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Chapter 2
Trees and Graphic Spaces

§ 2.1 Trees and Spanning Trees (2)
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2.1 Trees and Spanning Trees

• Theorem 2.1: The following statements are equivalent

(a) G is a tree.

(b) G has no loop and  x, y  V(G), ! xy-path.

(c) G is connected and e  E(G), (G − e) = 2

(d) G is connected and  =  − 1.

• Corollary 2.1: A graph G is a forest   =  − 

• Example 2.1.1: G: a forest and (G)  1, G contains  2 1-degree vertices.
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2.1 Trees and Spanning Trees

• Example 2.1.2: Let A = {A1, A2, …, An} be a family of n distinct subsets of 

X = {1, 2, …, n}. Then  x  X s.t. A1\{x}, A2\{x}, …, An\{x} are all distinct.

Proof. (1/2) (略)

Note: B, C  A, B  C and B\{i} = C\{i}  B  C={i}.

If not, i.e.  i  X,  1  k(i) < l(i)  n s.t. Ak(i)\{i} = Al(i)\{i}

i.e. Ak(i)  Al(i) = {i}

∴ Let k, l: X → X s.t. k(i) = k < l(i) = l where Ak(i)  Al(i) = {i}.

Construct a simple undirected graph G where V(G) = X,

E(G) = {k(i)l(i) = xi | Ak(i)  Al(i) = {i}  i  X}

∵  i  X, ! 1  k(i) < l(i)  n s.t. Ak(i)  Al(i) = {i}.

∴ (G) = n  By Coro. 2.1, G contains a cycle.

Suppose (i1, i2, …, is, i1) is a cycle in G.

 ijij+1 = xpj
, 1  j  s − 1; isi1 = xps

∴ k(pj) = ij, 1  j  s; l(pj) = ij+1, 1  j  s − 1, l(ps) = i1.

Corollary 2.1: A graph G is a forest   =  − 
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2.1 Trees and Spanning Trees

• Example 2.1.2: Let A = {A1, A2, …, An} be a family of n distinct subsets of 

X = {1, 2, …, n}. Then  x  X s.t. A1\{x}, A2\{x}, …, An\{x} are all distinct.

Proof. (2/2)

Suppose (i1, i2, …, is, i1) is a cycle in G.

 ijij+1 = xpj
, 1  j  s − 1; isi1 = xps

∴ k(pj) = ij, 1  j  s; l(pj) = ij+1, 1  j  s − 1, l(ps) = i1.

But {ps} = Ak(ps)  Al(ps) = Ais
 Ai1

= Ai1
 Ais

= Ai1
 Ai2

 Ai2
 Ai3

 Ai3
 …  Ais−1

 Ais−1
 Ais

= (Ai1
 Ai2

)  (Ai2
 Ai3

)  …  (Ais−1
 Ais

)

= {p1}  {p2}  {p3}  …  {ps–1}                           

=     pj = {p1, p2, …, ps−1}   →

∴  x  X s.t. A1\{x}, A2\{x}, …, An\{x} are all distinct.


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2.1 Trees and Spanning Trees

• Def: G: a digraph is a tree.

 G is called an out-tree rooted at x, if  y  V(G), y  x,

! (x, y)-dipath in G.

 x is called a root of G.

 in-tree

 rooted tree  in-tree or out-tree.

• Def: F is a spanning subgraph of G with (F) = (G).

 F is called a spanning forest if F is a forest.

 F is called a spanning tree if F is a tree.

• ex:

A spanning treeA spanning forest
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2.1 Trees and Spanning Trees

• Theorem 2.2: G: a graph. G contains a spanning tree  G is connected

Proof.

() clear.

() Let T be a connected spanning subgraph with edges as few as possible.

∴ (T) = 1, (T − e) = 2 for any e  E(T).

By Thm 2.1(c)  (a), T is a tree.

• Corollary 2.2.1:  Every graph contains a spanning forest and

 Every connected graph contains a spanning tree.

Theorem 2.1: The following statements are equivalent:

(a) G is a tree.

(c) G is connected and e  E(G), (G − e) = 2
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2.1 Trees and Spanning Trees

• Corollary 2.2.2:    −  for every graph.

Proof.

Let G be a graph.

By Corollary 2.2.1, every connected component of G contains a spanning tree 

and G contains a spanning forest F.

By Corollary 2.1, (F) = (F) − (F) = (G) − (G).

∴  = (G)  (F) =  − .

Corollary 2.2.1:  Every graph contains a spanning forest and

 Every connected graph contains a spanning tree.



