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N )) 2.1 Trees and Spanning Trees

« Theorem 2.1: The following statements are equivalent
(a) G is atree.
(b) G has no loop and V x, y € V(G), 3! xy-path.
(c) G is connected and Ve € E(G), (G —¢) =2
(d) G is connected and ¢= v— 1.

« Corollary 2.1: Agraph Gisaforest o e=v—w

« Example 2.1.1: G: a forest and &G) > 1, G contains > 2w 1-degree vertices.
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) 2.1 Trees and Spanning Trees

Corollary 2.1: Agraph Gisaforest & e=v— o

« Example 2.1.2: Let A= {A;, A, ..., A} be a family of n distinct subsets of
X={1,2,...,n}. Then I x e Xs.t. A,\{X}, A,\{x}, ..., A \{x} are all distinct.
Proof. (1/2) (%)

Note: B, C € A, B = C and B\{i} = C\{i} = B A C={i}.
If not, i.e. Vi e X, 31 <k(i) <I(i) <ns.t. Agp\{i} = Ay \{i}

Le. Ay A Ay = {1}
JoLetk, I X — Xs.t k(i) = k< 1(i) =1 where A ;) A A = {i}-
Construct a simple undirected graph G where V(G) = X,
E(G) = {kDI(1) = X; | Ay A Ay = {1} V1 € X}
U Vie X, 3N 1<k() <I(i) <ns.t Ay AAG ={i}
.. &G) =n= By Coro. 2.1, G contains a cycle.
Suppose (I, Iy ..oy Ig, 1) IS @ cycle in G.
= ljljyy = Xppr 1 <JSs—=10 0 =X,

Sok(py) =0, 1<<s5 1(py) =g, 1<) <5 =1, U(pg) = 15
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| ? 2.1 Trees and Spanning Trees

« Example 2.1.2: Let A= {A;, A, ..., A} be a family of n distinct subsets of

X={1,2,...,n}. Then I x e Xs.t. A,\{X}, A,\{x}, ..., A \{x} are all distinct.
Proof. (2/2)
SUppose (iy, Iy, «.ey Ig, 17) IS @ Cycle in G.
= ljljyy = Xppr 1 < s =150y = X,
Sok(py) =0, 1< <55 I(py) =g, 1<) <s =1, I(py) =15
BUE{Ps} = Ay A Ay = Aig A Ay = Aif A A
=AAALAALAALAAA AR AAAA
=(ALAADAALAAD AL AA L AA)
= {0} A{P A{pst A... A{psa}
:U Pj = {P1, P2y eves Psa} ¢
J.dXxe ng.lt. A MXE AMXS, ...y A X} are all distinct.
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9 2.1 Trees and Spanning Trees

« Def: G: adigraph is a tree.
@ G is called an out-tree rooted at x, if Vy € V(G), y # X,
3! (x, y)-dipath in G.
@ x is called a root of G.
® in-tree
@ rooted tree = in-tree or out-tree.

« Def: F is a spanning subgraph of G with a(F) = a(G).
@ F is called a spanning forest if F is a forest.
@ F is called a spanning tree if F is a tree.

- @

A spanning forest A spanning tree
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) 2.1 Trees and Spanning Trees

Theorem 2.1: The following statements are equivalent:
(a) G is a tree.
(c) G is connected and Ve € E(G), (G —e) =2

« Theorem 2.2: G: a graph. G contains a spanning tree < G is connected
Proof.
(=) clear.
(<) Let T be a connected spanning subgraph with edges as few as possible.
S.oT)=1, T —e)=2foranye e E(T).
By Thm 2.1(c) = (a), T is a tree.

« Corollary 2.2.1: ® Every graph contains a spanning forest and
@ Every connected graph contains a spanning tree.
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)) 2.1 Trees and Spanning Trees

Corollary 2.2.1: @ Every graph contains a spanning forest and
® Every connected graph contains a spanning tree.

« Corollary 2.2.2: £> v— w for every graph.
Proof.
Let G be a graph.
By Corollary 2.2.1, every connected component of G contains a spanning tree
and G contains a spanning forest F.
By Corollary 2.1, &(F) = (F) — o(F) = G) — o(G).
CS.e=8G6G)2éeF)=v- o
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)) 2.1 Trees and Spanning Trees

Theorem 2.3: F is a spanning forest of G and E(G)\E(F) # ¢
= V e € E(G)\E(F), F + e contains a unique cycle.

