Chapter 1 Basic Concepts of Graphs

§ 1.9 Hamiltonian Graphs (2)

<u>Theorem 1.9</u>: *G*: a simple undirected graph of $\nu \ge 3$

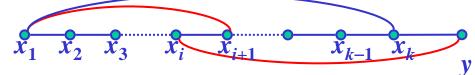
 $d_G(x) + d_G(y) \ge v, \forall x, y \in V(G), xy \notin E(G) \ (\bigstar) \Rightarrow G \text{ is hamiltonian}$ <Proof 2> (1/2)

By <u>exercise 1.5.6(c)</u>, \therefore *G* satisfies (*). \therefore *G* is connected and contains a cycles. Let $C = (x_1, x_2, ..., x_k, x_1)$ be a longest cycle in *G*. Suppose k < v, let $R = V(G) \setminus V(C)$.

- ∴ *G* is connected, ∴ W.L.O.G., $\exists y \in R$, s.t. $yx_k \in E(G)$.
- \therefore *C* is largest, $\therefore x_1 y \notin E(G)$.

Let $S = \{x_i \in V(C) : x_1 x_{i+1} \in E(G), 1 \le i \le k - 1\},\$

 $T = \{ x_j \in V(C) \colon x_j y \in E(G), 2 \le j \le k \}.$



 $\Rightarrow |S \cup T| \le k \text{ and } |S \cap T| = 0$

 $\Rightarrow d_{G[V(C) \cup \{y\}]}(x_1) + d_{G[V(C) \cup \{y\}]}(y) = |S| + |T| = |S \cup T| \le k \quad ----0$

Theorem 1.9: *G*: a simple undirected graph of $\nu \ge 3$ $d_G(x) + d_G(y) \ge v, \forall x, y \in V(G), xy \notin E(G) (\bigstar) \Rightarrow G$ is hamiltonian <**Proof 2**> (2/2) Let $S = \{x_i \in V(C) : x_1 x_{i+1} \in E(G), 1 \le i \le k-1\},\$ $T = \{ x_i \in V(C) \colon x_i y \in E(G), 2 \le j \le k \}.$ x_1 x_2 x_3 x_i x_{i+1} x_{k-1} x_k $\Rightarrow |S \cup T| \le k \text{ and } |S \cap T| = 0$ $\Rightarrow d_{G[V(C) \cup \{y\}]}(x_1) + d_{G[V(C) \cup \{y\}]}(y) = |S| + |T| = |S \cup T| \le k$ -(1) \therefore *C* is largest. $\therefore \forall z \in R \setminus \{y\}$, either $x_1 z \notin E(G)$ or $yz \notin E(G)$ $\Rightarrow |(\{x_1\}, R - \{y\})| + |(\{y\}, R - \{y\})| \le \nu - k - 1 \quad ----- @$ \therefore k = v, i.e. *G* is hamiltonian.

- **<u>Corollary 1.9</u>**: Every simple graph with $\nu \ge 3$ and $\delta \ge (1/2)\nu$ is hamiltonian.
- **<u>Def</u>**: For a digraph $G, x \in V(G), d_G(x) = d_G^+(x) + d_G^-(x)$.
- **<u>Theorem 1.10</u>**: Let $C = (x_1, x_2, ..., x_k, x_1)$ be a longest directed cycle in a strongly connected simple digraph *G*. (the index calculate in mod *k*, and 0 = k) If k < v, then $\exists x \in V(G) \setminus V(C)$ and two integral $a \in [1, k], b \in [1, k - 1]$ s.t. (i) $(x_a, x) \in E(G)$ (ii) $(x_{a+i}, x), (x, x_{a+i}) \notin E(G), \forall i \in [1, b]$ (iii) $d_G(x) + d_G(x_{a+b}) \le 2v - 1 - b$

<u>Corollary 1.10.1</u>: G: a strongly connected simple digraph.

 \forall nonadjacent vertices $x, y \in V(G), d_G(x) + d_G(y) \ge 2\nu - 1$ $\Rightarrow G$ is hamiltonian.

Proof.

