Chapter 2 Trees and Graphic Spaces

2.1 Trees and Spanning Trees (2)

Ş

<u>Theorem 2.1</u>: The following statements are equivalent

- (a) G is a tree.
- (b) G has no loop and $\forall x, y \in V(G), \exists ! xy$ -path.
- (c) *G* is connected and $\forall e \in E(G), \omega(G-e) = 2$
- (d) *G* is connected and $\varepsilon = v 1$.

<u>Corollary 2.1</u>: A graph *G* is a forest $\Leftrightarrow \varepsilon = v - \omega$

Example 2.1.1: *G*: a forest and $\delta(G) \ge 1$, *G* contains $\ge 2\omega$ 1-degree vertices.

<u>Corollary 2.1</u>: A graph *G* is a forest $\Leftrightarrow \varepsilon = v - \omega$

Example 2.1.2: Let $A = \{A_1, A_2, ..., A_n\}$ be a family of *n* distinct subsets of

 $X = \{1, 2, ..., n\}$. Then $\exists x \in X$ s.t. $A_1 \setminus \{x\}, A_2 \setminus \{x\}, ..., A_n \setminus \{x\}$ are all distinct. Proof. (1/2) (略)

 $\underbrace{\text{Note: } B, C \in A, B \neq C \text{ and } B \setminus \{i\} = C \setminus \{i\} \Rightarrow B \Delta C = \{i\}.}$ If not, i.e. $\forall i \in X, \exists 1 \leq k(i) < l(i) \leq n \text{ s.t. } A_{k(i)} \setminus \{i\} = A_{l(i)} \setminus \{i\}$ i.e. $A_{k(i)} \Delta A_{l(i)} = \{i\}$

... Let $k, l: X \to X$ s.t. k(i) = k < l(i) = l where $A_{k(i)} \Delta A_{l(i)} = \{i\}$. Construct a simple undirected graph *G* where V(G) = X,

 $E(G) = \{k(i)l(i) = x_i \mid A_{k(i)} \Delta A_{l(i)} = \{i\} \forall i \in X\}$

 $\because \forall i \in X, \exists ! 1 \le k(i) < l(i) \le n \text{ s.t. } A_{k(i)} \Delta A_{l(i)} = \{i\}.$

 $\therefore \varepsilon(G) = n \Rightarrow By Coro. 2.1, G contains a cycle.$

Suppose $(i_1, i_2, ..., i_s, i_1)$ is a cycle in *G*.

 $\Rightarrow i_{j}i_{j+1} = x_{p_{j}}, 1 \le j \le s - 1; i_{s}i_{1} = x_{p_{s}}$ $\therefore k(p_{j}) = i_{j}, 1 \le j \le s; l(p_{j}) = i_{j+1}, 1 \le j \le s - 1, l(p_{s}) = i_{1}.$

(c) Spring 2019, Justie Su-Tzu Juan

Example 2.1.2: Let $A = \{A_1, A_2, ..., A_n\}$ be a family of *n* distinct subsets of $X = \{1, 2, ..., n\}$. Then $\exists x \in X$ s.t. $A_1 \setminus \{x\}, A_2 \setminus \{x\}, ..., A_n \setminus \{x\}$ are all distinct. **Proof.** (2/2) Suppose $(i_1, i_2, ..., i_s, i_1)$ is a cycle in G. $\Rightarrow i_i i_{i+1} = x_{p_i}, 1 \le j \le s-1; i_s i_1 = x_{p_s}$ $\therefore k(p_i) = i_i, 1 \le j \le s; l(p_i) = i_{i+1}, 1 \le j \le s - 1, l(p_s) = i_1.$ But $\{p_s\} = A_{k(p_s)} \Delta A_{l(p_s)} = A_{i_s} \Delta A_{i_1} = A_{i_1} \Delta A_{i_s}$ $= A_{i_1} \Delta A_{i_2} \Delta A_{i_2} \Delta A_{i_3} \Delta A_{i_3} \Delta \dots \Delta A_{i_{s-1}} \Delta A_{i_{s-1}} \Delta A_{i_s}$ $= (A_{i_1} \Delta A_{i_2}) \Delta (A_{i_2} \Delta A_{i_3}) \Delta \dots \Delta (A_{i_{s-1}} \Delta A_{i_s})$ $= \{p_1\} \Delta \{p_2\} \Delta \{p_3\} \Delta \dots \Delta \{p_{s-1}\}$ $= \bigcup p_j = \{p_1, p_2, \dots, p_{s-1}\} \quad \rightarrow \leftarrow$ $\therefore \exists x \in X \text{ s.t. } A_1 \setminus \{x\}, A_2 \setminus \{x\}, \dots, A_n \setminus \{x\} \text{ are all distinct.}$

