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1.9 Hamiltonian Graphs

 Theorem 1.9: G: a simple undirected graph of v>3
de(X) +ds(y) 2 v, V X,y € V(G), xy ¢ E(G) (%) = G is hamiltonian
<Proof 2> (1/2)
By exercise 1.5.6(c), °.” G satisfies (%). .. G is connected and contains a cycles.
Let C = (X, Xy «+05 Xy X;) be @ longest cycle in G.
Suppose k < v, let R = V(G)\V(C).
".* Gisconnected, .. W.L.O.G., 3y € R, s.t. yx, € E(G).
" Cislargest, .". x;y ¢ E(G).
Let S ={X € V(C): XX;;,; € E(G),1<1<k—-1},
T={x € V(C): xy € E(G), 2<j<Kk}.

S xk_lli/.g(y

= |SuUT|[<kand|SNT|=0
= dG[V(C)u{y}](Xl) + dG[V(C)u{y}] y)=IS|+[T|=[SuUT|<k —O@
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 Theorem 1.9: G: a simple undirected graph of v>3
de(X) +ds(y) 2 v, V X,y € V(G), xy ¢ E(G) (%) = G is hamiltonian
<Proof 2> (2/2)
Let S ={X; € V(C): XX;;,; € E(G),1<i1<k—-1},
T={x € V(C): xy € E(G), 2<j<Kk}.

= |SuUT|[<kand|SNT|=0

= dsvicunn () + depugy ) = 1S+ [T[=[SUT|<k —O
" Cislargest. .. V z € R\{y}, either x,z ¢ E(G) or yz ¢ E(G)
= (X} R={yPHI + |y}, R={yDI < v—-k-1 ®

D+@=>d5(X) +dg(y) £kt v—k-1=v-1 ¢«
. k=v 1e. Gishamiltonian.
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)) 1.9 Hamiltonian Graphs

« Corollary 1.9: Every simple graph with v> 3 and 6= (1/2) vis hamiltonian.

« Def: Foradigraph G, x € V(G), d;(x) = dg*(x) + dg(x).

« Theorem 1.10: Let C = (X4, X,, ...s X, X;) b€ @ longest directed cycle in a strongly
connected simple digraph G. (the index calculate in mod k, and 0 = k)

Ifk < v, then3 x € V(G) \ V(C) and two integral a € [1, k], b € [1, k—1] s.t.
(i) (% X) € E(G)

(i) (asis X), (%, X0 & E(G), Vi & [1, b]

(iii) dg(x) + dg(X,4) £ 2v—=1-D
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):) 1.9 Hamiltonian Graphs

« Corollary 1.10.1: G: a strongly connected simple digraph.

V nonadjacent vertices x, y € V(G), d5(x) + dg(y) =2 2v-1
=> G Is hamiltonian.

Proof.
If not, then by Thm 1.10, 3 x and x_,,, € V(G), s.t.
(i) (X, Xa1): (Xepr X) & E(G), and
(i) dg(X) + dg(X,4p) £2v—1-b<2v—-2 ¢

« Corollary 1.10.2: G: a strongly connected simple digraph,
V x € V(G), dg(X) = v= G is hamiltonian.

« Corollary 1.10.3: G: a simple digraph, 6= (1/2)v> 1 = G is hamiltonian.
By exercise 1.5.8(a) and Corollary 1.10.1.
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) 1.9 Hamiltonian Graphs

« Theorem 1.10: Let C = (X;, X,, ..., X, X;) b€ @ longest directed cycle in a strongly
connected simple digraph G. (the index calculate in mod k, and 0 = k)

Ifk < v,then3 x € V(G) \ V(C) and two integral a € [1, k], b € [1, k- 1] s.t.
(i) (X, X) € E(G) (i) (asir X), (X, Xq0) € E(G), Vi € [1, b]
(i) dg(X) + ds(X@aspymod ) S 2v—1-D
Proof. (1/6) (%)
Let S=V(C),
"." G is strongly connected and |S| < v.
CoA X, % € Sand (x;, X)-path P in Gs.t. V(P) =S # gand V(P) N S = {Xx;, X}
If X; # X;, we say P is an S-path, else say an S-cycle.
Case 1: G contains no S-path.

Case 2: G contains an S-path.
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) 1.9 Hamiltonian Graphs

¥

« Theorem 1.10: Let C = (X;, X,, ..., X, X;) b€ @ longest directed cycle in a strongly
connected simple digraph G. (the index calculate in mod k, and 0 = k)

Ifk < v,then3 x € V(G) \ V(C) and two integral a € [1, k], b € [1, k- 1] s.t.

