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Chapter 1

Basic Concepts of Graphs

§ 1.9 Hamiltonian Graphs (2)
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1.9 Hamiltonian Graphs

• Theorem 1.9: G: a simple undirected graph of   3

dG(x) + dG(y)  ,  x, y  V(G), xy  E(G) ()  G is hamiltonian

<Proof 2> (1/2)

By exercise 1.5.6(c), ∵ G satisfies (). ∴ G is connected and contains a cycles.

Let C = (x1, x2, …, xk, x1) be a longest cycle in G.

Suppose k < , let R = V(G)\V(C).

∵ G is connected, ∴W.L.O.G.,  y  R, s.t. yxk  E(G).

∵ C is largest, ∴ x1y  E(G).

Let S = {xi  V(C): x1xi+1  E(G), 1  i  k − 1},

T = { xj  V(C): xjy  E(G), 2  j  k}.

 |S  T|  k and |S  T| = 0

 dG[V(C){y}](x1) + dG[V(C){y}] (y) = |S| + |T| = |S  T|  k −−−−

x1 x2 x3 xi xi+1 xk−1 xk
y
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1.9 Hamiltonian Graphs

• Theorem 1.9: G: a simple undirected graph of   3

dG(x) + dG(y)  ,  x, y  V(G), xy  E(G) ()  G is hamiltonian

<Proof 2> (2/2)

Let S = {xi  V(C): x1xi+1  E(G), 1  i  k − 1},

T = { xj  V(C): xjy  E(G), 2  j  k}.

 |S  T|  k and |S  T| = 0

 dG[V(C){y}](x1) + dG[V(C){y}] (y) = |S| + |T| = |S  T|  k −−−−

∵ C is largest. ∴  z  R\{y}, either x1z  E(G) or yz  E(G)

 |({x1}, R − {y})| + |({y}, R − {y})|   − k − 1   −−−−−−−−−−−

 +  dG(x1) + dG(y)  k +  − k − 1 =  − 1   →

∴ k = ,    i.e. G is hamiltonian.

x1 x2 x3 xi xi+1 xk−1 xk
y
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1.9 Hamiltonian Graphs

• Corollary 1.9: Every simple graph with   3 and   (1/2) is hamiltonian.

• Def: For a digraph G, x  V(G), dG(x) = dG
+(x) + dG

−(x). 

• Theorem 1.10: Let C = (x1, x2, …, xk, x1) be a longest directed cycle in a strongly 

connected simple digraph G. (the index calculate in mod k, and 0 = k)

If k < , then  x  V(G) \ V(C) and two integral a  [1, k], b  [1, k − 1] s.t.

(i)   (xa, x)  E(G)

(ii)  (xa+i, x), (x, xa+i)  E(G),  i  [1, b]

(iii) dG(x) + dG(xa+b)  2 − 1 − b
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1.9 Hamiltonian Graphs

• Corollary 1.10.1: G: a strongly connected simple digraph.

 nonadjacent vertices x, y  V(G), dG(x) + dG(y)  2 − 1

 G is hamiltonian.

Proof.

If not, then by Thm 1.10,  x and xa+b  V(G), s.t.

(ii) (x, xa+b), (xa+b, x)  E(G), and

(iii) dG(x) + dG(xa+b)  2 − 1 − b  2 − 2   →

• Corollary 1.10.2: G: a strongly connected simple digraph,

 x  V(G), dG(x)    G is hamiltonian.

• Corollary 1.10.3: G: a simple digraph,   (1/2) > 1  G is hamiltonian.

By exercise 1.5.8(a) and Corollary 1.10.1.
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1.9 Hamiltonian Graphs

• Theorem 1.10: Let C = (x1, x2, …, xk, x1) be a longest directed cycle in a strongly 

connected simple digraph G. (the index calculate in mod k, and 0 = k)

If k < , then  x  V(G) \ V(C) and two integral a  [1, k], b  [1, k − 1] s.t.

(i)   (xa, x)  E(G)                                       (ii)  (xa+i, x), (x, xa+i)  E(G),  i  [1, b]

(iii) dG(x) + dG(x(a+b)mod k)  2 − 1 − b

Proof. (1/6) (略)

Let S = V(C),

∵ G is strongly connected and |S| < .

