Chapter 2 Trees and Graphic

§ 2.2 Vector Spaces of Graphs

2.2 Vector Spaces of Graphs

- Def: (1) vertex-space $\mathcal{V}(G) \equiv$ the vector space of all functions from $V(G)$ into R. edge-space $\mathcal{E}(G) \equiv$ the vector space of all functions from $E(G)$ into R.
(2) (G, w) is called a weighted graph: G : a loopless graph, w $\in \mathcal{E}(\boldsymbol{G})$.
$-w$ is called a weighted function and
- $\mathbf{w}(a)$ is called a weight of the edge a of G
- write $\mathrm{w}(x, y)$ for $\mathrm{w}((x, y))$ if $(x, y) \in E(G)$
(3) $\forall B \subseteq E(G)$ in (G, w) write $\mathrm{w}(B)=\sum_{a \in B} \mathrm{w}(a)$ $\forall S \subseteq V(G), S \neq \phi$ in (G, \mathbf{w}), write $\left\{\begin{array}{l}\left.\begin{array}{l}a \in B^{+} \\ W^{+}(S)\end{array}\right)=\mathbf{w}\left(E_{G}{ }^{+}(S)\right) ; \\ \mathbf{w}^{-}(S)=\mathbf{w}\left(E_{G}-(S)\right) .\end{array}\right.$

Chapter 4 Flows and Connectivity

§4.1 Network Flows

4.1 Network Flows

- Def:
- A connected weighted loopless graph (G, w) with two specified vertices x, y, called the source and the sink, respectively, is called a network $\left(N=\left(G_{x y}, w\right)\right)$.
- W.L.O.G., a network is a simple digraph.
- If \mathbf{w} is a nonnegative capacity function \mathbf{c}, then the network $N=\left(G_{x y}, \mathbf{c}\right)$ is called a capacity network, and the value $c(a)$ is the capacity of a.
- If $\mathbf{c}(a)$ is an integer for any $a \in E(G)$, then N is called an integral capacity network.
- ex:

4.1 Network Flows

- Def:
$-N=\left(G_{x y}\right.$, c) is a capacity network. A function $\mathrm{f}: E(G) \rightarrow \mathrm{R}$ is called a flow in N from x to y, in short (x, y)-flow, if it satisfies:
(4.1) $0 \leq f(a) \leq \mathbf{c}(a), \forall a \in E(G)$, the capacity constraint condition
(4.2) $\mathbf{f}^{+}(u)=\mathbf{f}^{-}(u), \forall u \in V(G) \backslash\{x, y\}$, the conservation condition
- zero flow: $\mathbf{f}(a)=0, \forall a \in E(G)$
- The value of f, vall $f \equiv f^{+}(x)-\mathbf{f}^{-}(x)=\mathbf{f}^{-}(y)-\mathbf{f}^{+}(y)$
- An (x, y)-flow f in N is maximum if $\nexists(x, y)$-flow f^{\prime} in N s.t. val $f^{\prime}>$ val f.
- ex:

(c) Fall 2019, Justie Su-Tzu Juan

4.1 Network Flows

- Def:
- An (x, y)-cut in N is a set of edges of the form (S, \bar{S}), where $x \in S$ and $y \in \bar{S}$.
- The capacity of an (x, y)-cut $B, \operatorname{cap} B \equiv \mathbf{c}(B)=\sum \mathbf{c}(a)$
- An (x, y)-cut B in N is minimum if $\nexists(x, y)$-cut B^{\prime} in N s.t. cap $B^{\prime}<\operatorname{cap} B$.
- ex: (a)

(b)

4.1 Network Flows

- Theorem 4.1: (max-flow min-cut theorem) In any capacity network, the value of a maximum flow is equal to the capacity of a minimum cut.
- Corollary 4.1: In any integral capacity network, there must be an integral maximum flow, and its value is equal to the capacity of a minimum cut.

