Chapter 3

Plane Graphs and Planar Graphs
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)/) 3.1 Plane Graphs and Euler Formula

* Def:

— G s said to be embeddable on the surface S =G can be drawn in S s.t. its edges
intersection only at their end-vertices.

— Such a drawing of G is called an embedding of G, denoted by G. [tilde]
« Note: @ In this chapter, only discuss undirected graph.

@ The surface we consider, only plane or sphere.
®GzG.
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\’ 3.1 Plane Graphs and Euler Formula

« Thm 3.1: Agraph G is embeddable on the sphere S
< G is embeddable on the plane P.

Proof.
see textbooks. )
® Define g: S—> P s

@ Prove “=” E A
‘ 99 / \M
& P
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3.1 Plane Graphs and Euler Formula

/i

« Def: @ If G is embeddable on the plane (or the sphere), G is called a planar graph,
otherwise G is called a non-planar graph.
@ G is called a plane graph.

ex: D xq yg 7
re ud G, =Kj,
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)/) 3.1 Plane Graphs and Euler Formula

« Def: G isanonempty plane graph.
@ Faces is the connected regions in plane. (be partitioned by G)
@ The set and the number of faces of G = F(G) and ¢(G)
® V f e F(G), B;(f), the boundary of f=the closed walk around f.
@ The number of edges in B;(f) is called the degree of f = d(f)
® exterior face = unbounded face

O F(G) ={fo, f1, f,, f5, T4, T}, [F(G)| = AG) = 6
@ Bg(fo) = X1€X,84X687X3€gX5E9X58X3€1 Xy

X, ® dg(fo) = 7; dg(fy) =1
@ f, is the exterior face
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)) 3.1 Plane Graphs and Euler Formula

* Note: @ V plane graph G, ¢G) 21, and G) =1 < G is a forest.
® Any planar embedding of a planar graph has exactly one exterior face.
® G: a planer graph, V x € V(G), V e € E(G),
G can be embedded in the plane s.t.
X or e is on the boundary of the exterior face of the embedding
(= x or e e B;(fy), where f; is the exterior face)
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) 3.1 Plane Graphs and Euler Formula

/4

. Thm 3.2: For any plane graph G, 2, dc(f)=2&(G)
Proof. e
If G is empty, it’s true.
If G is nonempty, V e € E(G):
either 3 2 faces f;, fj s.t. e € Bs(f;) N Bg(f))
or 3 face f;, e appear in Bg(f;) twice.

5. 28(G)= D do(f)

feF (G)

eX:
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)/) 3.1 Plane Graphs and Euler Formula

| Theorem 2.3: F is a spanning forest of G and E(G)\E(F) # ¢
= V e € E(G)\E(F), F + e contains a unique cycle.
« Thm 3.3: (Euler’s formula) If G is a connected plane graph, then v— g+ ¢ =2
Proof.
Let T be a spanning tree of G.
=>@dN=1land gN=e-&gT)=e-(v=-1)=¢-v+1
V e € E(T), T + e contains unique cycle = T +e) =2 by Thm 2.3
S.HG)2HT)+te—vtl
Obtain a new face, must added e e E(T) to T
SHG) LS HT)+te—vt ]l
=>dC)=dT)+e—v+l=1+e-v+1
lLe. v—g+¢g=2
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3.1 Plane Graphs and Euler Formula

/i

« Corollary3.3.1: Gisaplanegraph=> v-¢+¢d=1+ w

« Corollary 3.3.2: G: a planar graph, all embedding of G has the same number of
faces.
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3.1 Plane Graphs and Euler Formula

/i

Corollary 1.6.2: G: an undirected graph, G is bipartite < G contains no odd cycle. ‘

« Corollary 3.3.3: G: asimple connected planar bipartite graph of order v= 3,
= eL2v-4

Proof.
LetGisa planar embedding of G.
@ If G is a tree, then by Thm23,e=v-1=2v-1-v<2v-4 ("." v23)
@ If G contains a cycle:
‘" G=Fisa simple bipartite graph.
.. By Corollary 1.6.2, G contains no odd cycle
=V fe F(G), dg(f) = 4
By Thm 3.2, 4¢<D.ds(f) =2e= £>2¢
By Euler’s formﬁeleic,;)v— e+t @9=2
C.E220=2Q22-v+e=4-2v+2¢
= &l2v-4
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aL’ 3.1 Plane Graphs and Euler Formula

Corollary 3.3.3: G: a simple connected planar bipartite graph of order v> 3,
| = ¢<2v-4

« Corollary 3.3.4: K; 5 Is non-planar.
Proof.