() (X X) € E(G) (i) (Xaris X)1 (X, Xui) € E(G), Vi € [1, b]

(1) ds(X) + ds(X@+pymoa k) £ 2v—1-Db A= v

Proof. (2/6) =X L\ )
Case 1: G contains no S-path. ' C

Let P = (X, Y1, Yo «++5 Yo X5) D€ @N S-cycle with x, € S.
Letx=y,andb=1

Note that (x,, X) € E(G), and °." no S-path. .". (X_,, X), (X, X,,,) € E(G)
Obviously, [[{x.,\}) S]|<2(k - 1) — @ (ii)

"." G contains no S-path. .". Vi e [1,k]landi=a, (X, X), (X, X) € E(G)
= [[{x}, S]|<2 —®
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):) 1.9 Hamiltonian Graphs

ﬁ {Xash Sl <2(k - 1) — @ r
[{x} S]|<2 — @
Theorem 1.10: Let C = (X, Xy ..., Xi, X;) b€ & longest directed cycle in a strongly
connected simple digraph G. (the index calculate in mod k, and 0 = k)
Ifk < v,then3 x € V(G) \ V(C) and two integral a € [1, k], b € [1, k- 1] s.t.
() (X X) € E(G) (i) (Xaris X)1 (X, Xui) € E(G), Vi € [1, b]
(i) dg(X) + ds(X@aspymod ) S 2v—1-D '
Proof. (3/6)
"." G contains no S-path
S Vy e V(S U X)) (Xaes Y) O (v, X) € E(G) and (X, y) or (y, X,1) € E(G).
= [y} Xaer, XHN <2, Vy e VIS UKD — @
by QO®: dg(x) + dg(Xa11) = [[{X, Xarad VI = [[{X, Xaid VX, Xaea}]
= |[{X, Xaeh VA (S U DI+ KX, Xaurd S\ {Xaui I
= |[{X, Xausd VA (S U DXV + ({3, ST1 + [[{Xa} S
<2(v-k-1)+2+2(k-1)=2v-2
l.e. dg(X) + dg(Xgep) £ 2v—=1—-Db ——(iii)
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| /’ 1.9 Hamiltonian Graphs

« Theorem 1.10: Let C = (X, Xy, «..5 X, X;) D€ & longest directed cycle in a strongly
connected simple digraph G. (the index calculate in mod k, and 0 = k)

Ifk < v,then3 x € V(G) \ V(C) and two integral a € [1, k], b € [1, k- 1] s.t.

() (Xu x) € E(G) (1) Kauiv X)s (X, Xaui) E>$G), Viel[lb]
(1) ds(X) + ds(X@+pymoa k) £ 2v—1-Db Xa
Proof. (4/6) Xoiq Xati

Case 2: G contains an S-path. AVE
Let P = (X, Yy, -ovs Voo X,0p) D€ @n S-path with x, € S, s.t. r is as sniall as possible.
Let x =y, (Note that, (x,, X) € E(G).()I)
" Cislongest. .. r>2and (X, X,,,) € E(G). —— -~
" risas small as possible, .". Vi € [2, r = 1], (X, X_4i), (X.4i» X) € E(G)

and (X,.;, X) & E(G)
" Cislongest, .". Vi € [1, K], (X;, X) or (X, Xi;;) € E(G).
= [[{x}, S]| < 2k = [(k = 1) + 2(r — 1)]

=k—-r+2 ——0Q@ (c) Spring 2019, Justie Su-Tzu Juan




? 1.9 Hamiltonian Graphs

Theorem 1.10: Let C = (X4, X, ..., X, X;) D€ @ longest directed cycle in a strongly
connected simple digraph G. (the index calculate in mod k, and 0 = k)

Ifk < v,then3 x € V(G) \ V(C) and two integral a € [1, k], b € [1, k- 1] s.t.

(i) (X, X) € E(G) (i) (Xaeis X), (%, %)  E(G), Vi € [1, b]
(1) dg(X) + da(X@rpymod ) S 2v—1-D ' .
Proof. (5/6)
VyeV\(Su{xp)andViell r-1]. 7
"." The choice of r, |[{y}, {X, X;z}]|£2 —— @ At

Let b be the maximum i € [1, r — 1] s.t. G[S] contains an (X,,,, X,)-path P’
and V(P”) = {Xgir» Xasre1s +oos Xa1r Xgr Xga1s == o5 Xosit}
= X, € V(P7)and [V(P")|=k—-r+D Xa 1
. the choice of b: % N
- Xotr a .
[{Xaoh VPl s (k—T+b-1)+2=k-r+b+1 —O@ -“ o

| j Xas
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.)) 1.9 Hamiltonian | slisk-r+2 —o