<u>Def</u>: *G*: a digraph is a tree.

① *G* is called an out-tree rooted at *x*, if $\forall y \in V(G), y \neq x$,

 $\exists ! (x, y)$ -dipath in *G*.

② *x* is called a root of *G*.

③ in-tree

④ rooted tree = in-tree or out-tree.

<u>Def</u>: *F* is a spanning subgraph of *G* with ω(*F*) = ω(*G*).
① *F* is called a spanning forest if *F* is a forest.
② *F* is called a spanning tree if *F* is a tree.

ex:

Theorem 2.1: The following statements are equivalent:

(a) G is a tree.

(c) G is connected and $\forall e \in E(G), \omega(G-e) = 2$

<u>Theorem 2.2</u>: G: a graph. G contains a spanning tree \Leftrightarrow G is connected **Proof.**

 (\Rightarrow) clear.

(\Leftarrow) Let *T* be a connected spanning subgraph with edges as few as possible.

 $\therefore \omega(T) = 1, \omega(T - e) = 2$ for any $e \in E(T)$.

By <u>Thm 2.1(c) \Rightarrow (a), *T* is a tree.</u>

<u>Corollary 2.2.1</u>: ① Every graph contains a spanning forest and ② Every connected graph contains a spanning tree.

Corollary 2.2.1: ① Every graph contains a spanning forest and

② Every connected graph contains a spanning tree.

Corollary 2.2.2: $\varepsilon \ge v - \omega$ for every graph.

Proof.

Let G be a graph.

By Corollary 2.2.1, every connected component of G contains a spanning tree

and G contains a spanning forest F.

By Corollary 2.1, $\varepsilon(F) = v(F) - \omega(F) = v(G) - \omega(G)$.

 $\therefore \varepsilon = \varepsilon(G) \ge \varepsilon(F) = \nu - \omega.$

<u>Theorem 2.3</u>: *F* is a spanning forest of *G* and $E(G) \setminus E(F) \neq \phi$

 $\Rightarrow \forall e \in E(G) \setminus E(F), F + e \text{ contains a unique cycle.}$

Proof.

By definition of spanning forest, *F* contains no cycle, and $\forall e \in E(G) \setminus E(F)$, let e = xy.

Since *x*, *y* in the same component *T* of *G*, and *T* is a tree.

Let *P* be the unique *xy*-path in *F* by Thm 2.1(b).

Then P + e is a unique cycle in F + e.

<u>Theorem 2.1</u>: The following statements are equivalent:
(a) G is a tree.
(b) G has no loop and ∀ x, y ∈ V(G), ∃! xy-path.
(c) G is connected and ∀e ∈ E(G), ω(G - e) = 2
(d) G is connected and ε = v - 1.

<u>Corollary 2.1</u>: A graph *G* is a forest $\Leftrightarrow \varepsilon = v - \omega$

Corollary 2.3: Any loopless graph contains at least $\varepsilon - v + \omega$ distinct cycles.

<u>Def</u>: *G*: a graph, (1) $B (\neq \phi) \subseteq E(G)$ is called a (edge) cut of $G \equiv \exists S \subseteq V(G), 1 \leq |S| \leq v - 1$ s.t. $B = [S, \overline{S}]$ (2) A cut *B* is called a minimal cut (or bond) $\equiv \forall B' \subset B, B'$ is not a cut of *G*.