(c) Spring 2019, Justie Su-Tzu Juan 88

2.1 Trees and Spanning Trees

• Theorem 2.3: F is a spanning forest of G and E(G)\E(F)  

  e  E(G)\E(F), F + e contains a unique cycle.

Proof. 

By definition of spanning forest, F contains no cycle, and 

 e  E(G)\E(F), let e = xy.

Since x, y in the same component T of G, and T is a tree.

Let P be the unique xy-path in F by Thm 2.1(b).

Then P + e is a unique cycle in F + e .

Theorem 2.1: The following statements are equivalent:

(a) G is a tree.

(b) G has no loop and  x, y  V(G), ! xy-path.

(c) G is connected and e  E(G), (G − e) = 2

(d) G is connected and  =  − 1.
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2.1 Trees and Spanning Trees

• Corollary 2.3: Any loopless graph contains at least  −  +  distinct cycles.

• Def: G: a graph,

 B ( )  E(G) is called a (edge) cut of G 

 S  V(G), 1  |S|   − 1 s.t. B = [S, S]

A cut B is called a minimal cut (or bond) 

 B  B, B is not a cut of G.

• ex:
SS

A cut

SS

A bond

Corollary 2.1: A graph G is a forest   =  − 
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2.1 Trees and Spanning Trees

• Note:  B  E(G) is a cut of G,  (G − B) > (G).

 “” is not always true. ex:

 B is a bond of G  (G − B) = (G) + 1

 If B is a cut, then B is a bond (G − B) = (G) + 1

• Def: If F is a spanning subgraph of G.

 The cograph of F in G, F(G) (F )  G − E(F).

 If F is a spanning forest (tree), then F(G) is called the coforest (cotree) of G.

Write F instead of E(F).

• Note: F(K) = FC

B
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2.1 Trees and Spanning Trees

• Theorem 2.4: G: a nonempty (undirected) graph G, F: a spanning forest of G.

Let e  E(F). Then,

 F contains no bond of G;  F + e contains a unique bond of G.

Proof. (1/2)

 Let B be any bond of G.

∴ (G − B) − 1 = (G) = (F)

 E(F)  B   ex:

 B  E(F(G))

 Let S  V(F) = V(G) s.t. S is the vertex-set of some component of F – e.

 : Let [S, S] = B, then B is a cut of G, and B  E(F(G)) + e

∴ E(F(G)) + e contains a cut of G.                              ex:

: spanning forest

: bond

: F(G)

Se

S
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2.1 Trees and Spanning Trees

• Theorem 2.4: G: a nonempty (undirected) graph G, F: a spanning forest of G.

Let e  E(F). Then,

 F contains no bond of G;  F + e contains a unique bond of G.

Proof. (2/2)

 Let S  V(F) = V(G) s.t. S is the vertex-set of some component of F – e.

 : Let [S, S] = B, then B is a cut of G, and B  E(F(G)) + e

∴ E(F(G)) + e contains a cut of G.                              ex:

!: Suppose E(F(G)) + e contains two distinct bonds B and B of G.

By , e  B  B, but ∵ B  B, ∴ (B  B) − e contains a bond (Ex 2.1.13)

∵ (B  B) − e  E(F(G))

∴ E(F(G)) contains a bond    →

∴ E(F(G)) + e contains a unique bond of G.

Se

S
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2.1 Trees and Spanning Trees

• Corollary 2.4: Any loopless (undirected) graph G contains at least  −  distinct 

bonds.

Proof. 

∵ G has  component, ∴ the spanning forest F has  −  edges.

By Thm 2.4,  e  E(F), F + e contains a unique bond of G.

∴ G contains   −  distinct bonds.
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2.1 Trees and Spanning Trees

• Note:  The relationship between spanning forest (trees) and coforests (cotrees) 

is complementary in a graph. ∴ Thm 2.3 and Thm 2.4 explores the 

relationship between cycles and bonds is analogous to that between 

forests and coforests. (§ 2.2). 

P100:   Def: (G)  the number of spanning trees in G.  (: sigma)

 § 2.3. see P103:    Corollary 2.7.3: S(Tn) = nn−2, Tn: tournament

P105:    Corollary 2.7.5: S(Kn) = nn−2, for n  2.

 § 2.4. see The minimum connector problem. (Prim’s Algorithm)

 § 2.5. see The shortest path problem.             (Dijsktra’s Algorithm)
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2.1 Trees and Spanning Trees

• exercise: 2.1.2 (a); 2.1.11

• 加: 2.1.4; 2.1.13; 2.1.14


