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Chapter 2

Trees and Graphic

§ 2.2 Vector Spaces of Graphs



(c) Fall 2019, Justie Su-Tzu Juan 2

2.2 Vector Spaces of Graphs

• Def:  vertex-space (G)  the vector space of all functions from V(G) into R. 

edge-space (G)  the vector space of all functions from E(G) into R.

 (G, w) is called a weighted graph: G: a loopless graph, w  (G).

– w is called a weighted function and 

– w(a) is called a weight of the edge a of G

– write w(x, y) for w((x, y)) if (x, y)  E(G)

  B  E(G) in (G, w) write w(B) =    w(a)

 S  V(G), S   in (G, w), write   w+(S) = w(EG
+(S));

w−(S) = w(EG
−(S)).


Ba
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Chapter 4

Flows and Connectivity

§ 4.1 Network Flows
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4.1 Network Flows

• Def: 

– A connected weighted loopless graph (G, w) with two specified vertices x, y, 

called the source and the sink, respectively, is called a network (N = (Gxy, w)).

– W.L.O.G., a network is a simple digraph.

– If w is a nonnegative capacity function c, then the network N = (Gxy, c) is called 

a capacity network, and the value c(a) is the capacity of a.

– If c(a) is an integer for any a  E(G), then N is called an integral capacity 

network.

• ex:
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4.1 Network Flows

• Def: 

– N = (Gxy, c) is a capacity network. A function f: E(G) → R is called a flow in N

from x to y, in short (x, y)-flow, if it satisfies:

(4.1) 0  f(a)  c(a),  a  E(G), the capacity constraint condition

(4.2) f+(u) = f−(u),  u  V(G) \ {x, y}, the conservation condition

– zero flow: f(a) = 0,  a  E(G)

– The value of f, val f  f+(x) − f−(x) = f−(y) − f+(y)

– An (x, y)-flow f in N is maximum if  (x, y)-flow f in N s.t. val f > val f.

• ex: 3
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4.1 Network Flows

• Def:

– An (x, y)-cut in N is a set of edges of the form (S, S), where x  S and y  S.

– The capacity of an (x, y)-cut B, cap B  c(B) =      c(a)

– An (x, y)-cut B in N is minimum if  (x, y)-cut B in N s.t. cap B < cap B.

• ex: (a)                                                     (b)
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4.1 Network Flows

• Theorem 4.1: (max-flow min-cut theorem) In any capacity network, the value of a 

maximum flow is equal to the capacity of a minimum cut.

• Corollary 4.1: In any integral capacity network, there must be an integral   

maximum flow, and its value is equal to the capacity of a minimum cut.
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Chapter 4

Flows and Connectivity

§ 4.2 Menger’s Theorem
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4.2 Menger’s Theorem

• Def:  x, y  V(G), (x, y)-paths P1, P2, …, Pn in G is called

internally disjoint if V(Pi)  V(Pj) = {x, y},  1  i  j  n.

edge-disjoint if E(Pi)  E(Pj) = ,  1  i  j  n.

 The maximum numbers of internally disjoint and edge-disjoint (x, y)-paths 

in G is denoted by G(x, y) and G(x, y), respectively. /zeta/, /eta/

• Def:  G(x, y)  minimum number of edges in an (x, y)-cut in G, which is called 

the local edge-connectivity of G.

   S  V(G)\{x, y} is said to be an (x, y)-separating set in G if  (x, y)-path 

in G − S.

 G(x, y)  minimum cardinality of an (x, y)-separating set in G, which is 

called the local (vertex-)connectivity of G. 
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4.2 Menger’s Theorem

• Remark:  G(x, y)  G(x, y),  x, y  V(G).

 G(x, y)  G(x, y),  x, y  V(G).

• ex: (a)                                        (b)                                   (c)
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4.2 Menger’s Theorem

• Theorem 4.2: Let x, y be two distinct vertices in a graph G. Then G(x, y) = G(x, y).

Proof.

Consider a capacity network N = (Gxy, c) with c(e) = 1,  e  E(G).

By Corollary 4.1,  a max. (x, y)-integral flow f and a min. (x, y)- cut B s.t.

val f = cap B.

G(x, y)  |B| = cap B = val f

Let H = Gf, the support of f (= the subgraph of G induced by the set of edges 

at which the value of f is nonzero.)

