Chapter 1 Basic Concepts of Graphs

§ 1.9 Hamiltonian Graphs (2)

1.9 Hamiltonian Graphs

- Theorem 1.9: G : a simple undirected graph of $v \geq 3$

$$
d_{G}(x)+d_{G}(y) \geq v, \forall x, y \in V(G), x y \notin E(G)(\star) \Rightarrow G \text { is hamiltonian }
$$

<Proof 2> (1/2)
By exercise 1.5.6(c), $\because G$ satisfies ($*$). $\therefore G$ is connected and contains a cycles.
Let $C=\left(x_{1}, x_{2}, \ldots, x_{k}, x_{1}\right)$ be a longest cycle in G.
Suppose $k<v$, let $R=V(G) \backslash V(C)$.
$\because G$ is connected, \therefore W.L.O.G., $\exists y \in R$, s.t. $y x_{k} \in E(G)$.
$\because C$ is largest, $\therefore x_{1} y \notin E(G)$.

$$
\begin{align*}
& \text { Let } S=\left\{x_{i} \in V(C): x_{1} x_{i+1} \in E(G), 1 \leq i \leq k-1\right\}, \\
& \quad T=\left\{x_{j} \in V(C): x_{j} y \in E(G), 2 \leq j \leq k\right\}
\end{align*}
$$

(c) Spring 2019, Justie Su-Tzu Juan

1.9 Hamiltonian Graphs

- Theorem 1.9: G : a simple undirected graph of $v \geq 3$

$$
d_{G}(x)+d_{G}(y) \geq v, \forall x, y \in V(G), x y \notin E(G)(\star) \Rightarrow G \text { is hamiltonian }
$$

<Proof 2> (2/2)

$$
\begin{align*}
& \text { Let } S=\left\{x_{i} \in V(C): x_{1} x_{i+1} \in E(G), 1 \leq i \leq k-1\right\}, \\
& \quad T=\left\{x_{j} \in V(C): x_{j} y \in E(G), 2 \leq j \leq k\right\}
\end{align*}
$$

$\because C$ is largest. $\therefore \forall z \in R \backslash\{y\}$, either $x_{1} z \notin E(G)$ or $y z \notin E(G)$
$\Rightarrow\left|\left(\left\{x_{1}\right\}, R-\{y\}\right)\right|+|(\{y\}, R-\{y\})| \leq v-k-1$
(1) + (2) $\Rightarrow d_{G}\left(x_{1}\right)+d_{G}(y) \leq k+v-k-1=v-1 \rightarrow \leftarrow$
$\therefore k=v$, i.e. G is hamiltonian.

1.9 Hamiltonian Graphs

- Corollary 1.9: Every simple graph with $v \geq 3$ and $\delta \geq(1 / 2) v$ is hamiltonian.
- Def: For a digraph $G, x \in V(G), d_{G}(x)=d_{G}{ }^{+}(x)+d_{G}^{-}(x)$.
- Theorem 1.10: Let $C=\left(x_{1}, x_{2}, \ldots, x_{k}, x_{1}\right)$ be a longest directed cycle in a strongly connected simple digraph G. (the index calculate in $\bmod k$, and $0=k$) If $k<v$, then $\exists x \in V(G) \backslash V(C)$ and two integral $a \in[1, k], b \in[1, k-1]$ s.t.
(i) $\left(x_{a}, x\right) \in E(G)$
(ii) $\left(x_{a+i}, x\right),\left(x, x_{a+i}\right) \notin E(G), \forall i \in[1, b]$
(iii) $d_{G}(x)+d_{G}\left(x_{a+b}\right) \leq 2 v-1-b$