If not, then by <u>Thm 1.10</u>, $\exists x \text{ and } x_{a+b} \in V(G)$, s.t. (ii) $(x, x_{a+b}), (x_{a+b}, x) \notin E(G)$, and (iii) $d_G(x) + d_G(x_{a+b}) \leq 2\nu - 1 - b \leq 2\nu - 2 \quad \rightarrow \leftarrow$

<u>Corollary 1.10.2</u>: *G*: a strongly connected simple digraph, $\forall x \in V(G), d_G(x) \ge \nu \Rightarrow G$ is hamiltonian.

Corollary 1.10.3: G: a simple digraph, $\delta \ge (1/2)\nu > 1 \Rightarrow G$ is hamiltonian. By exercise 1.5.8(a) and Corollary 1.10.1.

Theorem 1.10: Let $C = (x_1, x_2, ..., x_k, x_1)$ be a longest directed cycle in a strongly connected simple digraph G. (the index calculate in mod k, and 0 = k) If k < v, then $\exists x \in V(G) \setminus V(C)$ and two integral $a \in [1, k], b \in [1, k-1]$ s.t. (i) $(x_a, x) \in E(G)$ (ii) $(x_{a+i}, x), (x, x_{a+i}) \notin E(G), \forall i \in [1, b]$ (iii) $d_G(x) + d_G(x_{(a+b) \mod k}) \le 2\nu - 1 - b$ Proof. (1/6)(略) Let S = V(C), : G is strongly connected and |S| < v. $\therefore \exists x_i, x_j \in S \text{ and } (x_i, x_j) \text{-path } P \text{ in } G \text{ s.t. } V(P) - S \neq \phi \text{ and } V(P) \cap S = \{x_i, x_j\}$ If $x_i \neq x_i$, we say *P* is an *S*-path, else say an *S*-cycle. Case 1: G contains no S-path. Case 2: G contains an S-path.

Theorem 1.10: Let $C = (x_1, x_2, ..., x_k, x_1)$ be a longest directed cycle in a strongly connected simple digraph G. (the index calculate in mod k, and 0 = k) If $k < \nu$, then $\exists x \in V(G) \setminus V(C)$ and two integral $a \in [1, k], b \in [1, k-1]$ s.t. (ii) $(x_{a+i}, x), (x, x_{a+i}) \notin E(G), \forall i \in [1, b]$ (i) $(x_a, x) \in E(G)$ (iii) $d_G(x) + d_G(x_{(a+b) \mod k}) \le 2\nu - 1 - b$ $y_1 = x/$ **Proof.** (2/6) Case 1: G contains no S-path. Let $P = (x_a, y_1, y_2, \dots, y_t, x_a)$ be an S-cycle with $x_a \in S$. Let $x = y_1$ and b = 1Note that $(\underline{x_a, x}) \in E(G)$, and \therefore no S-path. $\therefore (\underline{x_{a+1}, x}), (\underline{x, x_{a+1}}) \notin E(G)$ Obviously If $(\underline{x_a, x}) \in C(L-1)$ (ii) Obviously, $|[\{x_{a+1}\}, S]| \le 2(k-1) - 0$ \therefore G contains no S-path. $\therefore \forall i \in [1, k]$ and $i \neq a, (x, x_i), (x_i, x) \notin E(G)$ $\Rightarrow |[\{x\}, S]| \leq 2 - 2$

 $|[\{x_{a+1}\}, S]| \le 2(k-1) - 0$ $|[\{x\}, S]| \le 2 - 0$

Theorem 1.10: Let $C = (x_1, x_2, ..., x_k, x_1)$ be a longest directed cycle in a strongly
connected simple digraph G. (the index calculate in mod k, and 0 = k)If k < v, then $\exists x \in V(G) \setminus V(C)$ and two integral $a \in [1, k], b \in [1, k - 1]$ s.t.(i) $(x_a, x) \in E(G)$ (ii) $(x_{a+i}, x), (x, x_{a+i}) \notin E(G), \forall i \in [1, b]$ (iii) $d_G(x) + d_G(x_{(a+b) \mod k}) \le 2v - 1 - b$ Proof. (3/6)

