Chapter 3 Plane Graphs and Planar Graphs

§ **3.1 Plane Graphs and Euler Formula**

마리트 na Πľ

• **Def:**

- G is said to be embeddable on the surface $S \equiv G$ can be drawn in S s.t. its edges **intersection only at their end-vertices.**
- $-$ Such a drawing of G is called an embedding of G , denoted by \widetilde{G} . [tilde] **~**

Note: Φ In this chapter, only discuss undirected graph. **The surface we consider, only plane or sphere.** $G \cong \widetilde{G}$. **~**

• **Thm 3.1: A graph** *G* **is embeddable on the sphere** *S* \Leftrightarrow *G* is embeddable on the plane *P*.

Proof.

see textbooks. $\Phi: S \to P$ \circledcirc Prove " \Rightarrow " $\overset{66}{\leftarrow}$ $\overset{99}{\leftarrow}$

• **Def: If** *G* **is embeddable on the plane (or the sphere),** *G* **is called a planar graph, otherwise** *G* **is called a non-planar graph.** *G* **is called a plane graph. ~**

(c) Spring 2019, Justie Su-Tzu Juan 4

- **Def:** *G* **is a nonempty plane graph.**
	- **Faces is the connected regions in plane. (be partitioned by** *G***)**
	- **2** The set and the number of faces of $G \equiv F(G)$ and $\phi(G)$
	- $\mathfrak{D} \ \forall f \in F(G)$, $B_G(f)$, the boundary of $f \equiv$ the closed walk around f .
	- **4** The number of edges in $B_G(f)$ is called the degree of $f \equiv d_G(f)$
	- $\circled{}$ exterior face \equiv unbounded face

• ex: x_1 $\qquad \qquad \mathbb{D} F(G) = \{f_0, f_1, f_2, f_3, f_4, f_5\}, |F(G)| = \phi(G) = 6$ $\textcircled{2}~B_{G}(f_{0})=x_{1}e_{2}x_{2}e_{4}x_{6}e_{7}x_{3}e_{8}x_{5}e_{9}x_{5}e_{8}x_{3}e_{1}x_{1}$ **3** $d_G(f_0) = 7$; $d_G(f_1) = 1$

Note: $\Phi \forall$ plane graph *G*, ϕ *(G)* \geq 1, and ϕ *(G)* $=$ 1 \Leftrightarrow *G* is a forest.

Any planar embedding of a planar graph has exactly one exterior face.

 \mathfrak{D} *G***: a planer graph,** \forall *x* **∈** $V(G)$ **,** \forall *e* **∈** $E(G)$ **,**

G **can be embedded in the plane s.t.**

x **or** *e* **is on the boundary of the exterior face of the embedding**

(= *x* or $e \in B_G(f_0)$, where f_0 is the exterior face)

• Thm 3.2: For any plane graph G , \sum **Proof. If** *G* **is empty, it's true.** If *G* is nonempty, $\forall e \in E(G)$: **either** \exists 2 faces f_i, f_j s.t. $e \in B_G(f_i) \cap B_G(f_j)$ **or** \exists face f_i , e appear in $B_G(f_i)$ twice. \therefore 2 $\varepsilon(G) = \sum$ ∊ = **()** $(f) = 2\varepsilon(G)$ f \in F $(G$ $d_G(f) = 2\varepsilon(G)$ ∊ = **()** $2\varepsilon(G) = \sum d_G(f)$ f \in F $(G$ $\mathcal{E}(G) = \sum d_G(f)$

(c) Spring 2019, Justie Su-Tzu Juan 7

Theorem 2.3: *F* is a spanning forest of *G* and $E(G)|E(F) \neq \phi$

 \Rightarrow $\forall e \in E(G) \setminus E(F), F + e$ contains a unique cycle.