1.9 Hamiltonian Graphs

- Corollary 1.10.1: G : a strongly connected simple digraph.
\forall nonadjacent vertices $x, y \in V(G), d_{G}(x)+d_{G}(y) \geq 2 v-1$
$\Rightarrow G$ is hamiltonian.
Proof.
If not, then by Thm 1.10, $\exists x$ and $x_{a+b} \in V(G)$, s.t.
(ii) $\left(x, x_{a+b}\right),\left(x_{a+b}, x\right) \notin E(G)$, and
(iii) $d_{G}(x)+d_{G}\left(x_{a+b}\right) \leq 2 v-1-b \leq 2 v-2 \rightarrow \leftarrow$
- Corollary 1.10.2: G : a strongly connected simple digraph, $\forall x \in V(G), d_{G}(x) \geq v \Rightarrow G$ is hamiltonian.
- Corollary 1.10.3: G : a simple digraph, $\delta \geq(1 / 2) v>1 \Rightarrow G$ is hamiltonian.

By exercise 1.5.8(a) and Corollary 1.10.1.

1.9 Hamiltonian Graphs

- Theorem 1.10: Let $C=\left(x_{1}, x_{2}, \ldots, x_{k}, x_{1}\right)$ be a longest directed cycle in a strongly connected simple digraph G. (the index calculate in $\bmod k$, and $0=k$)
If $k<v$, then $\exists x \in V(G) \backslash V(C)$ and two integral $a \in[1, k], b \in[1, k-1]$ s.t.
(i) $\left(x_{a}, x\right) \in E(G)$
(ii) $\left(x_{a+i}, x\right),\left(x, x_{a+i}\right) \notin E(G), \forall i \in[1, b]$
(iii) $d_{G}(x)+d_{G}\left(x_{(a+b) \bmod k}\right) \leq 2 v-1-b$

Proof. (1/6) (略)
Let $S=V(C)$,
$\because G$ is strongly connected and $|S|<v$.
$\therefore \exists x_{i}, x_{j} \in S$ and $\left(x_{i}, x_{j}\right)$-path P in G s.t. $V(P)-S \neq \phi$ and $V(P) \cap S=\left\{x_{i}, x_{j}\right\}$
If $x_{i} \neq x_{j}$, we say P is an S-path, else say an S-cycle.
Case 1: G contains no S-path.
Case 2: G contains an S-path.

1.9 Hamiltonian Graphs

- Theorem 1.10: Let $C=\left(x_{1}, x_{2}, \ldots, x_{k}, x_{1}\right)$ be a longest directed cycle in a strongly connected simple digraph G. (the index calculate in $\bmod k$, and $0=k$)
If $k<v$, then $\exists x \in V(G) \backslash V(C)$ and two integral $a \in[1, k], b \in[1, k-1]$ s.t.
(i) $\left(x_{a}, x\right) \in E(G)$
(iii) $d_{G}(x)+d_{G}\left(x_{(a+b) \bmod k}\right) \leq 2 v-1-b$

Proof. (2/6)
Case 1: G contains no S-path.
Let $P=\left(x_{a}, y_{1}, y_{2}, \ldots, y_{t}, x_{a}\right)$ be an S-cycle with $x_{a} \in S$.

Let $x=y_{1}$ and $b=1$
Note that $\left(x_{a}, x\right) \in E(G)$, and \because no S-path. $\therefore \underline{\left(x_{a+1}, x\right),\left(x, x_{a+1}\right) \notin E(G)}$ Obviously, $\mid\left[\left[x_{a+1}(1), S\right] \mid \leq 2(k-1)\right.$ - (1) (ii)
$\because G$ contains no S-path. $\therefore \forall i \in[1, k]$ and $i \neq a,\left(x, x_{i}\right),\left(x_{i}, x\right) \notin E(G)$
$\Rightarrow|[\{x\}, S]| \leq 2$

1.9 Hamiltonian Graphs

$$
\begin{aligned}
& \left|\left[\left\{x_{a+1}\right\}, S\right]\right| \leq 2(k-1) \\
& |[\{x\}, S]| \leq 2 \text { - (2) }
\end{aligned}
$$