: G contains no S-path

 $\therefore \forall y \in V \setminus (S \cup \{x\}): (x_{a+1}, y) \text{ or } (y, x) \notin E(G) \text{ and } (x, y) \text{ or } (y, x_{a+1}) \notin E(G).$ $\Rightarrow |[\{y\}, \{x_{a+1}, x\}]| \le 2, \forall y \in V \setminus (S \cup \{x\}) \longrightarrow \mathfrak{B}$ $by \textcircled{0} \textcircled{0} \textcircled{3}: d_G(x) + d_G(x_{a+1}) = |[\{x, x_{a+1}\}, V]| = |[\{x, x_{a+1}\}, V \setminus \{x, x_{a+1}\}]|$ $= |[\{x, x_{a+1}\}, V \setminus (S \cup \{x\})]| + |[\{x, x_{a+1}\}, S \setminus \{x_{a+1}\}]|$ $= |[\{x, x_{a+1}\}, V \setminus (S \cup \{x\})]| + |[\{x\}, S]| + |[\{x_{a+1}\}, S]|$ $\le 2(\nu - k - 1) + 2 + 2(k - 1) = 2\nu - 2$

i.e. $d_G(x) + d_G(x_{a+b}) \le 2\nu - 1 - b$ ---- (iii)

Theorem 1.10: Let $C = (x_1, x_2, ..., x_k, x_1)$ be a longest directed cycle in a strongly connected simple digraph G. (the index calculate in mod k, and 0 = k) If k < v, then $\exists x \in V(G) \setminus V(C)$ and two integral $a \in [1, k], b \in [1, k-1]$ s.t. (i) $(x_a, x) \in E(G)$ (ii) $(x_{a+i}, x), (x, x_{a+i}) \notin E(G), \forall i \in [1, b]$ (iii) $d_G(x) + d_G(x_{(a+b) \mod k}) \le 2\nu - 1 - b$ x_{a+1} x_{a+i} **Proof.** (4/6) Case 2: G contains an S-path. Let $P = (x_a, y_1, \dots, y_t, x_{a+r})$ be an S-path with $x_a \in S$, s.t. r is as small as possible. Let $x = y_1$ (Note that, $(\underline{x_a, x}) \in E(G)$.) \therefore *C* is longest. \therefore $r \ge 2$ and $(x, x_{a+1}) \notin E(G)$. \therefore *r* is as small as possible, $\therefore \forall i \in [2, r-1], (x, x_{a+i}), (x_{a+i}, x) \notin E(G)$ and $(x_{a+1}, x) \notin E(G)$ k-r+1 x \therefore *C* is longest, $\therefore \forall i \in [1, k], (x_i, x)$ or $(x, x_{i+1}) \notin E(G)$. $\Rightarrow |[\{x\}, S]| \le 2k - [(k-r) + 2(r-1)]$ (c) Spring 2019, Justie Su-Tzu Juan

Theorem 1.10: Let $C = (x_1, x_2, ..., x_k, x_1)$ be a longest directed cycle in a strongly connected simple digraph G. (the index calculate in mod k, and 0 = k) If k < v, then $\exists x \in V(G) \setminus V(C)$ and two integral $a \in [1, k], b \in [1, k-1]$ s.t. (i) $(x_a, x) \in E(G)$ (ii) $(x_{a+i}, x), (x, x_{a+i}) \notin E(G), \forall i \in [1, b]$ (iii) $d_G(x) + d_G(x_{(a+b) \mod k}) \le 2\nu - 1 - b$ **Proof.** (5/6) $\forall y \in V \setminus (S \cup \{x\}) \text{ and } \forall i \in [1, r-1].$: The choice of r, $|[\{y\}, \{x, x_{a+i}\}]| \le 2$ ----- ② Let *b* be the maximum $i \in [1, r-1]$ s.t. *G*[*S*] contains an (x_{a+r}, x_a) -path *P'* and $V(P') = \{x_{a+r}, x_{a+r+1}, ..., x_{a-1}, x_a, x_{a+1}, ..., x_{a+i-1}\}$ $\Rightarrow x_{a+b} \notin V(P')$ and |V(P')| = k - r + b $x_a x_{a+1}$: the choice of *b*: $P': x_{a+r}$ $|[\{x_{a+b}\}, V(P')]| \le (k-r+b-1)+2 = k-r+b+1$ -----.(3)

