goto (1.1);

(1.3) Scan i Y by: if i is exposed then goto (2), 

otherwise identify the unique ij  M, label j by “i”; Goto (1.1);

(2) Find P: ; M  M  P;

Remove all labels; Goto (1.0);

• Time-Complexity for Max. Matching Algorithm for bipartite graph: O(V  E) 

= O(V3).

5.1 Matchings

i* j2 j1 i
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5.1 Matchings

• Ex:
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5.1 Matchings

• Def: C is a vertex-covering of G = (V, E) 

if C  V and every edge xy  E either x  C or y  C.

• Thm: (Weak Duality Inequality, w.d.i.)

max M  min C

Proof. (1/2)

 matching M;  vertex cover C;

Define f: M  C by f(xy) =   x, if x  C,

y, o.w..

 well-define: 

If x  C then C is vertex cover.

 by definition, y  C. (o.w. xy  E, x  C and y  C)
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5.1 Matchings

• Thm: (Weak Duality Inequality, w.d.i.)

max M  min C

Proof. (2/2)

 1-1:

If f(xy) = f(xy), but xy  xy in M,

then  two different edges in M have a common end vertex. 

 to M is a matching

 f is 1-1.

Hence M  C, maxM  minC.
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5.1 Matchings

• <justify Max. Matching Algorithm>

Assume M* is the final output M, and L* is the set of all labeled vertices at final 

iteration.

Let C* = (X – L*)  (Y  L*)

claim : M* is a matching.

claim : C* is a vertex cover.

claim : C*  M*

Then C*  M*  maxM  minC  C*,

 all  are =

 M* is a max matching.

C* is a min vertex cover.

maxM M = minC C.
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5.1 Matchings

• Proof of claim. (1/2) (略)

M* is a matching by (0) and (2)

  xy  E, x  X, y  Y.

Suppose x  C*, y  C*

 x  L, y  L when we scan the labeled vertex x, 

we MUST labeled y in (1.2).

 C* is a vertex cover.

  x  C*  X = X – L   e  M* incident to x by (1.0).

 y  C*  Y = Y  L   e  M* incident to y by (1.3).

[∵是最後一次iteration, 只會在(1.1) ~ (1.3)跑, 不會到(2)]

Define f: C* M* by f(x) = the edge in M* incident to x.
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5.1 Matchings

• Proof of claim. (2/2)

Define f: C* M* by f(x) = the edge in M* incident to x.

(a) well-define:

M* is a matching 及(★), ! edge incident to x.

(b) 1-1: 

Suppose f(x) = f(y) = e, 

i.e. e = xy with x  X, y  Y 

when we scan y, we MUST label x by “y” 

 in (1.3) otherwise.

 C*  M*

Then ,,  holds.
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5.1 Matchings

• Corollary 5.1.1: G = (X, Y, E) is a bipartite graph.

G has a perfect matching  |X| = |Y| and |S|  |NG(S)|  S  X or Y.

• Corollary 5.1.2: If G is a k-regular bipartite graph with k > 0, then G has a perfect 

matching.

Proof.

Let G = (X, Y, E) be a k-regular bipartite graph.

∵ k|X| = k|Y| = |E|.  ∴ |X| = |Y|

 Let S  X, let E1 = {xy| x  S and xy  E}

let E2 = {xy| y  NG(S) and xy  E}

 k|S| = |E1|  |E2| = k|NG(S)|

 |S|  |NG(S)|

∴ By  and Hall’s theorem, M is a perfect matching in G.

(Corollary 5.1.1)

 E1  E2
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5.1 Matchings

• Corollary 5.1.3: Let G be an equally bipartite simple graph of order 2n. 

(G)  n/2  G has a perfect matching.

Proof.

Let G = (X, Y, E) be an equally bipartite simple graph.

Suppose  S  X s.t. |S| > |NG(S)|

∵ |X| = |Y|   ∴ Y\NG(S)  

∵ G is simple   ∴ |S| > |NG(S)|  (G)  n/2

Let u  Y\NG(S), then NG(u)  X\S

 (G)  dG(u) = |NG(u)|  |X|  |S| < n/2   

∴  S  X, |S|  |NG(S)|

By Hall’s theorem, and |X| = |Y|   ∴ G has a perfect matching.
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5.1 Matchings

• Def: 

– A component of a graph G is odd or even iff it has an odd or even number of 

vertices.

– Denote by o(G) the number of odd components of G.