- Theorem 1.10: Let $C=\left(x_{1}, x_{2}, \ldots, x_{k}, x_{1}\right)$ be a longest directed cycle in a strongly connected simple digraph G. (the index calculate in $\bmod k$, and $0=k$)
If $k<v$, then $\exists x \in V(G) \backslash V(C)$ and two integral $a \in[1, k], b \in[1, k-1]$ s.t.
(i) $\left(x_{a}, x\right) \in E(G)$
(ii) $\left(x_{a+i}, x\right),\left(x, x_{a+i}\right) \notin E(G), \forall i \in[1, b]$
(iii) $d_{G}(x)+d_{G}\left(x_{(a+b) \bmod k}\right) \leq 2 v-1-b$

Proof. (3/6)
$\because G$ contains no S-path

$\therefore \forall y \in V \backslash(S \cup\{x\}):\left(x_{a+1}, y\right)$ or $(y, x) \notin E(G)$ and (x, y) or $\left(y, x_{a+1}\right) \notin E(G)$.

$$
\begin{equation*}
\Rightarrow\left|\left[\{y\},\left\{x_{a+1}, x\right\}\right]\right| \leq 2, \forall y \in V \backslash(S \cup\{x\}) \tag{3}
\end{equation*}
$$

$$
\text { by (1) (2) (3): } d_{G}(x)+d_{G}\left(x_{a+1}\right)=\left|\left[\left\{x, x_{a+1}\right\}, V\right]\right|=\left|\left[\left\{x, x_{a+1}\right\}, V \backslash\left\{x, x_{a+1}\right\}\right]\right|
$$

$$
\begin{align*}
& =\left|\left[\left\{x, x_{a+1}\right\}, V \backslash(S \cup\{x\})\right]\right|+\left|\left[\left\{x, x_{a+1}\right\}, S \backslash\left\{x_{a+1}\right\}\right]\right| \\
& =\left|\left[\left\{x, x_{a+1}\right\}, V \backslash(S \cup\{x\})\right]\right|+|[\{x\}, S]|+\left|\left[\left\{x_{a+1}\right\}, S\right]\right| \\
& \leq 2(v-k-1)+2+2(k-1)=2 v-2 \tag{iii}
\end{align*}
$$

i.e. $d_{G}(x)+d_{G}\left(x_{a+b}\right) \leq 2 v-1-b$
(c) Spring 2019, Justie Su-Tzu Juan

1.9 Hamiltonian Graphs

- Theorem 1.10: Let $C=\left(x_{1}, x_{2}, \ldots, x_{k}, x_{1}\right)$ be a longest directed cycle in a strongly connected simple digraph G. (the index calculate in $\bmod k$, and $0=k$)
If $k<v$, then $\exists x \in V(G) \backslash V(C)$ and two integral $a \in[1, k], b \in[1, k-1]$ s.t.
(i) $\left(x_{a}, x\right) \in E(G)$
(iii) $d_{G}(x)+d_{G}\left(x_{(a+b) \bmod k}\right) \leq 2 v-1-b$

Proof. (4/6)
Case 2: G contains an S-path.
Let $P=\left(x_{a}, y_{1}, \ldots, y_{t}, x_{a+r}\right)$ be an S-path with $x_{a} \in S$, s.t. r is as small as possible.
Let $x=y_{1}$ (Note that, $\left.\left.\left(x_{a}, x\right) \in E(G).\right)_{i}\right)$
$\because C$ is longest. $\therefore r \geq 2$ and $\left(x, x_{a+1}\right) \notin E(G)$.
$\because r$ is as small as possible, $\therefore \forall i \in[2, r-1],\left(x, x_{a+i}\right),\left(x_{a+i}, x\right) \notin E(G)$