Iy} X, %, 1|2 — @
[{X.s}, VP)]|<k-r+b+1 ——@

Theorem 1.10: Let C = (X, Xy ..., Xi, X;) b€ & longest directed cycle in a strongly
connected simple digraph G. (the index calculate in mod k, and 0 = k)

Ifk < v,then3 x € V(G) \ V(C) and two integral a € [1, k], b € [1, k- 1] s.t.
(i) (X, X) € E(G) (i) (asir X), (X, Xq0) € E(G), Vi € [1, b]
(i) dg(X) + ds(X@aspymod ) S 2v—1-D
Proof. (6/6)
CISVVP) U kD = (= 1) = (b-1) —1=r-b-1
o f%anh SVVPY) U XDl <200 =b = 1) —— @
By O@0®®:
dg(X) + ds(Xasp) = [[{X, Xaunds VI
= |[{X, Xasnh SII + [H{X, Xauoh VA (S U i)
= 1[0 S+ 1H{%asnh S\ {XasoHl + 11X Xaiph VA (S U DD
<(k=r+2)+[(k=r+b+1)+2(r-b-1)]+2(v-(k+1))
=2v-b-1 .. (i) hold
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) 1.9 Hamiltonian Graphs

Corollary 1.10.4: Every strongly connected tournament is hamiltonian.
By Thm 1.50r Thm 1.10

Corollary 1.10.5: G: simple digraph.
V X,y € V(G) either (X, y) € E(G) or dg*(x) + dg=(y) = v
= G Is hamiltonian.

Corollary 1.10.6: Every tournament contains a Hamilton path.

Exercise: 1.9.1

40:1.93,1.94,195,19.9
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)) 1.10 Matrix Presentation of Graphs

« Def: The adjacency matrix of a graph G = (V, E), where V = {Xy, X5, ..., X, } IS @
vx vmatrix A(G) = (a;), where a; = p({x;}, {x;}) = [Ec({x;}, {x;})|

AG) =
J \

RPRPF,OO
OFrOoOnMN
OO OoOo
RPRPF,OO
FRFPDNO
OFrROMN

PO
PR O

\ /

« Def: The incidence matrix of a loopless graph G is a vx £ matrix, M(G) = (m,(e)),
x € V(G) and e € E(G),

where, If G is directed, then 1, if x 1s the tail of ¢;
m,(e) = |—1, If X is the head of ¢;
0, o.w.
and if G is undirected, then m,(e) = {1, If e Is incident with x;
0, o.w.
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M(D1)=

Note: For computer

0 -1 -1)

0 0 O

1 0 1 M(Gl)=
-1 1 0
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)/) 1.10 Matrix Presentation of Graphs

Def: @ o-:(il |2 in) be a permutation of {1, 2, ..., n}.
@ an n'x nzpermrlhtation matrix P = (p;) defined by p;; = { 1, 1f j = o(l);
0, o.w.
(0O 1 O 0O)
O O 1 O
ex:o=(2314), P =
1 0 O O
0 O O 1)

Remark: @ If A, B are the adjacency matrices of G, H,
G = H < 3 vx vpermutation matrix P s.t. A = P-1BP
@ If M, N are incidence matrices of G, H,
G =z H < 3 vx vpermutation matrix P and & x ¢ permutation
matrix Q s.t. M = PNQ
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| ’ 1.10 Matrix Presentation of Graphs

/4

« Theorem 1.11: Let A be the adjacency matrix of a digraph G with
V(G) = {Xy, X5, ..., X, } and Ak = (a;®) for k> 1. Then

a; = the number of different (x;, x;)-walks of length k in G.

Proof.
Prove by induction on k.
®© When k =1, it’s trivial.
@ Assume a; 1) is the number of different (x;, x;)-walks of length k — 1.
AR ARLLA g =) al e —— (k)
" Every (x;, x)-walk of léngth k in G
= (X;, X;)-walk of length k — 1 in G + an edge (x, ;)

". By I.H and (), ;¥ = the number of different (x;, x;)-walks of length k.
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) 1.10 Matrix Presentation of Graphs

!

Note: @ ." 3! (x, y)-walk of length n for any x, y € V(B(d, n)).
.. A(B(d, n))" = J (= an square matrix all of whose entries are 1)
@ AK(d, n)"+ A(K(d, n))*~1=J

Example 1.10.1: 7 (4, k)-Moore digraph for 4> 2 and k > 2.
Proof. %

max. degree  djameter
_ _ N
Note: K(4, 2) is a maximum (4, 2)-digraph. (P # r&— Frig i)

Proof. By Example 1.10.1, »4, 2)-diagaph < 4% + 4, and
K(4, 2) had order A4° + A, and maximum degree = A, diameter = 2.
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1.10 Matrix Presentation of Graphs

4% 2%
f‘? ‘p

exercise: 1.10.1; 1.10.2

4v:1.10.8
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) 2.1 Trees and Spanning Trees

Def: © A graph is called a forest (or acyclic graph) if it contains no cycle.
@ A connected forest is called a tree.