(c) Spring 2019, Justie Su-Tzu Juan

<u>Note</u>: $B \subseteq E(G)$ is a cut of $G, \Rightarrow \omega(G - B) > \omega(G)$. $@ ``{\Leftarrow}`` is not always true. ex:$ $<math>@ B is a bond of G \Rightarrow \omega(G - B) = \omega(G) + 1$ @ If B is a cut, then B is a bond $\Leftrightarrow \omega(G - B) = \omega(G) + 1$

Def: If F is a spanning subgraph of G.
① The cograph of F in G, F(G) (F) = G - E(F).
② If F is a spanning forest (tree), then F(G) is called the coforest (cotree) of G.
③ Write F instead of E(F).

<u>Note</u>: $\overline{F}(K_{\nu}) = F^C$

Theorem 2.4: G: a nonempty (undirected) graph G, F: a spanning forest of G. Let $e \in E(F)$. Then, ① \overline{F} contains no bond of G; ② $\overline{F} + e$ contains a unique bond of G. **Proof.** (1/2)① Let *B* be any bond of *G*.: spanning forest $\therefore \omega(G-B)-1 = \omega(G) = \omega(F)$ **—:** bond $\Rightarrow E(F) \cap B \neq \phi$ ex: \bigcirc : $\overline{F}(G)$ $\Rightarrow B \not\subset E(\overline{F(G)})$ ② Let *S* ⊆ *V*(*F*) = *V*(*G*) s.t. *S* is the vertex-set of some component of *F* − *e*. \exists : Let $[S, \overline{S}] = B$, then *B* is a cut of *G*, and $B \subseteq E(\overline{F}(G)) + e$ $\therefore E(\overline{F}(G)) + e$ contains a cut of G. ex:

Theorem 2.4: G: a nonempty (undirected) graph G, F: a spanning forest of G. Let $e \in E(F)$. Then, ① \overline{F} contains no bond of G; ② $\overline{F} + e$ contains a unique bond of G. **Proof.** (2/2) ② Let *S* ⊆ *V*(*F*) = *V*(*G*) s.t. *S* is the vertex-set of some component of *F* − *e*. (a): Let $[S, \overline{S}] = B$, then *B* is a cut of *G*, and $B \subseteq E(\overline{F}(G)) + e$ $\therefore E(F(G)) + e$ contains a cut of G. ex: (:) Suppose $E(\overline{F(G)}) + e$ contains two distinct bonds B and B' of \overline{G} . By ①, $e \in B \cap B'$, but $\therefore B \neq B'$, $\therefore (B \cup B') - e$ contains a bond (Ex 2.1.13) $\therefore (B \cup B') - e \subset E(\overline{F}(G))$ $\therefore E(\overline{F}(G))$ contains a bond $\rightarrow \leftarrow$

 $\therefore E(\overline{F}(G)) + e$ contains a unique bond of *G*.

<u>Corollary 2.4</u>: Any loopless (undirected) graph G contains at least $v - \omega$ distinct bonds.

Proof.

- : G has ω component, : the spanning forest F has $\nu \omega$ edges.
- By <u>Thm 2.4</u>, $\forall e \in E(F)$, $\overline{F} + e$ contains a unique bond of *G*.

 \therefore *G* contains $\geq v - \omega$ distinct bonds.

<u>Note</u>: ① The relationship between spanning forest (trees) and coforests (cotrees) is complementary in a graph. ∴ <u>Thm 2.3</u> and <u>Thm 2.4</u> explores the relationship between cycles and bonds is analogous to that between forests and coforests. (§ 2.2).

P100:Def: $\varsigma(G) \equiv$ the number of spanning trees in G. (ς : sigma)② § 2.3. see P103:Corollary 2.7.3: $S(T_n) = n^{n-2}$, T_n : tournamentP105:Corollary 2.7.5: $S(K_n) = n^{n-2}$, for $n \ge 2$.③ § 2.4. see The minimum connector problem. (Prim's Algorithm)

§ 2.5. see The shortest path problem. (Dijsktra's Algorithm)

exercise: 2.1.2 (a); 2.1.11

加: 2.1.4; 2.1.13; 2.1.14