$$
\frac{\text { and }\left(x_{a+1}, x\right) \notin E(G)}{k-r+1}
$$

$$
\Rightarrow|[\{x\}, S]| \leq 2 k-[(k-r)+2(r-1)]
$$

$$
\begin{equation*}
=k-r+2 \tag{1}
\end{equation*}
$$

(c) Spring 2019, Justie Su-Tzu Juan

1.9 Hamiltonian Graphs

- Theorem 1.10: Let $C=\left(x_{1}, x_{2}, \ldots, x_{k}, x_{1}\right)$ be a longest directed cycle in a strongly connected simple digraph G. (the index calculate in $\bmod k$, and $0=k$)
If $k<v$, then $\exists x \in V(G) \backslash V(C)$ and two integral $a \in[1, k], b \in[1, k-1]$ s.t.
(i) $\left(x_{a}, x\right) \in E(G)$
(ii) $\left(x_{a+i}, x\right),\left(x, x_{a+i}\right) \notin E(G), \forall i \in[1, b]$
(iii) $d_{G}(x)+d_{G}\left(x_{(a+b) \bmod k}\right) \leq 2 v-1-b$

Proof. (5/6)
$\forall y \in V \backslash(S \cup\{x\})$ and $\forall i \in[1, r-1]$.
\because The choice of $r,\left|\left[\{y\},\left\{x, x_{a+i}\right\}\right]\right| \leq 2$ \qquad

Let b be the maximum $i \in[1, r-1]$ s.t. $G[S]$ contains an $\left(x_{a+r}, x_{a}\right)$-path P^{\prime} and $V\left(P^{\prime}\right)=\left\{x_{a+r}, x_{a+r+1}, \ldots, x_{a-1}, x_{a}, x_{a+1}, \ldots, x_{a+i-1}\right\}$
$\Rightarrow x_{a+b} \notin V\left(P^{\prime}\right)$ and $\left|V\left(P^{\prime}\right)\right|=k-r+b$
\because the choice of b :

$$
\begin{equation*}
\left|\left[\left\{x_{a+b}\right\}, V\left(P^{\prime}\right)\right]\right| \leq(k-r+b-1)+2=k-r+b+1 \tag{3}
\end{equation*}
$$