1.9 Hamiltonian $|[\{x\}, S]| \le k - r + 2$ -----① $|[\{y\}, \{x, x_{a+i}\}]| \le 2$ ------② $|[\{x_{a+b}\}, V(P')]| \le k - r + b + 1$ ------③

Theorem 1.10: Let $C = (x_1, x_2, ..., x_k, x_1)$ be a longest directed cycle in a strongly connected simple digraph G. (the index calculate in mod k, and 0 = k) If $k < \nu$, then $\exists x \in V(G) \setminus V(C)$ and two integral $a \in [1, k], b \in [1, k-1]$ s.t. (i) $(x_a, x) \in E(G)$ (ii) $(x_{a+i}, x), (x, x_{a+i}) \notin E(G), \forall i \in [1, b]$ (iii) $d_G(x) + d_G(x_{(a+b) \mod k}) \le 2\nu - 1 - b$ **Proof.** (6/6) $|S \setminus (V(P') \cup \{x_{a+b}\})| = (r-1) - (b-1) - 1 = r - b - 1$: $|[\{x_{a+b}\}, S \setminus (V(P') \cup \{x_{a+b}\})]| \le 2(r-b-1)$ ----- ④ **By 1234:** $d_G(x) + d_G(x_{a+b}) = |[\{x, x_{a+b}\}, V]|$ $= |[\{x, x_{a+b}\}, S]| + |[\{x, x_{a+b}\}, V \setminus (S \cup \{x\})]|$ $= |[\{x\}, S]| + |[\{x_{a+b}\}, S \setminus \{x_{a+b}\}]| + |[\{x, x_{a+b}\}, V \setminus (S \cup \{x\})]|$ $\leq (k - r + 2) + [(k - r + b + 1) + 2(r - b - 1)] + 2(v - (k + 1))$ $= 2\nu - b - 1$...(iii) hold

<u>Corollary 1.10.4</u>: Every strongly connected tournament is hamiltonian. By <u>Thm 1.5</u> or <u>Thm 1.10</u>

<u>Corollary 1.10.5</u>: *G*: simple digraph. $\forall x, y \in V(G)$ either $(x, y) \in E(G)$ or $d_G^+(x) + d_G^-(y) \ge v$ $\Rightarrow G$ is hamiltonian.

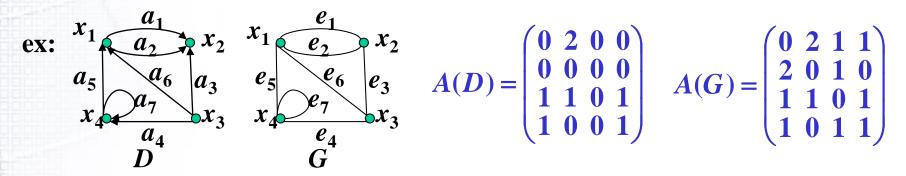
<u>Corollary 1.10.6</u>: Every tournament contains a Hamilton path.

- Exercise: 1.9.1
- 加: 1.9.3, 1.9.4, 1.9.5, 1.9.9

Chapter 1 Basic Concepts of Graphs

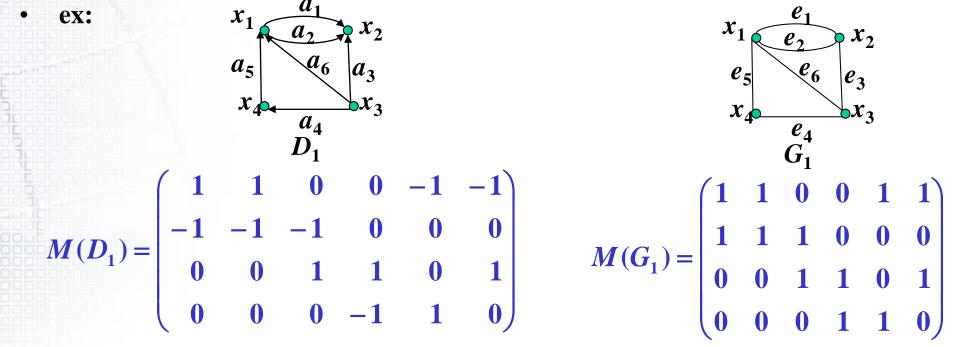
§ 1.10 Matrix Presentation of Graphs

<u>Def</u>: The adjacency matrix of a graph G = (V, E), where $V = \{x_1, x_2, ..., x_{\nu}\}$ is a $\nu \times \nu$ matrix $A(G) = (a_{ij})$, where $a_{ij} = \mu(\{x_i\}, \{x_j\}) = |E_G(\{x_i\}, \{x_j\})|$