- **Thm 3.3: (Euler's formula) If** *G* **is a connected plane graph, then** $v \varepsilon + \phi = 2$ **Proof.**
	- **Let** *T* **be a spanning tree of** *G***.**

 $\Rightarrow \phi(T) = 1$ and $\varepsilon(T) = \varepsilon - \varepsilon(T) = \varepsilon - (\nu - 1) = \varepsilon - \nu + 1$

 $\forall e \in E(\overline{T}), T + e$ contains unique cycle $\Rightarrow \phi(T + e) = 2$ by Thm 2.3

 \therefore $\phi(G) \geq \phi(T) + \varepsilon - \nu + 1$

Obtain a new face, must added $e \in E(\overline{T})$ to T

$$
\therefore \phi(G) \le \phi(T) + \varepsilon - \nu + 1
$$

\n
$$
\Rightarrow \phi(G) = \phi(T) + \varepsilon - \nu + 1 = 1 + \varepsilon - \nu + 1
$$

\ni.e. $\nu - \varepsilon + \phi = 2$

- **Corollary 3.3.1:** *G* is a plane graph \Rightarrow $\nu \varepsilon + \phi = 1 + \omega$
- **Corollary 3.3.2:** *G***: a planar graph, all embedding of** *G* **has the same number of faces.**

Corollary 1.6.2: G **: an undirected graph,** G **is bipartite** $\Leftrightarrow G$ **contains no odd cycle.**

Corollary 3.3.3: *G*: a simple connected planar bipartite graph of order $v \ge 3$,

 \Rightarrow ε < 2 ν - 4

Proof.

Let *G* **is a planar embedding of** *G***. ①** If *G* is a tree, then by Thm 2.3, $\varepsilon = v - 1 = 2v - 1 - v \le 2v - 4$ (∵ $v \ge 3$) **If** *G* **contains a cycle: ~ ~ ~**

∵ $\ddot{G} \cong F$ is a simple bipartite graph. **~**

∴ **By Corollary 1.6.2,** *G* **contains no odd cycle** \Rightarrow $\forall f \in F(\tilde{G}), d_{\tilde{G}}(f) \geq 4$ **By Thm 3.2,** $4\phi \le \sum d_{\tilde{G}}(f) = 2\varepsilon \Rightarrow \varepsilon \ge 2\phi$ **By Euler's formula,** $v - \varepsilon + \phi = 2$ ∴ $\varepsilon \ge 2\phi = 2(2 - \nu + \varepsilon) = 4 - 2\nu + 2\varepsilon$ \Rightarrow ε \leq 2 ν - 4 $\frac{1}{\tilde{a}}$, $\frac{1}{d\tilde{a}}$

Corollary 3.3.3: *G*: a simple connected planar bipartite graph of order $v \ge 3$, \Rightarrow ε \leq 2 ν - 4

Corollary 3.3.4: $K_{3,3}$ is non-planar. **Proof.**

*K***3,3 is a simple connected bipartite graph.** If $K_{3,3}$ is planar, then By Coro. 3.3.3, $\varepsilon(K_{3,3}) \leq 2 \nu(K_{3,3}) - 4$ **but** $\varepsilon(K_{3,3}) = 9$, $v(K_{3,3}) = 6$ $9 > 2 \cdot 6 - 4 = 8 \rightarrow 4$ $\therefore K_{3,3}$ is non-planar.

• **Def: A simple planar graph** *G* **is called to be maximal if** $\forall x, y \in V(G), xy \notin E(G), G+xy$ is non-planar.

• **Note:** G **:** a maximal planar graph, \forall \tilde{G} **:** the planar embedding of G , $\forall f \in F(\tilde{G}), d_{\tilde{G}}(f) = 3$ **~** \tilde{a}), $d_{\tilde{c}}$

• **Def: A planar embedding of a maximal planar graph is called a plane triangulation.**

Thm 3.2: For any plane graph G **,** \sum $f \in F(G)$ $d_G(f) = 2\varepsilon(G)$

Thm 3.4: G **:** a simple planar graph of order $v \ge 3$ G is maximal \Leftrightarrow $\varepsilon(G) = 3 \nu(G) - 6$

Proof.

Let \widetilde{G} be a planar embedding of G **.** *G* is maximal \Leftrightarrow $\forall f \in F(G), d_{\tilde{G}}(f) = 3$ \Leftrightarrow 2 $\varepsilon = \sum_{\alpha} d_{\tilde{\alpha}}(f) = 3\phi$ (by Thm 3.2) \Leftrightarrow 2 ε = 3(2 − ν + ε) = 6 − 3 ν + 3 ε (by Euler's Formula) \Rightarrow $\varepsilon = 3v - 6$ $\boldsymbol{\Sigma}$ \in **F** (\widetilde{G}) $_{\tilde{c}}(f)$ f \in F $(G$ $d_{\tilde{G}}(f)$ **~ ~ ~**