(c) Spring 2019, Justie Su-Tzu Juan

1.9 Hamiltonian
 ```|[{x},S]|\leqk-r+2 \\ |[{y},{x, \mp@subsup{x}{a+i}{}}]|\leq2 \\ |[{\mp@subsup{x}{a+b}{}},V(\mp@subsup{P}{}{\prime})]|\leqk-r+b+1```

- Theorem 1.10: Let $C=\left(x_{1}, x_{2}, \ldots, x_{k}, x_{1}\right)$ be a longest directed cycle in a strongly connected simple digraph G. (the index calculate in $\bmod k$, and $0=k$)
If $k<v$, then $\exists x \in V(G) \backslash V(C)$ and two integral $a \in[1, k], b \in[1, k-1]$ s.t.
(i) $\left(x_{a}, x\right) \in E(G)$
(ii) $\left(x_{a+i}, x\right),\left(x, x_{a+i}\right) \notin E(G), \forall i \in[1, b]$
(iii) $d_{G}(x)+d_{G}\left(x_{(a+b) \bmod k}\right) \leq 2 v-1-b$

Proof. (6/6)

$$
\begin{equation*}
\because\left|S \backslash\left(V\left(P^{\prime}\right) \cup\left\{x_{a+b}\right\}\right)\right|=(r-1)-(b-1)-1=r-b-1 \tag{4}
\end{equation*}
$$

$\therefore\left|\left[\left\{x_{a+b}\right\}, S \backslash\left(V\left(P^{\prime}\right) \cup\left\{x_{a+b}\right\}\right)\right]\right| \leq 2(r-b-1)$
By (1) (2) (3) (4):

$$
\begin{aligned}
& \underline{d_{G}(x)+}+d_{G}\left(x_{a+b}\right)=\left|\left[\left\{x, x_{a+b}\right\}, V\right]\right| \\
& \quad=\left|\left[\left\{x, x_{a+b}\right\}, S\right]\right|+\left|\left[\left\{x, x_{a+b}\right\}, V \backslash(S \cup\{x\})\right]\right| \\
& =|[\{x\}, S]|+\left|\left[\left\{x_{a+b}\right\}, S \backslash\left\{x_{a+b}\right\}\right]\right|+\left|\left[\left\{x, x_{a+b}\right\}, V \backslash(S \cup\{x\})\right]\right| \\
& \leq(k-r+2)+[(k-r+b+1)+2(r-b-1)]+2(v-(k+1)) \\
& \quad=\underline{2 v-b-1} \quad \therefore \text { (iii) hold }
\end{aligned}
$$

1.9 Hamiltonian Graphs

- Corollary 1.10.4: Every strongly connected tournament is hamiltonian. By Thm 1.5 or Thm 1.10
- Corollary 1.10.5: G : simple digraph.
$\forall x, y \in V(G)$ either $(x, y) \in E(G)$ or $d_{G}{ }^{+}(x)+d_{G}^{-}(y) \geq v$
$\Rightarrow G$ is hamiltonian.
- Corollary 1.10.6: Every tournament contains a Hamilton path.
- Exercise: 1.9.1
- 加: 1.9.3, 1.9.4, 1.9.5, 1.9.9

Chapter 1 Basic Concepts of Graphs

§1.10 Matrix Presentation of Graphs

1.10 Matrix Presentation of Graphs

- Def: The adjacency matrix of a graph $G=(V, E)$, where $V=\left\{x_{1}, x_{2}, \ldots, x_{v}\right\}$ is a $v \times \nu$ matrix $A(G)=\left(a_{i j}\right)$, where $a_{i j}=\mu\left(\left\{x_{i}\right\},\left\{x_{j}\right\}\right)=\left|E_{G}\left(\left\{x_{i}\right\},\left\{x_{j}\right\}\right)\right|$

$$
A(D)=\left(\begin{array}{llll}
0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1
\end{array}\right) \quad A(G)=\left(\begin{array}{llll}
0 & 2 & 1 & 1 \\
2 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1
\end{array}\right)
$$

- Def: The incidence matrix of a loopless graph G is a $v \times \varepsilon$ matrix, $M(G)=\left(m_{x}(e)\right)$, $x \in V(G)$ and $e \in E(G)$, where, if G is directed, then $m_{x}(e)=\left\{\begin{array}{c}1, \text { if } x \text { is the tail of } e ; \\ -1, \text { if } x \text { is the head of } e ; \\ 0, \text { o.w. }\end{array}\right.$ and if G is undirected, then $m_{x}(e)=\left\{\begin{array}{l}1, \text { if } e \text { is incident with } x ; \\ 0,0 . w .\end{array}\right.$