Proof.

By definition of spanning forest, F contains no cycle, and
Ve € E(G)\E(F), let e = xy.
Since X, y in the same component T of G, and T is a tree.

Let P be the unique xy-path in F by Thm 2.1(b).
Then P +eisauniquecyclein F+e.

Theorem 2.1: The following statements are equivalent:
(a) G is a tree.

(b) G has no loop and V x, y € V(G), 3! xy-path.

(c) G is connected and Ve € E(G), (G —e) =2
(d) G is connected and e= v- 1.
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Corollary 2.1: Agraph Gisaforest & e= v—w

« Corollary 2.3: Any loopless graph contains at least £— v+ @ distinct cycles.

e Def: G: agraph,
® B (# @) < E(G) is called a (edge) cut of G =
3ScV(G), 1L|S|<v-1st.B=]S, S|
@ A cut B is called a minimal cut (or bond) =
V B’ < B, B' is not a cut of G.

. ex: = S S S

Acut A bond
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9 2.1 Trees and Spanning Trees

« Note: ® B E(G)isacutof G, = oG —-B) > o(G).

@ “<” is not always true. ex: P""‘B 'q

®@Bisabondof G= (G -B)=aG) +1
@ IfBisacut,thenBisabond < (G -B) = a(G) +1

« Def: If F is a spanning subgraph of G.
@ The cograph of Fin G, F(G) (F ) =G — E(F).

@ If F is a spanning forest (tree), then F(G) is called the coforest (cotree) of G.
® Write F instead of E(F).

« Note: F(K,) = FC€
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« Theorem 2.4: G: a nonempty (undirected) graph G, F: a spanning forest of G.
Lete € E(F). Then,
® F contains no bond of G; @ F + e contains a unique bond of G.
Proof. (1/2)
@ Let B be any bond of G.

S G-B)—-1=wG)=F) A} > spanning forest
=>EF)NnB=g ex: @ l%)gd
= B 2 E(F(G)) o> = FE)

@ Let Sc V(F) = V(G) s.t. Sis the vertex-set of some component of F —e.
J: Let[S, S] =B, then BisacutofG, and B c E(F(G)) +e

o e S
.. E(F(G)) + e contains a cut of G. ex: @§
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| /’ 2.1 Trees and Spanning Trees

« Theorem 2.4: G: a nonempty (undirected) graph G, F: a spanning forest of G.
Lete € E(F). Then,
® F contains no bond of G; @ F + e contains a unique bond of G.
Proof. (2/2)
@ Let Sc V(F) = V(G) s.t. Sis the vertex-set of some component of F —e.
@: Let [S,_S_] =B, then Bisacutof G,and BC E(F(G)) +e S
.". E(F(G)) + e contains a cut of G. ex: —
@Suppose E(F(G)) + e contains two distinct bonds B and B’ of G.
By ®,ee BnB’,but"." B£B’,.". (B UB')—-econtains a bond (Ex 2.1.13)
" (BuB) —ecE(F(G))
.. E(F(G)) contains abond —«
.. E(F(G)) + e contains a unique bond of G.
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| ‘ 2.1 Trees and Spanning Trees

« Corollary 2.4: Any loopless (undirected) graph G contains at least v— @ distinct
bonds.

Proof.
"." G has w component, .". the spanning forest F has v— @ edges.
By Thm 2.4, V e € E(F), F + e contains a unique bond of G.
.". G contains > v— @ distinct bonds.
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)) 2.1 Trees and Spanning Trees

« Note: © The relationship between spanning forest (trees) and coforests (cotrees)
Is complementary in a graph. .". Thm 2.3 and Thm 2.4 explores the
relationship between cycles and bonds is analogous to that between
forests and coforests. (§ 2.2).
P100: [ Def: ¢(G) = the number of spanning trees in G. (c: sigma)
@ §2.3. see P103:§ Corollary 2.7.3: S(T,) = n"2, T,: tournament
P105: { Corollary 2.7.5: S(K,)) = n"?, forn> 2.
® § 2.4. see The minimum connector problem. (Prim’s Algorithm)
@ § 2.5. see The shortest path problem. (Dijsktra’s Algorithm)

(c) Spring 2019, Justie Su-Tzu Juan 14



2.1 Trees and Spanning Trees

exercise: 2.1.2 (a); 2.1.11

“v:21.4;21.13;21.14
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