<u>Def</u>: The incidence matrix of a loopless graph *G* is a $\nu \times \varepsilon$ matrix, $M(G) = (m_x(e))$, $x \in V(G)$ and $e \in E(G)$,

where, if G is directed, then $m_x(e) = \begin{cases} 1, \text{ if } x \text{ is the tail of } e; \\ -1, \text{ if } x \text{ is the head of } e; \\ 0, \text{ o.w.} \end{cases}$ and if G is undirected, then $m_x(e) = \begin{cases} 1, \text{ if } e \text{ is incident with } x; \\ 0, \text{ o.w.} \end{cases}$



<u>Note</u>: For computer

• <u>Def</u>: ① $\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ i_1 & i_2 & \cdots & i_n \end{pmatrix}$ be a permutation of $\{1, 2, \dots, n\}$. ② an $n \times n$ permutation matrix $P = (p_{ij})$ defined by $p_{ij} = \begin{cases} 1, \text{ if } j = \sigma(i); \\ 0, \text{ o.w.} \end{cases}$ • ex: $\sigma = (2 \ 3 \ 1 \ 4), P = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

<u>Remark</u>: ① If A, B are the adjacency matrices of G, H,
G ≅ H ⇔ ∃ v× v permutation matrix P s.t. A = P⁻¹BP
② If M, N are incidence matrices of G, H,
G ≅ H ⇔ ∃ v× v permutation matrix P and ε× ε permutation matrix Q s.t. M = PNQ

<u>Theorem 1.11</u>: Let A be the adjacency matrix of a digraph G with

$$V(G) = \{x_1, x_2, ..., x_{\nu}\}$$
 and $A^k = (a_{ij}^{(k)})$ for $k \ge 1$. Then

 $a_{ij}^{(k)}$ = the number of different (x_i, x_j) -walks of length k in G.

Proof.

Prove by induction on *k***.**

① When k = 1, it's trivial.

② Assume $a_{ij}^{(k-1)}$ is the number of different (x_i, x_j) -walks of length k - 1.

- : $A^{k} = A^{k-1} \cdot A$, $\therefore a_{ij}^{(k)} = \sum_{l=1}^{k} a_{il}^{(k-1)} \cdot a_{lj} \dots (\bigstar)$
- : Every (x_i, x_j) -walk of length k in G

= (x_i, x_l) -walk of length k - 1 in G + an edge (x_l, x_j)

: By I.H and (\bigstar), $a_{ij}^{(k)}$ = the number of different (x_i, x_j) -walks of length k.

Note: ① ∴ ∃! (x, y)-walk of length n for any x, y ∈ V(B(d, n)).
 ∴ A(B(d, n))ⁿ = J (= an square matrix all of whose entries are 1)
 ② A(K(d, n))ⁿ + A(K(d, n))ⁿ⁻¹ = J

Example 1.10.1: $\nexists (\Delta, k)$ -Moore digraph for $\Delta \ge 2$ and $k \ge 2$. **Proof.** \clubsuit

 max. degree
 diameter

 Note: $K(\Delta, 2)$ is a maximum (Δ , 2)-digraph. (目前唯一知道的)

 Proof. By Example 1.10.1, $v(\Delta, 2)$ -diagaph $\leq \Delta^2 + \Delta$, and

 $K(\Delta, 2)$ had order $\Delta^2 + \Delta$, and maximum degree = Δ , diameter = 2.