1.10 Matrix Presentation of Graphs

- ex:

$$
M\left(D_{1}\right)=\left(\begin{array}{rrrrrr}
1 & 1 & 0 & 0 & -1 & -1 \\
-1 & -1 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & -1 & 1 & 0
\end{array}\right)
$$

$$
M\left(G_{1}\right)=\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0
\end{array}\right)
$$

- Note: For computer

1.10 Matrix Presentation of Graphs

- Def: (1) $\sigma=\left(\begin{array}{cccc}1 & 2 & \cdots & n \\ i_{1} & i_{2} & \cdots & i_{n}\end{array}\right)$ be a permutation of $\{1,2, \ldots, n\}$.
(2) an $n \times n$ permutation matrix $P=\left(p_{i j}\right)$ defined by $p_{i j}=\left\{\begin{array}{l}\mathbf{1}, \text { if } j=\sigma(i) ; \\ 0, \text { o.w. }\end{array}\right.$
- ex: $\sigma=\left(\begin{array}{llll}2 & 3 & 1 & 4\end{array}\right), \boldsymbol{P}=\left(\begin{array}{cccc}\mathrm{O} & 1 & \mathrm{O} & \mathrm{O} \\ \mathrm{O} & \mathrm{O} & 1 & \mathrm{O} \\ 1 & \mathrm{O} & \mathrm{O} & \mathrm{O} \\ \mathrm{O} & \mathrm{O} & \mathrm{O} & 1\end{array}\right)$
- Remark: (1) If A, B are the adjacency matrices of G, H, $G \cong H \Leftrightarrow \exists v \times v$ permutation matrix P s.t. $A=P^{-1} B P$
(2) If M, N are incidence matrices of G, H, $\boldsymbol{G} \cong H \Leftrightarrow \exists v \times v$ permutation matrix P and $\varepsilon \times \varepsilon$ permutation matrix Q s.t. $M=P N Q$

1.10 Matrix Presentation of Graphs

- Theorem 1.11: Let A be the adjacency matrix of a digraph G with $V(G)=\left\{x_{1}, x_{2}, \ldots, x_{v}\right\}$ and $A^{k}=\left(a_{i j}{ }^{(k)}\right)$ for $k \geq 1$. Then $a_{i j}^{(k)}=$ the number of different $\left(x_{i}, x_{j}\right)$-walks of length k in G.
Proof.
Prove by induction on k.
(1) When $k=1$, it's trivial.
(2) Assume $a_{i j}^{(k-1)}$ is the number of different $\left(x_{i}, x_{j}\right)$-walks of length $k-1$.
$\because A^{k}=A^{k-1} \cdot A, \therefore a_{i j}^{(k)}=\sum_{l=1}^{v} a_{i l}^{(k-1)} \cdot a_{l j}-(*)$
\because Every $\left(x_{i}, x_{j}\right)$-walk of length k in G

$$
=\left(x_{i}, x_{l}\right) \text {-walk of length } k-1 \text { in } G+\text { an edge }\left(x_{l}, x_{j}\right)
$$

\therefore By I.H and (*), $a_{i j}^{(k)}=$ the number of different $\left(x_{i}, x_{j}\right)$-walks of length k.

1．10 Matrix Presentation of Graphs

－Note：（1）$\because \exists!(x, y)$－walk of length n for any $x, y \in V(B(d, n))$ ．
$\therefore A(B(d, n))^{n}=J(=$ an square matrix all of whose entries are 1 ）
（2）$A(K(d, n))^{n}+A(K(d, n))^{n-1}=J$
－Example 1．10．1：$\nexists(\Delta, k)$－Moore digraph for $\Delta \geq 2$ and $k \geq 2$ ． Proof．略
max．degree diameter
－Note：$K(\Delta, 2)$ is a maximum（ $\Delta, 2$ ）－digraph．（目前唯一知道的）
Proof．By Example 1．10．1， $\mathfrak{v}(\Delta, 2)$－diagaph $\leq \Delta^{2}+\Delta$ ，and
$K(\Delta, 2)$ had order $\Delta^{2}+\Delta$ ，and maximum degree $=\Delta$ ，diameter $=2$.

1．10 Matrix Presentation of Graphs

－後略
exercise：1．10．1；1．10．2

加：1．10．8

Chapter 2 Trees and Graphic Spaces

§ 2.1 Trees and Spanning Trees (1)

2.1 Trees and Spanning Trees

