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):) 2.2 Vector Spaces of Graphs

« Def: O(vertex-space VG) = the vector space of all functions from V(G) into R.
{edge-space £(G) = the vector space of all functions from E(G) into R.
@ (G, w) is called a weighted graph: G: a loopless graph, w € &G).
— w is called a weighted function and
— w(a) Is called a weight of the edge a of G
— write w(x, y) for w((x, y)) if (x,y) € E(G)
® V Bc E(G) in (G, w) write w(B) = )’ w(a)
V ScV(G), S# ¢in (G, w), write (W*(S) = W(Eg*(S));
{w—(S) = W(Eg(S)).
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' Chapter 4

- Flows and Connectivity
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) 4.1 Network Flows

A connected weighted loopless graph (G, w) with two specified vertices X, v,
called the source and the sink, respectively, is called a network (N = (G, , w)).
W.L.O.G,, a network is a simple digraph.

If w Is a nonnegative capacity function c, then the network N = (G
a capacity network, and the value c(a) is the capacity of a.

If c(a) is an integer for any a € E(G), then N is called an integral capacity
network.

< C) Is called

(c) Fall 2019, Justie Su-Tzu Juan 4



| ’ 4.1 Network Flows

/4

*  Det:

— N =(G,,, ¢) Is a capacity network. A function f: E(G) — R is called a flow in N
from x to y, in short (x, y)-flow, If it satisfies:

(4.1) 0<f(a)<c(a), V a € E(G), the capacity constraint condition
(4.2) f*(u) = (u), V u € V(G) \ {x, y}, the conservation condition

— zero flow: f(a) =0, V a € E(G)

— The value of f, val f=f+*(x) — f(x) = f=(y) — f*(y)

— An (X, y)-flow f in N is maximum ifj (x, y)-flow f' in N s.t. val f" > val f.

4 1 val f=8
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) 4.1 Network Flows

o Def:
— An (x, y)-cut in N is a set of edges of the form (S, S), where x e Sandy € S.
— The capacity of an (x, y)-cut B, cap B=c¢(B) =2 c(a)
— An (X, y)-cut B in N is minimum if 7 (x, y)-cut B inNs.t. cap B’ < cap B.

(b)

val f=8
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’ 4.1 Network Flows

¥

Theorem 4.1: (max-flow min-cut theorem) In any capacity network, the value of a
maximum flow is equal to the capacity of a minimum cut.

« Corollary 4.1: In any integral capacity network, there must be an integral
maximum flow, and its value is equal to the capacity of a minimum cut.
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Chapter 4

- Flows and Connectivity

§ 4 2 Menger’s Theorem
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)) 4.2 Menger’s Theorem

« Def: © x,y € V(G), (X, y)-paths P, P,, ..., P, in G is called
{ internally disjoint if V(P)) " V(P) ={x,y}, V1<i#j<n.
edge-disjointif E(P)) "E(P) =4, V1<i#]<n.
@ The maximum numbers of internally disjoint and edge-disjoint (X, y)-paths
In G is denoted by £;(x, y) and 75(x, y), respectively. /zeta/, /eta/

« Def: @ A;(x, y) =minimum number of edges in an (X, y)-cut in G, which is called
the local edge-connectivity of G.
@ ¢=S c V(G)\{x, y} is said to be an (x, y)-separating set in G if A (x, y)-path
iInG-S.
® x;(X, y) = minimum cardinality of an (x, y)-separating set in G, which is
called the local (vertex-)connectivity of G.

(c) Fall 2019, Justie Su-Tzu Juan 9



.\

) 4.2 Menger’s Theorem

/i

.- R@Lark: @ nG(X! y) < A’G(X’ y)’ v X,y e V(G)
® gG(X1 y) < KG(X’ y)’ v X, y € V(G)

ex: (@) g (b) ¢ (C)
X

&>
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) 4.2 Menger’s Theorem

) «Corollary 4.1: In any integral capacity network, there must be an integral |

maximum flow, and its value is equal to the capacity of a minimum cut.

- Theorem 4.2: Let X, y be two distinct vertices in a graph G. Then ng(X, y) = A5(X, ).
Proof.

Consider a capacity network N = (G

« C)Withc(e) =1,V e € E(G).

By Corollary 4.1, 3 a max. (X, y)-integral flow f and a min. (X, y)- cut B s.t.
val f = cap B.

=As(X,y) < |B|=cap B =val f

Let H = G4, the support of f (= the subgraph of G induced by the set of edges
at which the value of f is nonzero.)