後略

exercise: 1.10.1; 1.10.2

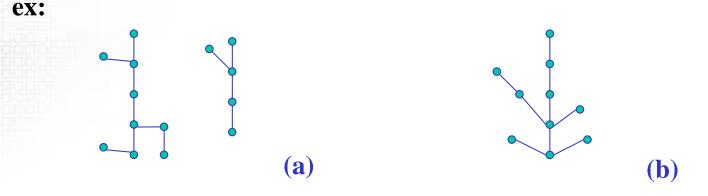
加:1.10.8

Chapter 2 Trees and Graphic Spaces

2.1 Trees and Spanning Trees (1)

<u>S</u>

- **<u>Def</u>: (Def: (Def)** A graph is called a forest (or acyclic graph) if it contains no cycle. **(Def)** A connected forest is called a tree.
- **<u>Note</u>:** ⁽¹⁾ Forests and trees both are bipartite simple graphs. ⁽²⁾ Restrict to undirected graphs.



<u>Theorem 2.1</u>: The following statements are equivalent

- (a) G is a tree.
- (b) G has no loop and $\forall x, y \in V(G), \exists ! xy$ -path.
- (c) *G* is connected and $\forall e \in E(G), \omega(G-e) = 2$
- (d) *G* is connected and $\varepsilon = v 1$.

Proof. (1/7)

(a) \Rightarrow (b):

∴ *G* is a tree, ∴ *G* is a connected simple graph contains no cycle. Suppose $\exists u, v \in V(G)$, s.t. \exists distinct *uv*-path P_1, P_2 . ∴ $P_1 \neq P_2$. ∴ $\exists e = xy \in E(G)$ s.t. $e \in E(P_1)$ and $e \notin E(P_2)$. ∴ $(P_1 \cup P_2) - e$ is connected and contains a *xy*-path *P*. ⇒ P + e is a cycle in *G*. →←

<u>Theorem 2.1</u>: The following statements are equivalent :

- (a) G is a tree.
- (b) *G* has no loop and $\forall x, y \in V(G), \exists ! xy$ -path.
- (c) *G* is connected and $\forall e \in E(G), \omega(G-e) = 2$
- (d) *G* is connected and $\varepsilon = \nu 1$.

Proof. (2/7)

(b) \Rightarrow (c):

 $\therefore \forall x, y \in V(G), \exists ! xy$ -path. $\therefore G$ is connected.

 $\forall e = xy \in E(G), G \text{ is connected. } \therefore \omega(G-e) \leq 2 ---- \textcircled{1}$

: *xey* is a unique *xy*-path (by (b))

 \therefore *x*, *y* are in different connected components of G - e.

 $\Rightarrow \omega(G-e) \geq 2$ ---- @

By (1)(2), $\forall e \in E(G), \omega(G-e) = 2$.

<u>Theorem 2.1</u>: The following statements are equivalent :

- (a) G is a tree.
- (b) *G* has no loop and $\forall x, y \in V(G), \exists ! xy$ -path.
- (c) G is connected and $\forall e \in E(G), \omega(G-e) = 2$
- (d) *G* is connected and $\varepsilon = \nu 1$.

Proof. (3/7)

(c) \Rightarrow (a):

Suppose *G* is not a tree. \therefore *G* is connected. \therefore *G* contains a cycle *C*. Let $e = xy \in E(C)$.

 \therefore *G* is connected and $\omega(G - e) = 2$, \therefore *e* is not a loop,

and *x*, *y* are in different connected components of G - e, but C - e is an *xy*-path in G - e. $\rightarrow \leftarrow$

 \therefore *G* is a tree.

<u>Theorem 2.1</u>: The following statements are equivalent :

- (a) G is a tree.
- (b) G has no loop and $\forall x, y \in V(G), \exists ! xy$ -path.
- (c) *G* is connected and $\forall e \in E(G), \omega(G-e) = 2$
- (d) *G* is connected and $\varepsilon = v 1$.

Proof. (4/7)

(a) \Rightarrow (d): Prove by induction on $\varepsilon \ge 0$.

① $\varepsilon = 0$, its trivial.