∴  xi, xj  S and (xi, xj)-path P in G s.t. V(P) – S   and V(P)  S = {xi, xj}

If xi  xj, we say P is an S-path, else say an S-cycle.

Case 1: G contains no S-path.

Case 2: G contains an S-path. 
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• Theorem 1.10: Let C = (x1, x2, …, xk, x1) be a longest directed cycle in a strongly 

connected simple digraph G. (the index calculate in mod k, and 0 = k)

If k < , then  x  V(G) \ V(C) and two integral a  [1, k], b  [1, k − 1] s.t.

(i)   (xa, x)  E(G)                                       (ii)  (xa+i, x), (x, xa+i)  E(G),  i  [1, b]

(iii) dG(x) + dG(x(a+b)mod k)  2 − 1 − b

Proof. (2/6)

Case 1: G contains no S-path.

Let P = (xa, y1, y2, …, yt, xa) be an S-cycle with xa  S.

Let x = y1 and b = 1

Note that (xa, x)  E(G), and ∵ no S-path. ∴ (xa+1, x), (x, xa+1)  E(G)

Obviously, |[{xa+1}, S]|  2(k − 1)  −−−

∵ G contains no S-path.  ∴  i  [1, k] and i  a, (x, xi), (xi, x)  E(G)

 |[{x}, S]|  2  −−−

1.9 Hamiltonian Graphs

(i) (ii)

xa+1y1=x

CP

xa
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1.9 Hamiltonian Graphs

• Theorem 1.10: Let C = (x1, x2, …, xk, x1) be a longest directed cycle in a strongly 

connected simple digraph G. (the index calculate in mod k, and 0 = k)

If k < , then  x  V(G) \ V(C) and two integral a  [1, k], b  [1, k − 1] s.t.

(i)   (xa, x)  E(G)                                       (ii)  (xa+i, x), (x, xa+i)  E(G),  i  [1, b]

(iii) dG(x) + dG(x(a+b)mod k)  2 − 1 − b

Proof. (3/6)

∵ G contains no S-path

∴  y  V \ (S  {x}): (xa+1, y) or (y, x)  E(G) and (x, y) or (y, xa+1)  E(G).

 |[{y}, {xa+1, x}]|  2,  y  V \ (S  {x}) −−−

by : dG(x) + dG(xa+1) = |[{x, xa+1}, V]| = |[{x, xa+1}, V \ {x, xa+1}]|

= |[{x, xa+1}, V \ (S  {x})]| + |[{x, xa+1}, S \ {xa+1}]|

= |[{x, xa+1}, V \ (S  {x})]| + |[{x}, S]| + |[{xa+1}, S]|

 2( − k − 1) + 2 + 2(k − 1) = 2 − 2

i.e. dG(x) + dG(xa+b)  2 − 1 − b −−− (iii)

|[{xa+1}, S]|  2(k − 1)  −−−

|[{x}, S]|  2  −−−

xy1=x

x
CP y

xa+1

xa
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1.9 Hamiltonian Graphs

• Theorem 1.10: Let C = (x1, x2, …, xk, x1) be a longest directed cycle in a strongly 

connected simple digraph G. (the index calculate in mod k, and 0 = k)

If k < , then  x  V(G) \ V(C) and two integral a  [1, k], b  [1, k − 1] s.t.

(i)   (xa, x)  E(G)                                       (ii)  (xa+i, x), (x, xa+i)  E(G),  i  [1, b]

(iii) dG(x) + dG(x(a+b)mod k)  2 − 1 − b

Proof. (4/6)

Case 2: G contains an S-path.

Let P = (xa, y1, …, yt, xa+r) be an S-path with xa  S, s.t. r is as small as possible.

Let x = y1 (Note that, (xa, x)  E(G).)

∵ C is longest. ∴ r  2 and (x, xa+1)  E(G).

∵ r is as small as possible, ∴  i  [2, r − 1], (x, xa+i), (xa+i, x)  E(G) 

and (xa+1, x)  E(G)

∵ C is longest, ∴  i  [1, k], (xi, x) or (x, xi+1)  E(G).

 |[{x}, S]|  2k − [(k − r) + 2(r − 1)]

= k − r + 2   −−−−

xa+1

xa

→

y1=x xa+i

xa

xa+r

xa+r

xi+1

xi

xak−r+1

 r−1
y1=x

→

(i) (ii)
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1.9 Hamiltonian Graphs

• Theorem 1.10: Let C = (x1, x2, …, xk, x1) be a longest directed cycle in a strongly 

connected simple digraph G. (the index calculate in mod k, and 0 = k)

If k < , then  x  V(G) \ V(C) and two integral a  [1, k], b  [1, k − 1] s.t.