• Theorem 5.2: (Tutte’s theorem) A graph G has a perfect matching 

 o(G  S)  |S|,  S  V(G)

• ex:                                  

∵ o(G  S) = 3 > 1 = |S|

∴ G having no perfect matching.
S
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5.1 Matchings

• Corollary 5.2.1: Every k-regular (k  1)-edge connected graph of even order has a 

perfect matching  k  1.

Proof. (1/2) (略)

Let G be a k-regular (k  1)-dege connected graph of even order. 

If k = 1, the result holds clearly.

Suppose k  2, let S  V(G) and S  V(G) 

1. If S = , ∵ G is even order, ∴ o(G  S) = 0  0 = |S|.

2. If S  , let G1, G2, …, Gn be all odd components of G  S, and

let mi = |(V(Gi), S)|, vi = |V(Gi)|.

∵ (G)  k – 1, ∴ mi  k – 1  i = 1, 2, …, n

If  i (1  i  n) s.t. mi = k – 1, then 

(Gi) = (kvi – k + 1)/2 = k(vi – 1)/2 + 1/2  Z 

 mi  k  i = 1, 2, …, n
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5.1 Matchings

• Corollary 5.2.1: Every k-regular (k  1)-edge connected graph of even order has a 

perfect matching  k  1.

Proof. (2/2)

Suppose k  2, let S  V(G) and S  V(G) 

2. If S  , let G1, G2, …, Gn be all odd components of G  S, and

let mi = |(V(Gi), S)|, vi = |V(Gi)|.

 mi  k  i = 1, 2, …, n

 o(G  S) = n  = |S|.

By Tutte’s theorem ∴ G has a perfect matching.

• Corollary 5.2.2: Every 2-edge connected and 3-regular graph has a perfect 

matching.

• Note: Hall’s theorem  Menger’s theorem  Tutte’s theorem  König’s theorem





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5.1 Matchings

• Def: G: a loopless graph.

 K    V(G) is a (vertex-) covering of G if e  E(G),  x  K s.t.

x is an end-vertex of e.

A covering K is minimum if |K|  |K|  any covering K of G.

A covering K is minimal if K\{x} is not a covering of G,  x  K.

 The covering number of G, (G) = |{x| x  K, K is a minimum covering}|

 The matching number of G,  (G) = |{e| e  M, M is a maximum matching}| 

• ex: 

 (Kn) = n  1             ;  (Kn) = n/2

(Cn) = n/2 ;  (Cn) = n/2

(Km,n) = min{m, n};  (Km,n) = min{m, n}

minimal covering & minimum covering
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5.1 Matchings

• Remark:  loopless graph G,  (G)  (G).

• Theorem 5.3: (König’s theorem)  bipartite graph G,  (G) = (G).

Proof. (略)

By remark, we need to only prove  (G)  (G).

Let {X, Y} be a bipartition of G, K is a minimum covering of G.

Let S = K  X, T = K  Y, S  = X\S, T  = Y\T

By definition of S, [S , T ] = .

Consider H = G[S  T ], ∵ K is minimum ∴  R  S, |R|  |NH(R)|

 By Hall’s theorem, H has a matching M1 saturating S.

Similarly, G[S   T] has a matching M2 saturating T.

 M1  M2 is a matching of G and M1  M2 = .

∴ (G) = |K| = |S| + |T| = |M1| + |M2| = |M1  M2|   (G)

S

S 

T 

T

X Y

R NH(R)
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5.1 Matchings

• Corollary 5.3: Let G be an equally bipartite simple graph of order 2n,

 > (k  1)n for k  1   (G) = (G)  k.

Proof. 

By König’s theorem, need to only prove (G)  k.

∵ G is simple and equally bipartite, ∴  x  V(G), dG(x)  n.

Suppose (G)  k  1, then (k  1)  n < (G) 

 (G)  

 (G)  n

 (k  1)  n 

∴ (G)  k.

Theorem 5.3: (König’s theorem)  bipartite graph G,  (G) = (G).
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5.1 Matchings

• Example 5.1.1: It is impossible, using 1  2 rectangles, to exactly cover an 4  4 

square from which two opposite 1  1 corner squares have been removed.

Sol. 

Construct a simple graph G as: 

The problem can be reduced to proving that G has no perfect matching.

 G is a bipartite graph with X = {1, 3, 4, 6, 9, 11, 12, 14}, Y = {2, 5, 7, 8, 10, 13}.

∵ and |X| = 8 > 6 = |Y|,

∴ G has no perfect matching by Corollary 5.1.1.

•Corollary 5.1.1: G = (X, Y, E) is a bipartite graph.

G has a perfect matching  |X| = |Y| and |S|  |NG(S)|  S  X or Y.