K; 5 Is a simple connected bipartite graph.

If K, 5 Is planar, then By Coro. 3.3.3,
&(Ks3) < 21Ky ) — 4

but &(K33) =9, UK;5) =6
9>2-6-4=8 D«

.. K33 Is non-planar.
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)/) 3.1 Plane Graphs and Euler Formula

« Def: ® Asimple planar graph G is called to be maximal if
V X,y € V(G), xy ¢ E(G), G + xy is non-planar.

« Note: G: a maximal planar graph, V G: the planar embedding of G,
VfeF(G)dg(f)=3

« Def: @ A planar embedding of a maximal planar graph is called a
plane triangulation.
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)/) 3.1 Plane Graphs and Euler Formula

feF (G)

Thm 3.2: For any plane graph G, >.ds(f)= 28(G)W

« Thm 3.4: G: asimple planar graph of order v>3
G Is maximal < &G) =3vG) -6
Proof.

Let G be a planar embedding of G.

G is maximal < V f e F(G), dg(f) = 3
& 2¢= f;;'é(f) =3¢ (by Thm 3.2)
2e=3(2—v+¢g=6-3v+ 3¢ (byEuler’s Formula)
<& e=3v-06

« Corollary 3.4.1: G: a simple planar graph of order v>3 = ¢<3v-6
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Corollary 3.4.1: G: a simple planar graph of order v>3 = ¢<3v-6

« Corollary 3.4.2: K; is non-planar.
Proof.
If K: is planar, by Coro 3.4.1,
10 =&gK;) £3UK;)—6=3:-5-6=9 o«
.". Kg is non-planar.

« Corollary 3.4.3: G: asimple planar graph = &§G) <5
Proof.
@ v=1~6Istrue.
@ v>7: by Corollary 1.1 and Corollary 3.4.1:
Sv< ) dg(X)=26< 6y —12
= 6<6- (12/v)
J.0L5
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.‘ ) 3.1 Plane Graphs and Euler Formula

| }

« Thm 3.5: Any simple planar graph can be embedded in the plane
s.t. each edge is a straight line segment.

(@ ®
Figure 3.5: a planar graph and its planar embedding with straight line segments
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3.1 Plane Graphs and Euler Formula

exercise: 3.1.1(b); 3.1.5

4¢:3.1.7;3.1.9; 3.1.14; 3.1.17
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)) 3.2 Kuratowski’s Theorem

« Def: ® e=xy € E(G) is said to be subdivided = ((G\e) U z) U {xz, zy}
@ A subdivision of a graph G is a graph obtained from G by a sequence of
edge subdivisions.

e CexX.

€
£ @ e I1s subdivided @ subdivision ofG@

« Thm 3.6: (Kuratowski’s theorem) A graph is planar
< It contains no subdivision of K; or K, ; as its subgraph.
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Plane Graphs and Planar Graphs
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« Def: G: a plane graph with E(G) = {e;, ey, ..., €. F(G) = {fy, f5, ..., T}
G* is called the geometric dual of G if
V(G*) ={f" £, ..., T}
E(G*) = {e;* &%, ..., €.}, S.L.
fi*fi* € E(G*) © 3 ¢ € E(G) s.t. ¢; Is a common boundary of f; and f; of G.
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N

) 3.3 Dual Graphs

V7

- Note: (UG*) = ¢G)
&G*) = &G)
|d..(f7)=ds(f), VTeFG)

A

Thm 3.7: G : a plane graph, G* : the geometric dual of G,
BcE(G)andB"={e" € E(G") : e € B}. Then
(a) G[B] is a cycle of G < B is a bond of G,
(b) B is a bond of G & G*[B™] is a cycle of G".
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):’ 3.3 Dual Graphs

Def: G, G': two graphs. G is called the combinatorial dual of G if
3 a bijective mapping ¢ : E(G) > E(G') s.t.
V B c E(G), G[B] isacycle of G
S eB)={e"eE(G"):p(e)=¢",eeB}isabondof G

eX:
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3.3 Dual Graphs
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) 3.3 Dual Graphs

hm3.8:G:a plane graph, G™ : the geometric dual of G. Then
(a) G” is the combinatorial dual of G.
(b) G is the combinatorial dual of G”.

Thm 3.9: (Whitney’s theorem)
A graph is planar < it has combinatorial dual.
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