"ce)=1,VeeEG), ... f(a)=1VeeE(H).
= {dH+(x) —dy~(x) =val f =d,=(y) — d,*(y),
dy*(u) =d,~(u), Vu e V(G) \ {x, y}.
— 3 at least val f edge-disjoint (X, y)-paths in H
= (Ag(X, y) <) val f < g(X, y)
By Remark: @, n5(X, y) = A5(X, Y)

Remark: @ ns(x, y) £ A5(X, Y), V X, y € V(G).
(c) Fall 2019, Justie Su-Tzu Juan 11




| )) 4.2 Menger’s Theorem

Def: Letu € V(G), the splitof uisagraph G' = (V', E") s.t.

1.V'=V\{u}u{u,u}

2.E'={(x,y) | (X,y) e E(G)and x#uandy=#u}u {(u', u")}
VU™ y) [ (uy) € E(G)} w{x,u’) [ (x u) € E(G)}

B u V u' u"t vtV
X
W 7 wow'tozt
Theorem 4.3: (Menger’s theorem) X #y € V(G) and (X, y) ¢ E(G).
Then ¢(x, y) = x5(X, Y)
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' Chapter 4

- Flows and Connectivity
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):) 4.3 Connectivity

« Def: @ G isastrongly connected digraph, S# ¢, S < V(G) is said to be a separating
set iIf G — S Is not strongly connected.
® The (vertex-) connectivity of G,
0 , If G Is not strongly connected,;
x(G) = { v—1 ,if G contains a complete spanning subgraph;
min {|S|: S is a separating set of G}, o.w.

« Note: @ Every strongly connected digraph contains a separating set provided it
contains no complete graph as a spanning subgraph.
@ KkG)=(v-1,ifVXYyeV(G),EsXY)#d¢
{ min {x;(X, y¥): V X,y € V(G), E5(X, y) = ¢}, o.w.
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’ 4.3 Connectivity

¥

« Def: @ If aseparating set S of G, |S| = «(G), then S is called a x-separating set.
@ A graph G is said to be k-connected if &(G) > k.

« ex:OkxK)=n-1
@ x(C,) =1, If C,, is directed for n > 3.
® x(C,) =2, If C,, is undirected for n > 3.
@ All nontrivial connected undirected graphs and strongly connected digraph
are 1-connected.
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):) 4.3 Connectivity

« Def: ® B# ¢, B c E(G) is said to be a directed cut if G — B is not strongly
connected.
@ the edge-connectivity of G,
AG) ={ 0, iIf G is trivial or not strongly connected;
min {|B|: B is a directed cut of G}, o.w.

« Note: @ every nontrivial strongly connected digraph must contain a directed cut.
@ AG) =min {A5(X, ¥): V X, ¥ € V(G)}.

« Def: @ Adirected cut B of G is a A-cut if |B| = AG).
@ G is said to be k-edge-connected if A(G) > k.
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) 4.3 Connectivity

« ex:OAUK)=n-1
@ A(C,) =1, If C,, is directed for n> 3.
® A(C,) =2, If C,, is undirected for n > 3.
@ All nontrivial connected undirected graphs and strongly connected digraph
are 1-edge-connected.

«  Remark: @ If B is a directed cut of G, then3S# ¢, S« V(G), s.t. (S, S) S B.
@ recall: cut is the form [S, S]
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4.3 Connectivity

Thm 4.4: (Whitney’s inequality) For any graph G, x(G) < A(G) < &G).
Proof. (1/3)
@ If G is trivial or empty; then «(G) = A(G) = §G) = 0.
@ We need to only prove this theorem for a loopless digraph G.
W.L.O.G. say &G) = 6*(G).
(a) Let x € V(G) s.t. dg*(X) = &G).
"." Eg*(x) is a directed cut of G.
CAUG) L EST(X)| = AG).
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4.3 Connectivity

« Thm 4.4: (Whitney’s inequality) For any graph G, x(G) < A(G) < §G).
Proof. (2/3)
(b) Prove x(G) < A(G) by induction on A(G) > 0.
When A(G) =0, G is no strongly connected. .". K«{(G) =0 = A(G).
Suppose x(H) < A(H) V digraph H with A(H) < Aand 1> 0.
Now, consider a digraph G with a directed cut B s.t.
IB| = A(G) = A.
Leta=(x,y) eB,andH=G-a. Then A(H)<A1-1.
By LH., x(H) < A(H) < A-1< AG)
case 1: If 3Ky, = H, then
sodoes G.1.e. 3K 5 G
=>k(G)=v-1=kH)SAH) LA1-1<AG).
case 2: If 7 Ky € H then 3 x-separating set S in H.
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4.3 Connectivity