(i)   (xa, x)  E(G)                                       (ii)  (xa+i, x), (x, xa+i)  E(G),  i  [1, b]

(iii) dG(x) + dG(x(a+b)mod k)  2 − 1 − b

Proof. (5/6)

 y  V \ (S  {x}) and  i  [1, r − 1].  

∵ The choice of r, |[{y}, {x, xa+i}]|  2   −−−−

Let b be the maximum i  [1, r − 1] s.t. G[S] contains an (xa+r, xa)-path P

and V(P ) = {xa+r, xa+r+1, …, xa−1, xa, xa+1, …, xa+i−1}

 xa+b  V(P ) and |V(P )| = k − r + b

∵ the choice of b:

|[{xa+b}, V(P )]|  (k − r + b − 1) + 2 = k − r + b + 1   −−−−

P: xa+r
xa

xa+b

x

xa+r

xa

xa+i

y →

xa xa+1

xa+b−1

xa+b

xa+r

P
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1.9 Hamiltonian Graphs

• Theorem 1.10: Let C = (x1, x2, …, xk, x1) be a longest directed cycle in a strongly 

connected simple digraph G. (the index calculate in mod k, and 0 = k)

If k < , then  x  V(G) \ V(C) and two integral a  [1, k], b  [1, k − 1] s.t.

(i)   (xa, x)  E(G)                                       (ii)  (xa+i, x), (x, xa+i)  E(G),  i  [1, b]

(iii) dG(x) + dG(x(a+b)mod k)  2 − 1 − b

Proof. (6/6)

∵ |S \ (V(P )  {xa+b})| = (r − 1) − (b − 1) − 1 = r − b − 1

∴ |[{xa+b}, S \ (V(P )  {xa+b})]|  2(r − b − 1)   −−−−

By :

dG(x) + dG(xa+b) = |[{x, xa+b}, V]|

= |[{x, xa+b}, S]| + |[{x, xa+b}, V \ (S  {x})]|

= |[{x}, S]| + |[{xa+b}, S \ {xa+b}]| + |[{x, xa+b}, V \ (S  {x})]|

 (k − r + 2) + [(k − r + b + 1) + 2(r − b − 1)] + 2( − (k + 1))

= 2 − b − 1               ∴(iii) hold      

|[{x}, S]|  k − r + 2   −−−−

|[{y}, {x, xa+i}]|  2   −−−−

|[{xa+b}, V(P )]|  k − r + b + 1   −−−−
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1.9 Hamiltonian Graphs

• Corollary 1.10.4: Every strongly connected tournament is hamiltonian.

By Thm 1.5 or Thm 1.10

• Corollary 1.10.5: G: simple digraph.

 x, y  V(G) either (x, y)  E(G) or dG
+(x) + dG

−(y)  

 G is hamiltonian.

• Corollary 1.10.6: Every tournament contains a Hamilton path.

• Exercise: 1.9.1

• 加: 1.9.3, 1.9.4, 1.9.5, 1.9.9
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Chapter 1

Basic Concepts of Graphs

§ 1.10 Matrix Presentation of Graphs
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1.10 Matrix Presentation of Graphs

• Def: The adjacency matrix of a graph G = (V, E), where V = {x1, x2, …, x} is a 

   matrix A(G) = (aij), where aij = ({xi}, {xj}) = |EG({xi}, {xj})|

• ex:

• Def: The incidence matrix of a loopless graph G is a    matrix, M(G) = (mx(e)), 

x  V(G) and e  E(G),

where, if G is directed, then                 1, if x is the tail of e;

mx(e) =   −1, if x is the head of e;

0, o.w.

and if G is undirected, then mx(e) =    1, if e is incident with x;

0, o.w.

x1

x4 x3

x2

a1

a2

a6 a3
a7

a4

D

a5

x1

x4 x3

x2

e1

e2

e6 e3
e7

e4

G

e5

















=

1001
1011
0000
0020

)(DA

















=

1101
1011
0102
1120

)(GA
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1.10 Matrix Presentation of Graphs