Chapter 4 Flows and Connectivity

§ 4.2 Menger's Theorem

4.2 Menger's Theorem

- Def: (1) $x, y \in V(G),(x, y)$-paths $P_{1}, P_{2}, \ldots, P_{n}$ in G is called $\left\{\begin{array}{l}\text { internally disjoint if } V\left(P_{i}\right) \cap V\left(P_{j}\right)=\{x, y\}, \forall 1 \leq i \neq j \leq n . \\ \text { edge-disjoint if } E\left(P_{i}\right) \cap E\left(P_{j}\right)=\phi, \forall 1 \leq i \neq j \leq n .\end{array}\right.$
(2) The maximum numbers of internally disjoint and edge-disjoint (x, y)-paths in \boldsymbol{G} is denoted by $\zeta_{G}(x, y)$ and $\eta_{G}(x, y)$, respectively. /zeta/, /eta/
- Def: (1) $\lambda_{G}(x, y) \equiv$ minimum number of edges in an (x, y)-cut in G, which is called the local edge-connectivity of G.
(2) $\phi \neq S \subseteq V(G) \backslash\{x, y\}$ is said to be an (x, y)-separating set in G if $\nexists(x, y)$-path in $G-S$.
(3) $\mathcal{K}_{G}(x, y) \equiv$ minimum cardinality of an (x, y)-separating set in G, which is called the local (vertex-)connectivity of \boldsymbol{G}.

4.2 Menger's Theorem

- Remark: (1) $\eta_{G}(x, y) \leq \lambda_{G}(x, y), \forall x, y \in V(G)$.
(2) $\zeta_{G}(x, y) \leq \kappa_{G}(x, y), \forall x, y \in V(G)$.
- ex: (a)

(b)

(c)

4.2 Menger's Theorem

-Corollary 4.1: In any integral capacity network, there must be an integral maximum flow, and its value is equal to the capacity of a minimum cut.
Theorem 4.2: Let x, y be two distinct vertices in a graph G. Then $\eta_{G}(x, y)=\lambda_{G}(x, y)$. Proof.

Consider a capacity network $N=\left(G_{x y}\right.$, c) with $\mathrm{c}(e)=1, \forall e \in E(G)$.
By Corollary 4.1, \exists a max. (x, y)-integral flow f and $\min .(x, y)$ - cut B s.t. $\operatorname{val} \mathrm{f}=\operatorname{cap} B$.
$\Rightarrow \lambda_{G}(x, y) \leq|B|=\operatorname{cap} B=\operatorname{val} \mathrm{f}$
Let $H=G_{\mathrm{f}}$, the support of \mathbf{f} (= the subgraph of G induced by the set of edges at which the value of \mathbf{f} is nonzero.)
$\because c(e)=1, \forall e \in E(G), \therefore f(a)=1 \forall e \in E(H)$.
$\Rightarrow\left\{\begin{array}{l}\mathbf{d}_{H}{ }^{+}(x)-\mathbf{d}_{H}^{-}(x)=\text { val } \mathbf{f}=\mathbf{d}_{H}{ }^{-}(y)-\mathbf{d}_{H}^{+}(y), \\ \mathbf{d}_{H}^{+}(u)=\mathbf{d}_{H}{ }^{-}(u), \forall u \in V(G) \backslash\{x, y\} .\end{array}\right.$
$\Rightarrow \exists$ at least val f edge-disjoint (x, y)-paths in H
$\Rightarrow\left(\lambda_{G}(x, y) \leq\right)$ val $\mathrm{f} \leq \eta_{G}(x, y)$
By Remark: (1), $\eta_{G}(x, y)=\lambda_{G}(x, y)$ Remark: (1) $\eta_{G}(x, y) \leq \lambda_{G}(x, y), \forall x, y \in V(G)$.
(c) Fall 2019, Justie Su-Tzu Juan

4.2 Menger's Theorem

- Def: Let $u \in V(G)$, the split of u is a graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ s.t.

$$
\text { 1. } \begin{aligned}
V^{\prime}= & V \backslash\{u\} \cup\left\{u^{\prime}, u^{\prime \prime}\right\} \\
\text { 2. } E^{\prime}= & \{(x, y) \mid(x, y) \in E(G) \text { and } x \neq u \text { and } y \neq u\} \cup\left\{\left(u^{\prime}, u^{\prime \prime}\right)\right\} \\
& \cup\left\{\left(u^{\prime \prime}, y\right) \mid(u, y) \in E(G)\right\} \cup\left\{\left(x, u^{\prime}\right) \mid(x, u) \in E(G)\right\}
\end{aligned}
$$