« Thm 4.4: (Whitney’s inequality) For any graph G, «(G) < A(G) < &G).
Proof. (3/3)
case 2: If 7 Ky € H then 3 x-separating set S in H.
case 2.1: If G — S is not strongly connected, then
kK(G) LS| = kx(H) £ A(H) < A(G).
case 2.2: If G — S is strongly connected:
case 2.2.1: If G —-S) =2, then
K(G)Sv-1=HG-9)+|S|-1=]S|+1
=k(H)+1<A(H) + 1 < AG).
case 2.2.2: If G =S) > 2, then
either S U {x} or S U {y} Is a separating set of G.
S.k(G)LIS|+1=k(H)+ 1< AH) + 1< AG).
.. kK(G) £ AHG) and the theorem following by the principle of induction.
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):) 4.3 Connectivity

ex:

G x(G) =2,
AG) =3,
5G) = 4.

Remark: V a,b,ce NwithO0O<a<b<c,32graphs G,, G, (undirected and
directed), s.t. x(G,) = x(G,) = a, A(G;) = UG,) = b, &G,) = &G,) =c.

Theorem 4.5: Let G be a graph of order at least k + 1. Then
(a) x(G) 2k < 45X, ¥) 2k, V X,y € V(G),
(b) AG) 2k ns(x, y) 2k, V X,y € V(G).
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| ‘ 4.3 Connectivity

Theorem 4.6: If «(G;) >0,Vi=1,2,...,n, then

K(G; xG, x...xG,) 2 kG + x(G,) +... + K(G,).
Furthermore, if K(G) = &G;))>0Vi=1,2,...,n, then

K(Gy X Gy x ... x G) = K(Gy) + K(Gy) + ... + (G,).
Particularly, x(Q,) = n.
Exercise: 4.1.1, 4.2.2(b)

4v:4.16,4.24,4.25,4.3.10,43.11
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‘ - Chapter 5
Matchlngs and Independent Sets
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)) 5.1 Matchings

« Def: G: nonempty and loopless graph
— M= ¢ E(G) is called a matching in G iff V e, e,, € M, e,, e, are not adjacent
In G.
— VeeM,ife=(xY), X,y are said to be matched under M.
— VxeV(G),ifde e Ms.t.e =(X,Y), then x is M-saturated, or say M saturates X;
otherwise, X iIs M-unsaturated.
— A matching M is perfect if it saturates every vertices of G.

— Mis maximum if ¥V matching M’ in G, |[M| > |M’|

Note: Only discuss undirected graph.

ex: (a) (b)

Nid R
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5.1 Matchings

Theorem 5.1: (Hall’s theorem) Let G = (X, Y, E) be a bipartite graph. Then

G contains a matching M that M| = |X| < |S| < [Ng(S)| V S < X.
Proof. (1/2)
(=) Let M = {(x;, ¥))| X; € X, y; € Y} be a matching of G which saturates
every x; € X = all y; are distinct
C.V S X, Ng(S)2{yi|l V X € S}
=V Sc X [Ng(S)[ 2[5

(c) Fall 2019, Justie Su-Tzu Juan
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| /’ 5.1 Matchings

« Theorem 5.1: (Hall’s theorem) Let G = (X, Y, E) be a bipartite graph. Then
G contains a matching M that M| = |X| < |S| < [Ng(S)| V S < X.
Proof. (2/2)
(<) Suppose M is a maximum matching in G.
Construct a digraph D: V(D) = V(G) u {x, y}
E(D) = {(x, %)l X; € X}U {0 1)1 i € X,y € Y xiy; € EG)} U {(y;, Yl y; € V)
¢o(X, y) = [M|. Let T be a minimum (X, y)-separating set of D.
By Menger’s theorem, |M| = {;(X, ¥) = xp(X Y) = [T]
LetT,=TNnX, T,=TNY.
= E;(X\T, Y\T,) = ¢
= Nx*(X\T) c T,
= [M[ = [T] = [Ty| + [Ty
2 |Ty| + [Np"(X\T)]
= [Ty + [NgQ\T )| 2 [Ty + [X\T,| = [X]
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