• ex:

• Note: For computer





















−

−−−

−−

=

011000

101100

000111

110011

)( 1DM





















=

011000

101100

000111

110011

)( 1GM

x1

x4 x3

x2

e1

e2

e6 e3

e4

G1

e5

x1

x4 x3

x2

a1

a2

a6 a3

a4

D1

a5
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1.10 Matrix Presentation of Graphs

• Def:   =               be a permutation of {1, 2, …, n}.

 an n  n permutation matrix P = (pij) defined by pij =   1, if j = (i);

0, o.w.

• ex:  = (2  3  1  4),

• Remark:  If A, B are the adjacency matrices of G, H,

G  H      permutation matrix P s.t. A = P−1BP

 If M, N are incidence matrices of G, H,

G  H      permutation matrix P and    permutation 

matrix Q s.t. M = PNQ










niii
n




21

21



















=

1000

0001

0100

0010

P
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1.10 Matrix Presentation of Graphs

• Theorem 1.11: Let A be the adjacency matrix of a digraph G with 

V(G) = {x1, x2, …, x} and Ak = (aij
(k)) for k  1. Then 

aij
(k) = the number of different (xi, xj)-walks of length k in G.

Proof. 

Prove by induction on k.

When k = 1, it’s trivial.

Assume aij
(k−1) is the number of different (xi, xj)-walks of length k − 1.

∵ Ak = Ak−1  A, ∴ aij
(k) =                     −−− ()

∵ Every (xi, xj)-walk of length k in G

= (xi, xl)-walk of length k − 1 in G + an edge (xl, xj)

∴ By I.H and (), aij
(k) = the number of different (xi, xj)-walks of length k.


=

− 


1

)1(

l

lj

k

il aa
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1.10 Matrix Presentation of Graphs

• Note: ∵ ! (x, y)-walk of length n for any x, y  V(B(d, n)).

∴ A(B(d, n))n = J (= an square matrix all of whose entries are 1)

 A(K(d, n))n + A(K(d, n))n−1 = J

• Example 1.10.1:  (, k)-Moore digraph for   2 and k  2.

Proof. 略

• Note: K(, 2) is a maximum (, 2)-digraph. (目前唯一知道的)

Proof. By Example 1.10.1, (, 2)-diagaph  2 + , and

K(, 2) had order 2 + , and maximum degree = , diameter = 2.

max. degree diameter
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1.10 Matrix Presentation of Graphs

• 後略

• exercise: 1.10.1; 1.10.2

• 加: 1.10.8 
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Chapter 2
Trees and Graphic Spaces

§ 2.1 Trees and Spanning Trees (1)
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2.1 Trees and Spanning Trees

• Def: A graph is called a forest (or acyclic graph) if it contains no cycle.

A connected forest is called a tree.

• Note:  Forests and trees both are bipartite simple graphs.

 Restrict to undirected graphs.

• ex:

(a) (b)
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2.1 Trees and Spanning Trees

• Theorem 2.1: The following statements are equivalent

(a) G is a tree.

(b) G has no loop and  x, y  V(G), ! xy-path.

(c) G is connected and e  E(G), (G − e) = 2

(d) G is connected and  =  − 1.

Proof. (1/7) 

(a)  (b): 

∵ G is a tree, ∴ G is a connected simple graph contains no cycle.

Suppose  u, v  V(G), s.t.  distinct uv-path P1, P2.

∵ P1  P2. ∴  e = xy  E(G) s.t. e  E(P1) and e  E(P2).

∴ (P1  P2) − e is connected and contains a xy-path P.

 P + e is a cycle in G.  →
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2.1 Trees and Spanning Trees

• Theorem 2.1: The following statements are equivalent :

(a) G is a tree.

(b) G has no loop and  x, y  V(G), ! xy-path.

(c) G is connected and e  E(G), (G − e) = 2

(d) G is connected and  =  − 1.

Proof. (2/7)

(b)  (c):

∵  x, y  V(G), ! xy-path. ∴ G is connected.

 e = xy  E(G), G is connected. ∴ (G − e)  2  −−−

∵ xey is a unique xy-path (by (b))

∴ x, y are in different connected components of G − e.