② Suppose ε = ν − 1 for any tree with ε < m. Now, consider a tree G with ε = m ≥ 1. Choose an edge e ∈ E(G), ∵ (a) ⇒ (c), ∴ ω(G − e) = 2. Let G₁, G₂ be two components of G − e. ∵ G₁, G₂ both are trees and ε(G₁) < m, ε(G₂) < m. ∴ By I.H, ε(G_i) = ν(G_i) − 1 ∀ i = 1, 2.

<u>Theorem 2.1</u>: The following statements are equivalent :

- (a) G is a tree.
- (b) G has no loop and $\forall x, y \in V(G), \exists ! xy$ -path.
- (c) *G* is connected and $\forall e \in E(G), \omega(G-e) = 2$
- (d) *G* is connected and $\varepsilon = \nu 1$.

Proof. (5/7)

(a) \Rightarrow (d): ⁽²⁾ Choose an edge $e \in E(G)$, \therefore (a) \Rightarrow (c), $\therefore \omega(G - e) = 2$.

- Let G_1 , G_2 be two components of G e.
- \therefore G_1, G_2 both are trees and $\varepsilon(G_1) < m, \varepsilon(G_2) < m$.
- : By I.H, $\varepsilon(G_i) = v(G_i) 1 \quad \forall i = 1, 2.$
- $\Rightarrow \varepsilon(G) = \varepsilon(G_1) + \varepsilon(G_2) + |\{e\}| = (\nu(G_1) 1) + (\nu(G_2) 1) + 1$ $= \nu(G_1) + \nu(G_2) 1 = \nu(G) 1$

... By the principle of mathematical induction, (d) is necessary.

<u>Theorem 2.1</u>: The following statements are equivalent :

- (a) G is a tree.
- (b) G has no loop and $\forall x, y \in V(G), \exists ! xy$ -path.
- (c) G is connected and $\forall e \in E(G), \omega(G-e) = 2$
- (d) *G* is connected and $\varepsilon = \nu 1$.

Proof. (6/7)

(d) \Rightarrow (a): Prove by induction on $\nu \ge 1$.

- ① $\nu = 1$, then $\varepsilon = 0$. \therefore *G* is a trivial and hence no cycle.
- ② Suppose any connected graph of order *n* and $\varepsilon = n 1$ contains no cycle.

Now, consider a connected graph *G* with order $n + 1 \ge 2$, and size $\varepsilon = (n + 1) - 1 = n$.

 \therefore *G* is connected. $\therefore \delta(G) \ge 1$.

If $\delta(G) \ge 2$, then by <u>Coro. 1.1</u>:

<u>Theorem 2.1</u>: The following statements are equivalent :

- (a) G is a tree.
- (b) *G* has no loop and $\forall x, y \in V(G), \exists ! xy$ -path.
- (c) *G* is connected and $\forall e \in E(G), \omega(G-e) = 2$
- (d) *G* is connected and $\varepsilon = \nu 1$.

Proof. (7/7)

(d) \Rightarrow (a):

- If $\delta(G) \ge 2$, then by <u>Coro. 1.1</u>: $2n = 2\varepsilon = \sum_{x \in V(G)} d_G(x) \ge 2(n+1) \rightarrow \leftarrow$
 - $\therefore \delta(G) = 1, \text{ i.e. } \exists x \in V(G), \text{ s.t. } d_G(x) = 1,$

then G - x is connected graph of order $n, \varepsilon = n - 1$.

- \therefore By I.H., G x contains no cycle.
- \Rightarrow *G* contains no cycle.

 \Rightarrow *G* is connected and contains no cycle.

 \therefore *G* is a tree.

- **<u>Corollary 2.1</u>:** A graph *G* is a forest $\Leftrightarrow \varepsilon = v \omega$
- **Example 2.1.1**: *G*: a forest and $\delta(G) \ge 1$, *G* contains $\ge 2\omega$ 1-degree vertices. Proof.

Let $R = \{x \mid d_G(x) = 1, \forall x \in V(G)\}$, and |R| = r. By <u>Coro. 2.1</u>, and <u>Coro. 1.1</u>: $2(v - \omega) = 2\varepsilon = \sum_{v \in V(G)} d_G(x) = \sum_{v \in V \setminus R} d_G(x) + r$ $\ge 2(v - r) + r = 2v - r$ $\Rightarrow r \ge 2\omega$