∵ c(e) = 1,  e  E(G), ∴ f(a) = 1  e  E(H).

 dH
+(x) − dH

−(x) = val f = dH
−(y) − dH

+(y),

dH
+(u) = dH

−(u),  u  V(G) \ {x, y}.

  at least val f edge-disjoint (x, y)-paths in H

 (G(x, y)  ) val f  G(x, y) 

By Remark: , G(x, y) = G(x, y).

•Corollary 4.1: In any integral capacity network, there must be an integral   

maximum flow, and its value is equal to the capacity of a minimum cut.

Remark:  G(x, y)  G(x, y),  x, y  V(G).
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4.2 Menger’s Theorem

• Def: Let u  V(G), the split of u is a graph G' = (V', E') s.t. 

1. V' = V \ {u}  {u', u''}

2. E' = {(x, y) | (x, y)  E(G) and x  u and y  u}  {(u', u'')}

 {(u'', y) | (u, y)  E(G)}  {(x, u') | (x, u)  E(G)} 

• ex:

• Theorem 4.3: (Menger’s theorem) x  y  V(G) and (x, y)  E(G).

Then G(x, y) = G(x, y)

y
x

w z

u v

y
x

w' z'

u' v'

w'' z''

u'' v''



(c) Fall 2019, Justie Su-Tzu Juan 13

Chapter 4

Flows and Connectivity

§ 4.3 Connectivity
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4.3 Connectivity

• Def:  G is a strongly connected digraph, S  , S  V(G) is said to be a separating   

set if G − S is not strongly connected. 

 The (vertex-) connectivity of G,

0         , if G is not strongly connected;

(G) =      − 1   , if G contains a complete spanning subgraph;

min {|S|: S is a separating set of G}, o.w.

• Note:  Every strongly connected digraph contains a separating set provided it 

contains no complete graph as a spanning subgraph.

 (G) =    − 1, if  x, y  V(G), EG(x, y)  ;

min {G(x, y):  x, y  V(G), EG(x, y) = }, o.w.
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4.3 Connectivity

• Def:  If a separating set S of G, |S| = (G), then S is called a -separating set.

A graph G is said to be k-connected if (G)  k.

• ex:  (Kn) = n − 1

 (Cn) = 1,        if Cn is directed for n  3.

 (Cn) = 2,        if Cn is undirected for n  3.

All nontrivial connected undirected graphs and strongly connected digraph 

are 1-connected.
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4.3 Connectivity

• Def:  B  , B  E(G) is said to be a directed cut if G − B is not strongly 

connected.

 the edge-connectivity of G,

(G) =   0, if G is trivial or not strongly connected;

min {|B|: B is a directed cut of G}, o.w. 

• Note:  every nontrivial strongly connected digraph must contain a directed cut.

 (G) = min {G(x, y):  x, y  V(G)}.

• Def: A directed cut B of G is a -cut if |B| = (G).

 G is said to be k-edge-connected if (G)  k.
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4.3 Connectivity

• ex:  (Kn) = n − 1

 (Cn) = 1,        if Cn is directed for n  3.

 (Cn) = 2,        if Cn is undirected for n  3.

All nontrivial connected undirected graphs and strongly connected digraph 

are 1-edge-connected.

• Remark:  If B is a directed cut of G, then  S  , S  V(G), s.t. (S, S)  =  B.

 recall: cut is the form [S, S]


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4.3 Connectivity

• Thm 4.4: (Whitney’s inequality) For any graph G, (G)  (G)  (G).

Proof. (1/3)

 If G is trivial or empty; then (G) = (G) = (G) = 0.

We need to only prove this theorem for a loopless digraph G.

W.L.O.G. say (G) =  +(G).

a Let x  V(G) s.t. dG
+(x) = (G).

∵ EG
+(x) is a directed cut of G.

∴ (G)  |EG
+(x)| = (G).
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4.3 Connectivity

• Thm 4.4: (Whitney’s inequality) For any graph G, (G)  (G)  (G).

Proof. (2/3) 

b Prove (G)  (G) by induction on (G)  0.

When (G) = 0, G is no strongly connected. ∴ (G) = 0 = (G).

Suppose (H)  (H)  digraph H with (H) <  and   0.

Now, consider a digraph G with a directed cut B s.t. 

|B| = (G) = .

Let a = (x, y)  B, and H = G − a. Then (H)   − 1.