- ex:

- Theorem 4.3: (Menger's theorem) $x \neq y \in V(G)$ and $(x, y) \notin E(G)$. Then $\zeta_{G}(x, y)=\kappa_{G}(x, y)$

Chapter 4 Flows and Connectivity

§ 4.3 Connectivity

4.3 Connectivity

- Def: (1) G is a strongly connected digraph, $S \neq \phi, S \subseteq V(G)$ is said to be a separating set if $G-S$ is not strongly connected.
(2) The (vertex-) connectivity of \boldsymbol{G},
$\kappa(G)= \begin{cases}0 & , \text { if } G \text { is not strongly connected; } \\ v-1 & , \text { if } G \text { contains a complete spanning subgraph; } \\ \min \{|S|: S \text { is a separating set of } G\}, \text { o.w. }\end{cases}$
- Note: (1) Every strongly connected digraph contains a separating set provided it contains no complete graph as a spanning subgraph.
(2) $\kappa(G)=\left\{\begin{array}{l}v-1, \text { if } \forall x, y \in V(G), E_{G}(x, y) \neq \phi ; \\ \min \left\{\kappa_{G}(x, y): \forall x, y \in V(G), E_{G}(x, y)=\phi\right\}, \text { o.w. }\end{array}\right.$

4.3 Connectivity

- Def: (3) If a separating set S of $\boldsymbol{G},|\boldsymbol{S}|=\kappa(\boldsymbol{G})$, then S is called a κ-separating set. (4) A graph G is said to be k-connected if $\kappa(G) \geq k$.
- ex: (1) $\kappa\left(K_{n}\right)=n-1$
(2) $\kappa\left(C_{n}\right)=1, \quad$ if C_{n} is directed for $n \geq 3$.
(3) $\kappa\left(C_{n}\right)=2, \quad$ if C_{n} is undirected for $n \geq 3$.
(4) All nontrivial connected undirected graphs and strongly connected digraph are 1-connected.

4.3 Connectivity

- Def: (1) $B \neq \phi, B \subset E(G)$ is said to be a directed cut if $G-B$ is not strongly connected.
(2) the edge-connectivity of \boldsymbol{G},

$$
\lambda(G)=\left\{\begin{array}{l}
0, \text { if } G \text { is trivial or not strongly connected; } \\
\min \{|B|: B \text { is a directed cut of } G\}, \text { o.w. }
\end{array}\right.
$$

- Note: (1) every nontrivial strongly connected digraph must contain a directed cut.
(2) $\lambda(G)=\min \left\{\lambda_{G}(x, y): \forall x, y \in V(G)\right\}$.
- Def: (3) A directed cut B of G is a λ-cut if $|B|=\lambda(G)$.
(4) G is said to be k-edge-connected if $\lambda(G) \geq k$.

4.3 Connectivity

- ex: (1) $\lambda\left(K_{n}\right)=n-1$
(2) $\lambda\left(C_{n}\right)=1, \quad$ if C_{n} is directed for $n \geq 3$.
(3) $\lambda\left(C_{n}\right)=2, \quad$ if C_{n} is undirected for $n \geq 3$.
(4) All nontrivial connected undirected graphs and strongly connected digraph are 1-edge-connected.
- Remark: (1) If B is a directed cut of G, then $\exists S \neq \phi, S \subset V(G)$, s.t. $(S, \bar{S}) \subseteq B$.
(2) recall: cut is the form $[S, \bar{S}]$

4.3 Connectivity

- Thm 4.4: (Whitney's inequality) For any graph $G, \kappa(G) \leq \lambda(G) \leq \delta(G)$. Proof. (1/3)
(1) If G is trivial or empty; then $\kappa(G)=\lambda(G)=\delta(G)=0$.
(2) We need to only prove this theorem for a loopless digraph G.
W.L.O.G. say $\boldsymbol{\delta}(\boldsymbol{G})=\boldsymbol{\delta}^{+}(\boldsymbol{G})$.
$\langle\mathrm{a}\rangle$ Let $x \in V(G)$ s.t. $d_{G}{ }^{+}(x)=\delta(G)$.
$\because E_{G}{ }^{+}(x)$ is a directed cut of G.
$\therefore \lambda(G) \leq\left|E_{G}{ }^{+}(x)\right|=\delta(G)$.