Corollary 3.4.1: *G***: a simple planar graph of order** $v \ge 3 \Rightarrow \varepsilon \le 3v - 6$

Corollary 3.4.1: *G***: a simple planar graph of order** $v \ge 3 \Rightarrow \varepsilon \le 3v - 6$

- **Corollary 3.4.2:** K_5 is non-planar. **Proof. If** *K***⁵ is planar, by Coro 3.4.1, 10** = ε (*K***₅) ≤ 3** v **(***K***₅) − 6 = 3 · 5 − 6 = 9 →←** $\therefore K_5$ is non-planar.
	- **Corollary 3.4.3:** *G*: a simple planar graph $\Rightarrow \delta(G) \leq 5$ **Proof.**
		- Φ $\nu = 1 \sim 6$ is true.

 $\oslash \upsilon \ge 7$: by Corollary 1.1 and Corollary 3.4.1: $\delta v \le \sum d_G(x) = 2\varepsilon \le 6v - 12$ \Rightarrow $\delta \leq 6 - (12/\nu)$ ∴ δ \leq 5

• **Thm 3.5: Any simple planar graph can be embedded in the plane s.t. each edge is a straight line segment.**

 $ex:$

Figure 3.5: a planar graph and its planar embedding with straight line segments

(c) Spring 2019, Justie Su-Tzu Juan 15

• **exercise: 3.1.1(b); 3.1.5**

• 加**: 3.1.7; 3.1.9; 3.1.14; 3.1.17**

Chapter 3 Plane Graphs and Planar Graphs

§ **3.2 Kuratowski's Theorem**

마리트 na Πľ

3.2 Kuratowski's Theorem

Def: $\mathbb{D}e = xy \in E(G)$ is said to be subdivided $\equiv ((G \e) \cup z) \cup \{xz, zy\}$ **A subdivision of a graph** *G* **is a graph obtained from** *G* **by a sequence of edge subdivisions.**

• **ex:**

• **Thm 3.6: (Kuratowski's theorem) A graph is planar** \Leftrightarrow it contains no subdivision of K_5 or $K_{3,3}$ as its subgraph.

Chapter 3 Plane Graphs and Planar Graphs

§ **3.3 Dual Graphs**

000 ŏŏ ПË

• Def: G: a plane graph with $E(G) = \{e_1, e_2, ..., e_s\}$. $F(G) = \{f_1, f_2, ..., f_\phi\}$ *G* **is called the geometric dual of** *G* **if** $V(G^*) = \{f_1^*, f_2^*, \ldots, f_{\phi}^*\}$ $E(G^*) = \{e_1^*, e_2^*, ..., e_{\varepsilon}^*\}\text{, s.t.}$ $f_i^* f_j^* \in E(G^*) \Leftrightarrow \exists e_i \in E(G) \text{ s.t. } e_i \text{ is a common boundary of } f_i \text{ and } f_j \text{ of } G.$

• Note:
$$
\begin{cases} \n\mathbf{v}(G^*) = \phi(G) \\ \n\mathbf{e}(G^*) = \mathbf{e}(G) \\ \n\mathbf{d}_{G^*}(f^*) = \mathbf{d}_G(f), \,\forall \, f \in F(G) \n\end{cases}
$$

• **ex:**

• Thm 3.7: G **:** a plane graph, G^* **:** the geometric dual of G , $B \subseteq E(G)$ and $B^* = \{e^* \in E(G^*): e \in B\}.$ Then (a) $G[B]$ is a cycle of $G \Leftrightarrow B^*$ is a bond of G^* . (b) *B* is a bond of $G \Leftrightarrow G^*[B^*]$ is a cycle of G^* .

• **Def:** *G***,** *G'***: two graphs.** *G'* **is called the combinatorial dual of** *G* **if** \exists **a** bijective mapping φ : $E(G) \rightarrow E(G')$ s.t. \forall $B \subseteq E(G)$, $G[B]$ is a cycle of G $\Leftrightarrow \varphi(B) = \{e' \in E(G') : \varphi(e) = e', e \in B\}$ is a bond of *G'*.

• **ex:**

• **Thm 3.8:** *G* **: a plane graph,** *G**** : the geometric dual of** *G***. Then**

- (a) G^* is the combinatorial dual of G .
- (b) G is the combinatorial dual of G^* .

• **Thm 3.9: (Whitney's theorem)**

A graph is planar \Leftrightarrow it has combinatorial dual.