(G − e)  2  −−−

By ,  e  E(G), (G − e) = 2.
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2.1 Trees and Spanning Trees

• Theorem 2.1: The following statements are equivalent :

(a) G is a tree.

(b) G has no loop and  x, y  V(G), ! xy-path.

(c) G is connected and e  E(G), (G − e) = 2

(d) G is connected and  =  − 1.

Proof. (3/7)

(c)  (a): 

Suppose G is not a tree. ∵ G is connected. ∴ G contains a cycle C.

Let e = xy  E(C).

∵ G is connected and (G − e) = 2, ∴ e is not a loop,

and x, y are in different connected components of G − e,

but C − e is an xy-path in G − e.  →

∴ G is a tree.
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2.1 Trees and Spanning Trees

• Theorem 2.1: The following statements are equivalent :

(a) G is a tree.

(b) G has no loop and  x, y  V(G), ! xy-path.

(c) G is connected and e  E(G), (G − e) = 2

(d) G is connected and  =  − 1.

Proof. (4/7)

(a)  (d): Prove by induction on   0.

  = 0, its trivial.

 Suppose  =  − 1 for any tree with  < m.

Now, consider a tree G with  = m  1.

Choose an edge e  E(G), ∵ (a)  (c), ∴ (G − e) = 2.

Let G1, G2 be two components of G − e.

∵ G1, G2 both are trees and (G1) < m, (G2) < m.

∴ By I.H, (Gi) = (Gi) − 1   i = 1, 2.
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2.1 Trees and Spanning Trees

• Theorem 2.1: The following statements are equivalent :

(a) G is a tree.

(b) G has no loop and  x, y  V(G), ! xy-path.

(c) G is connected and e  E(G), (G − e) = 2

(d) G is connected and  =  − 1.

Proof. (5/7)

(a)  (d):  Choose an edge e  E(G), ∵ (a)  (c), ∴ (G − e) = 2.

Let G1, G2 be two components of G − e.

∵ G1, G2 both are trees and (G1) < m, (G2) < m.

∴ By I.H, (Gi) = (Gi) − 1   i = 1, 2.

 (G) = (G1) + (G2) + |{e}| = ((G1) − 1) + ((G2) − 1) + 1

= (G1) + (G2) − 1 = (G) − 1

∴ By the principle of mathematical induction, (d) is necessary. 
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2.1 Trees and Spanning Trees

• Theorem 2.1: The following statements are equivalent :

(a) G is a tree.

(b) G has no loop and  x, y  V(G), ! xy-path.

(c) G is connected and e  E(G), (G − e) = 2

(d) G is connected and  =  − 1.

Proof. (6/7)

(d)  (a): Prove by induction on   1.

  = 1, then  = 0. ∴ G is a trivial and hence no cycle.  

 Suppose any connected graph of order n and  = n − 1 

contains no cycle.

Now, consider a connected graph G with order n + 1  2, 

and size  = (n + 1) − 1 = n.

∵ G is connected. ∴ (G)  1.

If (G)  2, then by Coro. 1.1:
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2.1 Trees and Spanning Trees

• Theorem 2.1: The following statements are equivalent :

(a) G is a tree.

(b) G has no loop and  x, y  V(G), ! xy-path.

(c) G is connected and e  E(G), (G − e) = 2

(d) G is connected and  =  − 1.

Proof. (7/7)

(d)  (a):             If (G)  2, then by Coro. 1.1:

2n = 2 =       dG(x)  2(n + 1)  →

∴ (G) = 1, i.e.  x  V(G), s.t. dG(x) = 1,

then G − x is connected graph of order n,  = n − 1.

∴ By I.H., G − x contains no cycle.

 G contains no cycle.

 G is connected and contains no cycle.

∴ G is a tree.


 )(GVx
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2.1 Trees and Spanning Trees

• Corollary 2.1: A graph G is a forest   =  − 

• Example 2.1.1: G: a forest and (G)  1, G contains  2 1-degree vertices.

Proof.

Let R = {x | dG(x) = 1,  x  V(G)}, and |R| = r.

By Coro. 2.1, and Coro. 1.1:

2( − ) = 2 =     dG(x) =      dG(x) + r

 2( − r) + r = 2 − r

 r  2


 )(GVv


 RVv \