4.3 Connectivity

- Thm 4.4: (Whitney's inequality) For any graph $G, \kappa(G) \leq \lambda(G) \leq \delta(G)$. Proof. (2/3)
(b) Prove $\kappa(G) \leq \lambda(G)$ by induction on $\lambda(G) \geq 0$.

When $\lambda(G)=0, G$ is no strongly connected. $\therefore \kappa(G)=0=\lambda(G)$.
Suppose $\kappa(H) \leq \lambda(H) \forall$ digraph H with $\lambda(H)<\lambda$ and $\lambda \geq 0$.
Now, consider a digraph G with a directed cut B s.t.

$$
|B|=\lambda(G)=\lambda .
$$

Let $a=(x, y) \in B$, and $H=G-a$. Then $\lambda(H) \leq \lambda-1$.
By I.H., $\kappa(H) \leq \lambda(H) \leq \lambda-1<\lambda(G)$
case 1: If $\exists \boldsymbol{K}_{\boldsymbol{\mu}(\boldsymbol{H})} \subseteq H$, then

$$
\text { so does } G \text {. i.e. } \exists K_{\chi G)} \subseteq G
$$

$$
\Rightarrow \kappa(G)=v-1=\kappa(H) \leq \lambda(H) \leq \lambda-1<\lambda(G) .
$$

case 2: If $\exists K_{\text {uH) }} \subseteq H$ then $\exists \kappa$-separating set S in H.

4.3 Connectivity

- Thm 4.4: (Whitney's inequality) For any graph $\boldsymbol{G}, \kappa(\boldsymbol{G}) \leq \lambda(G) \leq \delta(G)$. Proof. (3/3)
case 2: If $\nexists K_{\nu(H)} \subseteq H$ then $\exists \kappa$-separating set S in H. case 2.1: If $G-S$ is not strongly connected, then

$$
\kappa(\boldsymbol{G}) \leq|S|=\kappa(\boldsymbol{H}) \leq \lambda(\boldsymbol{H})<\lambda(\boldsymbol{G})
$$

case 2.2: If $G-S$ is strongly connected:
case 2.2.1: If $v(G-S)=2$, then

$$
\begin{aligned}
\kappa(G) & \leq v-1=\chi(G-S)+|S|-1=|S|+1 \\
& =\kappa(H)+1 \leq \lambda(H)+1 \leq \lambda(G) .
\end{aligned}
$$

case 2.2.2: If $v(G-S)>2$, then either $S \cup\{x\}$ or $S \cup\{y\}$ is a separating set of G.

$$
\therefore \kappa(G) \leq|S|+1=\kappa(H)+1 \leq \lambda(H)+1 \leq \lambda(G) .
$$

$\therefore \kappa(G) \leq \lambda(G)$ and the theorem following by the principle of induction.

4.3 Connectivity

- ex:

$$
\begin{aligned}
& \kappa(G)=2 \\
& \lambda(G)=3 \\
& \delta(G)=4
\end{aligned}
$$

- Remark: $\forall a, b, c \in \mathbb{N}$ with $0<a \leq b \leq c, \exists 2$ graphs G_{1}, G_{2} (undirected and directed), s.t. $\kappa\left(G_{1}\right)=\kappa\left(G_{2}\right)=a, \lambda\left(G_{1}\right)=\lambda\left(G_{2}\right)=b, \delta\left(G_{1}\right)=\delta\left(G_{2}\right)=c$.
- Theorem 4.5: Let G be a graph of order at least $k+1$. Then
(a) $\kappa(G) \geq k \Leftrightarrow \zeta_{G}(x, y) \geq k, \forall x, y \in V(G)$,
(b) $\lambda(G) \geq k \Leftrightarrow \eta_{G}(x, y) \geq k, \forall x, y \in V(G)$.