- Def: (1) A graph is called a forest (or acyclic graph) if it contains no cycle. (2) A connected forest is called a tree.
- Note: (1) Forests and trees both are bipartite simple graphs.
(2) Restrict to undirected graphs.
- ex:

(a)

(b)

2.1 Trees and Spanning Trees

- Theorem 2.1: The following statements are equivalent
(a) G is a tree.
(b) G has no loop and $\forall x, y \in V(G), \exists$! $x y$-path.
(c) G is connected and $\forall e \in E(G), \omega(G-e)=2$
(d) G is connected and $\varepsilon=v-1$.

Proof. (1/7)
(a) \Rightarrow (b):
$\because G$ is a tree, $\therefore G$ is a connected simple graph contains no cycle.
Suppose $\exists u, v \in V(G)$, s.t. \exists distinct $u v$-path P_{1}, P_{2}.
$\because P_{1} \neq P_{2} . \therefore \exists e=x y \in E(G)$ s.t. $e \in E\left(P_{1}\right)$ and $e \notin E\left(P_{2}\right)$.
$\therefore\left(P_{1} \cup P_{2}\right)-e$ is connected and contains a $x y$-path P.
$\Rightarrow P+e$ is a cycle in $G . \rightarrow \leftarrow$

2.1 Trees and Spanning Trees

- Theorem 2.1: The following statements are equivalent :
(a) G is a tree.
(b) G has no loop and $\forall x, y \in V(G), \exists$! $x y$-path.
(c) G is connected and $\forall e \in E(G), \omega(G-e)=2$
(d) G is connected and $\varepsilon=v-1$.

Proof. (2/7)
(b) \Rightarrow (c):
$\because \forall x, y \in V(G), \exists!x y$-path. $\therefore G$ is connected.
$\forall e=x y \in E(G), G$ is connected. $\therefore \omega(G-e) \leq 2$
$\because x e y$ is a unique $x y$-path (by (b))
$\therefore x, y$ are in different connected components of $G-e$.
$\Rightarrow \omega(G-e) \geq 2$
By (1)(2), $\forall e \in E(\mathbf{G}), \omega(G-e)=2$.

2.1 Trees and Spanning Trees

- Theorem 2.1: The following statements are equivalent :
(a) G is a tree.
(b) G has no loop and $\forall x, y \in V(G), \exists$! $x y$-path.
(c) G is connected and $\forall e \in E(G), \omega(G-e)=2$
(d) G is connected and $\varepsilon=v-1$.

Proof. (3/7)
(c) \Rightarrow (a):

Suppose G is not a tree. $\because G$ is connected. $\therefore G$ contains a cycle C.
Let $e=x y \in E(C)$.
$\because G$ is connected and $\omega(G-e)=2, \therefore e$ is not a loop,
and x, y are in different connected components of $G-e$,
but $C-e$ is an $x y$-path in $G-e . \rightarrow \leftarrow$
$\therefore G$ is a tree.

2.1 Trees and Spanning Trees

- Theorem 2.1: The following statements are equivalent :
(a) G is a tree.
(b) G has no loop and $\forall x, y \in V(G), \exists$! $x y$-path.
(c) G is connected and $\forall e \in E(G), \omega(G-e)=2$
(d) G is connected and $\varepsilon=v-1$.

Proof. (4/7)
(a) $\Rightarrow(d)$: Prove by induction on $\varepsilon \geq 0$.
(1) $\varepsilon=0$, its trivial.
(2) Suppose $\varepsilon=v-1$ for any tree with $\varepsilon<m$.

Now, consider a tree G with $\varepsilon=m \geq 1$.
Choose an edge $e \in E(G), \because(a) \Rightarrow(c), \therefore \omega(G-e)=2$.
Let G_{1}, G_{2} be two components of $G-e$.
$\because G_{1}, G_{2}$ both are trees and $\varepsilon\left(G_{1}\right)<m, \varepsilon\left(G_{2}\right)<m$.