By I.H., (H)  (H)   − 1 < (G)

case 1: If  K(H)  H, then 

so does G. i.e.  K(G)  G

 (G) =  − 1 = (H)  (H)   − 1 < (G).

case 2: If  K(H)  H then  -separating set S in H.
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4.3 Connectivity

• Thm 4.4: (Whitney’s inequality) For any graph G, (G)  (G)  (G).

Proof. (3/3)

case 2: If  K(H)  H then  -separating set S in H.

case 2.1: If G − S is not strongly connected, then 

(G)  |S| = (H)  (H) < (G).

case 2.2: If G − S is strongly connected:

case 2.2.1: If (G − S) = 2, then

(G)   − 1 = (G − S) + |S| − 1 = |S| + 1

= (H) + 1  (H) + 1  (G).

case 2.2.2: If (G − S) > 2, then 

either S  {x} or S  {y} is a separating set of G.

∴ (G)  |S| + 1 = (H) + 1  (H) + 1  (G).

∴ (G)  (G) and the theorem following by the principle of induction.  
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4.3 Connectivity

• ex:                                                              

(G) = 2,

(G) = 3,

(G) = 4.

• Remark:  a, b, c  N with 0 < a  b  c,  2 graphs G1, G2 (undirected and 

directed), s.t. (G1) = (G2) = a, (G1) = (G2) = b, (G1) = (G2) = c.

• Theorem 4.5: Let G be a graph of order at least k + 1. Then 

(a) (G)  k  G(x, y)  k,  x, y  V(G),

(b) (G)  k  G(x, y)  k,  x, y  V(G).

G
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4.3 Connectivity

• Theorem 4.6: If (Gi) > 0,  i = 1, 2, …, n, then

(G1  G2  …  Gn)  (G1) + (G2) + … + (Gn).

Furthermore, if (Gi) = (Gi) > 0  i = 1, 2, …, n, then

(G1  G2  …  Gn) = (G1) + (G2) + … + (Gn).

Particularly, (Qn) = n.

• Exercise: 4.1.1, 4.2.2(b)

• 加: 4.1.6, 4.2.4, 4.2.5, 4.3.10, 4.3.11
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Chapter 5
Matchings and Independent Sets

§ 5.1 Matchings (1)
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5.1 Matchings

• Def: G: nonempty and loopless graph

– M    E(G) is called a matching in G iff  e1, e2,  M, e1, e2 are not adjacent 

in G.

–  e  M, if e = (x, y), x, y are said to be matched under M.

–  x  V(G), if  e  M s.t. e = (x, y), then x is M-saturated, or say M saturates x; 

otherwise, x is M-unsaturated.

– A matching M is perfect if it saturates every vertices of G.

– M is maximum if  matching M in G, |M|  |M|

• Note: Only discuss undirected graph.

• ex: (a)                                           (b)
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5.1 Matchings

• Theorem 5.1: (Hall’s theorem) Let G = (X, Y, E) be a bipartite graph. Then 

G contains a matching M that |M| = |X|  |S|  |NG(S)|  S  X.

Proof. (1/2)

() Let M = {(xi, yi)| xi  X, yi  Y} be a matching of G which saturates 

every xi  X  all yi are distinct 

∴  S  X, NG(S)  {yi|  xi  S}

 S  X, |NG(S)|  |S|
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5.1 Matchings

• Theorem 5.1: (Hall’s theorem) Let G = (X, Y, E) be a bipartite graph. Then 

G contains a matching M that |M| = |X|  |S|  |NG(S)|  S  X.

Proof. (2/2)

() Suppose M is a maximum matching in G.

Construct a digraph D: V(D) = V(G)  {x, y}

E(D) = {(x, xi)| xi  X}  {(xi, yj): xi  X, yj  Y, xiyj  E(G)}  {(yj, y)| yj  Y}

D(x, y) = |M|. Let T be a minimum (x, y)-separating set of D.

By Menger’s theorem, |M| = D(x, y) = D(x y) = |T|

Let T1 = T  X, T2 = T  Y.

 ED(X\T1, Y\T2) = 

 ND
+(X\T1)  T2

 |M| = |T| = |T1| + |T2|

 |T1| + |ND
+(X\T1)|

= |T1| + |NG(X\T1)|  |T1| + |X\T1| = |X|         

x
y

X Y

T1

T2