4.3 Connectivity

- Theorem 4.6: If $\kappa\left(G_{i}\right)>\mathbf{0}, \forall i=1,2, \ldots, n$, then

$$
\kappa\left(G_{1} \times G_{2} \times \ldots \times G_{n}\right) \geq \kappa\left(G_{1}\right)+\kappa\left(G_{2}\right)+\ldots+\kappa\left(G_{n}\right) .
$$

Furthermore, if $\kappa\left(G_{i}\right)=\delta\left(G_{i}\right)>0 \forall i=1,2, \ldots, n$, then

$$
\kappa\left(G_{1} \times G_{2} \times \ldots \times G_{n}\right)=\kappa\left(G_{1}\right)+\kappa\left(G_{2}\right)+\ldots+\kappa\left(G_{n}\right) .
$$

Particularly, $\kappa\left(Q_{n}\right)=n$.

- Exercise: 4.1.1, 4.2.2(b)
- 加: 4.1.6, 4.2.4, 4.2.5, 4.3.10, 4.3.11

Chapter 5 Matchings and Independent Sets

§ 5.1 Matchings (1)

5.1 Matchings

- Def: G : nonempty and loopless graph
$-M \neq \phi \subseteq E(G)$ is called a matching in G iff $\forall e_{1}, e_{2}, \in M, e_{1}, e_{2}$ are not adjacent in G.
- $\forall e \in M$, if $e=(x, y), x, y$ are said to be matched under M.
- $\forall x \in V(G)$, if $\exists e \in M$ s.t. $e=(x, y)$, then x is M-saturated, or say M saturates x; otherwise, x is M-unsaturated.
- A matching M is perfect if it saturates every vertices of \boldsymbol{G}.
- M is maximum if \forall matching M^{\prime} in $G,|M| \geq\left|M^{\prime}\right|$
- Note: Only discuss undirected graph.
- ex: (a)

(b)

(c) Fall 2019, Justie Su-Tzu Juan

5.1 Matchings

- Theorem 5.1: (Hall's theorem) Let $G=(X, Y, E)$ be a bipartite graph. Then G contains a matching M that $|M|=|X| \Leftrightarrow|S| \leq\left|N_{G}(S)\right| \forall S \subseteq X$.
Proof. (1/2)
(\Rightarrow) Let $M=\left\{\left(x_{i}, y_{i}\right) \mid x_{i} \in X, y_{i} \in Y\right\}$ be a matching of G which saturates every $x_{i} \in X \Rightarrow$ all y_{i} are distinct
$\therefore \forall S \subseteq X, N_{G}(S) \supseteq\left\{y_{i} \mid \forall x_{i} \in S\right\}$
$\Rightarrow \forall S \subseteq X,\left|N_{G}(S)\right| \geq|S|$

5.1 Matchings

- Theorem 5.1: (Hall's theorem) Let $G=(X, Y, E)$ be a bipartite graph. Then G contains a matching M that $|M|=|X| \Leftrightarrow|S| \leq\left|N_{G}(S)\right| \forall S \subseteq X$.
Proof. (2/2)
(\Leftarrow) Suppose M is a maximum matching in G.
Construct a digraph $D: V(D)=V(G) \cup\{x, y\}$
$E(D)=\left\{\left(x, x_{i}\right) \mid x_{i} \in X\right\} \cup\left\{\left(x_{i}, y_{j}\right): x_{i} \in X, y_{j} \in Y, x_{i} y_{j} \in E(G)\right\} \cup\left\{\left(y_{j}, y\right) \mid y_{j} \in Y\right\}$ $\zeta_{D}(x, y)=|M|$. Let T be a minimum (x, y)-separating set of D.
By Menger's theorem, $|M|=\zeta_{D}(x, y)=\kappa_{D}(x y)=|T|$
Let $T_{1}=T \cap X, T_{2}=T \cap Y$.
$\Rightarrow E_{D}\left(X \backslash T_{1}, Y \backslash T_{2}\right)=\phi$
$\Rightarrow N_{D}{ }^{+}\left(X \backslash T_{1}\right) \subseteq T_{2}$
$\Rightarrow|M|=|T|=\left|T_{1}\right|+\left|T_{2}\right|$
$\geq\left|T_{1}\right|+\left|N_{D}{ }^{+}\left(X \backslash T_{1}\right)\right|$
$=\left|T_{1}\right|+\left|N_{G}\left(X \backslash T_{1}\right)\right| \geq\left|T_{1}\right|+\left|X \backslash T_{1}\right|=|X|$
(c) Fall 2019, Justie Su-Tzu Juan