\therefore By I.H, $\varepsilon\left(G_{i}\right)=\gamma\left(G_{i}\right)-1 \quad \forall i=1,2$.
(c) Spring 2019, Justie Su-Tzu Juan

2.1 Trees and Spanning Trees

- Theorem 2.1: The following statements are equivalent :
(a) G is a tree.
(b) G has no loop and $\forall x, y \in V(G), \exists$! $x y$-path.
(c) G is connected and $\forall e \in E(G), \omega(G-e)=2$
(d) G is connected and $\varepsilon=v-1$.

Proof. (5/7)
(a) $\Rightarrow(\mathrm{d}):$ (2) Choose an edge $e \in E(G), \because(\mathbf{a}) \Rightarrow(\mathrm{c}), \therefore \omega(G-e)=2$.

Let $G_{1}, G_{\mathbf{2}}$ be two components of $G-e$.
$\because G_{1}, G_{2}$ both are trees and $\varepsilon\left(G_{1}\right)<m, \varepsilon\left(G_{2}\right)<m$.
\therefore By I.H, $\varepsilon\left(G_{i}\right)=v\left(G_{i}\right)-1 \quad \forall i=1,2$.
$\Rightarrow \varepsilon(G)=\varepsilon\left(G_{1}\right)+\varepsilon\left(G_{2}\right)+|\{e\}|=\left(v\left(G_{1}\right)-1\right)+\left(v\left(G_{2}\right)-1\right)+1$

$$
=v\left(G_{1}\right)+v\left(G_{2}\right)-1=v(G)-1
$$

\therefore By the principle of mathematical induction, (d) is necessary.

2.1 Trees and Spanning Trees

- Theorem 2.1: The following statements are equivalent :
(a) G is a tree.
(b) G has no loop and $\forall x, y \in V(G), \exists$! $x y$-path.
(c) G is connected and $\forall e \in E(G), \omega(G-e)=2$
(d) G is connected and $\varepsilon=v-1$.

Proof. (6/7)
$(d) \Rightarrow$ (a): Prove by induction on $v \geq 1$.
(1) $v=1$, then $\varepsilon=0 . \therefore G$ is a trivial and hence no cycle.
(2) Suppose any connected graph of order n and $\varepsilon=n-1$ contains no cycle.
Now, consider a connected graph G with order $n+1 \geq 2$, and $\operatorname{size} \varepsilon=(n+1)-1=n$.
$\because G$ is connected. $\therefore \delta(G) \geq 1$.
If $\delta(G) \geq 2$, then by Coro. 1.1:
(c) Spring 2019, Justie Su-Tzu Juan

2.1 Trees and Spanning Trees

- Theorem 2.1: The following statements are equivalent :
(a) G is a tree.
(b) G has no loop and $\forall x, y \in V(G), \exists$! $x y$-path.
(c) G is connected and $\forall e \in E(G), \omega(G-e)=2$
(d) G is connected and $\varepsilon=v-1$.

Proof. (7/7)
(d) \Rightarrow (a):

If $\delta(G) \geq 2$, then by Coro. 1.1:

$$
2 n=2 \varepsilon=\sum_{x \in V^{V(G)}} d_{G}(x) \geq 2(n+1) \rightarrow \leftarrow
$$

$\therefore \delta(G)=1$, i.e. $\exists x \in V(G)$, s.t. $d_{G}(x)=1$,
then $G-x$ is connected graph of order $n, \varepsilon=n-1$.
\therefore By I.H., $G-x$ contains no cycle.
$\Rightarrow G$ contains no cycle.
$\Rightarrow G$ is connected and contains no cycle.
$\therefore G$ is a tree.
(c) Spring 2019, Justie Su-Tzu Juan

2.1 Trees and Spanning Trees

- Corollary 2.1: A graph G is a forest $\Leftrightarrow \varepsilon=v-\omega$
- Example 2.1.1: G : a forest and $\delta(G) \geq 1, G$ contains $\geq 2 \omega 1$-degree vertices. Proof.

Let $R=\left\{x \mid d_{G}(x)=1, \forall x \in V(G)\right\}$, and $|R|=r$.
By Coro. 2.1, and Coro. 1.1:

$$
\begin{aligned}
& 2(v-\omega)=2 \varepsilon=\sum_{\substack{v \in V(G) \\
d_{G}(x)=}} \quad \geq 2(v-r)+r=2 v-r \\
& \Rightarrow r \geq 2 \omega
\end{aligned}
$$