1 2            3

4              5           6            7

8             9          10          11

12           13        14
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5.1 Matchings

• Example 5.1.2: skip

• 課本附Hall's Thm, Tutte's Thm及 König's Thm的直接證明，請參考。

• Note: Exercise 5.1.4, 5.1.5 are Hall’s Thm的變形

• Exercise: 5.1.2(a)

• 加: 5.1.2(e); 5.1.3; 5.1.6; 5.1.11(c)
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Chapter 5
Matchings and Independent Sets

§ 5.2 Independent Sets
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5.2 Independent Sets

• Def: G: a loopless graph.

– I    V(G) is called an independent set of G iff  x, y  I, xy  E(G)

– I is called maximum if  independent set I of G, |I|  |I|

– I is called maximal if  x  V(G)\I, I  {x} is not an independent set.

– The independent number of G, (G)  |{x| x  I, I is a maximum indep. set}|

• Note: Only discuss simple undirected graph.

• ex: (a)

maximal independent set & maximum independent set

(b) (Kn) = 1, (C2n) = n = (C2n+1)   (or (Cn) = n/2)

(Km,n) = max{m, n}
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5.2 Independent Sets

• Theorem 5.4: I  V(G) is an independent set of a loopless graph G 

V(G)\I is a covering of G.

Proof. 

I is an independent set of G

 x, y  I, xy  E(G)

 xy  E(G), x  I or y  I

 xy  E(G), x  V(G)\I or y  V(G)\I

 V(G)\I is a covering of G.

• Corollary 5.4.1: I  V(G) is a maximal (maximum) independent set of G 

V(G)\I is a minimal (minimum) covering of G.

• Corollary 5.4.2:  loopless graph G, (G) + (G) = (G)
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5.2 Independent Sets

• Def:

– L  E(G) is called an edge-covering of G iff

 x  V(G),  e  L s.t. x is an end-vertex of e.

– The edge-covering number of G,  (G) = |{e| e  L, L is a minimum edge-

covering of G}|

• Note: G has an edge-covering  G contains no isolated vertex

• ex:  (Kn) = n/2, 

 (Cn) = n/2, 

 (Km,n) = max{m, n}.
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5.2 Independent Sets

• Theorem 5.5:  graph G with (G) > 0,  (G) +  (G) = (G).

Proof. (1/2) (略)

 Let M be a maximum matching of G and 

U be the set of M-unsaturated vertices of G.

∵ (G) > 0, 

∴  x  U,  ex s.t. x incident to ex

Let E = {ex|  x  U}

 M  E is an edge-covering of G.

∴  +    |M| + |M  E| 

=   + [  + (  2 )]

= 

M

E U
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5.2 Independent Sets

• Theorem 5.5:  graph G with (G) > 0,  (G) +  (G) = (G).

Proof. (2/2)

 Let L be a minimum edge-covering of G, 

Let H = G[L],

Let M be a maximum matching of H and

Let U be the set of M-unsaturated vertices in H.

∵ H[U] has no edge, 

∴ |L|  |M| = |L\M| 

 |U| 

=   2|M|

   +    |L| + |M|  

By ,  (G) +  (G) = (G).

L
M

U
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5.2 Independent Sets

• Corollary 5.5:  bipartite graph with (G) > 0, (G) =  (G)

• Note: If G is nonempty,  (G) = (L(G))

• Theorem 5.6: G: simple undirected graph

 x, y  V(G), xy  E(G), dG(x) + dG(y)    (G)  (G)

• Corollary 5.6: G: simple graph with (G)  /2  (G)  (G)

• Theorem 5.7: G: simple undirected graph of order   3.

(G)  (G)  G is hamiltonian.

• Note: Theorem 5.6 + 5.7  Theorem 1.9

Theorem 1.9: G: a simple undirected graph of   3. 

dG(x) + dG(y)   ,  x, y  V(G), xy  E(G)  G is hamiltonian
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5.2 Independent Sets

• Def:

– S    V(G) is called a dominating set of G 

 x  V(G)\S,  y  S s.t. xy  E(G).

– S is called to be minimal if  S   S, S  is not a  dominating set.

– The domination number of G,  (G)  min {|S|: S is a dominating set of G}

• Note:  S is a minimal dominating set of G  V(G)\S is a dominating set ((G) > 0)

  (G)  (1/2)(G)

An independent set S of G is a dominating set of G 

S is a maximal independent set.

 (G)   (G)
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5.2 Independent Sets

• ex: 

• exercise: 5.2.1

• 加: 5.2.5, 5.2.6, 5.2.7

an ind. set and dom. set an ind. set but not dom. set not minimal dom. set
not dom. set