Note: @ Forests and trees both are bipartite simple graphs.
@ Restrict to undirected graphs.

eX.

(a) (b)

(c) Spring 2019, Justie Su-Tzu Juan
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) 2.1 Trees and Spanning Trees

Theorem 2.1: The following statements are equivalent
(a) G is a tree.
(b) G has no loop and V x, y € V(G), 3! xy-path.
(c) G is connected and Ve € E(G), (G —¢) =2
(d) G is connected and = v- 1.
Proof. (1/7)
(a) = (b):
" Gisatree, .. Gisaconnected simple graph contains no cycle.
Suppose 3 u, v e V(G), s.t. 3 distinct uv-path P, P,.
" Py#P, .. de=xye E(G)s.t.ee E(P)ande ¢ E(P,).
.. (P, U P,) —eisconnected and contains a xy-path P.
=P +eisacyclein G. 5«
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) 2.1 Trees and Spanning Trees

Theorem 2.1: The following statements are equivalent :
(a) G is a tree.
(b) G has no loop and V x, y € V(G), 3! xy-path.
(c) G is connected and Ve € E(G), (G —e) =2
(d) G is connected and = v- 1.
Proof. (2/7)
(b) = (c):
TV Xy e V(G), 3! xy-path. .". G is connected.
V e=xy € E(G), Gisconnected. .". ®(G—-e)<2 — @
"." Xey is a unique xy-path (by (b))
.. X, y are in different connected components of G —e.
=>w0G-e)22 — @
By @@, Ve e E(G), o(G—-¢e) =2

(c) Spring 2019, Justie Su-Tzu Juan

23



) 2.1 Trees and Spanning Trees

 Theorem 2.1: The following statements are equivalent :
(a) G is a tree.
(b) G has no loop and V x, y € V(G), 3! xy-path.
(c) G is connected and Ve € E(G), o(G —e) =2
(d) G is connected and = v— 1.
Proof. (3/7)
(c) = (a):
Suppose G is not a tree. °." G is connected. .". G contains a cycle C.
Let e =xy € E(C).
. Gisconnected and (G —e) = 2, .". eis not a loop,
and x, y are in different connected components of G — e,
butC —eisan xy-pathin G —e. 5«
. Gisatree.
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) 2.1 Trees and Spanning Trees

Theorem 2.1: The following statements are equivalent :
(a) G is a tree.
(b) G has no loop and V x, y € V(G), 3! xy-path.
(c) G is connected and Ve € E(G), (G —e) =2
(d) G is connected and = v- 1.
Proof. (4/7)
(a) = (d): Prove by induction on £2 0.
® ¢=0, its trivial.
@ Suppose €= v—1 for any tree with e<m.
Now, consider a tree G with e=m > 1.
Choose anedge e € E(G), *." (a) = (¢), .". (G —¢) = 2.
Let G,, G, be two components of G —e.
"." G, G, both are trees and &G;) <m, gG,) <m.
S.ByLH, &G)=vG)-1Vi=1, 2
(c) Spring 2019, Justie Su-Tzu Juan 25




| ? 2.1 Trees and Spanning Trees

Theorem 2.1: The following statements are equivalent :
(a) G is a tree.
(b) G has no loop and V x, y € V(G), 3! xy-path.
(c) G is connected and Ve € E(G), (G —e) =2
(d) G is connected and = v- 1.
Proof. (5/7)
(@) = (d): @ Choose anedge e € E(G), °." (a) = (¢), .". (G —¢) = 2.
Let G,, G, be two components of G —e.
"." G, G, both are trees and &G;) <m, gG,) <m.
S.ByLH, &G)=vG)-1Vi=1, 2
= &0G) = &Gy) + &G,) + [{e} = (UG) -1) + (UG, - 1) +1
= UGy + UG, -1=u«G)-1

.". By the principle of mathematical induction, (d) is necessary.
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) 2.1 Trees and Spanning Trees

Theorem 2.1: The following statements are equivalent :
(a) G is a tree.
(b) G has no loop and V x, y € V(G), 3! xy-path.
(c) G is connected and Ve € E(G), (G —e) =2
(d) G is connected and = v- 1.
Proof. (6/7)
(d) = (a): Prove by induction on v2>1.
® v=1,then ¢=0. .. Gisa trivial and hence no cycle.
@ Suppose any connected graph of ordernand e=n-1
contains no cycle.
Now, consider a connected graph G with ordern+ 12> 2,
andsizee=(n+1)-1=n.
"." Gisconnected. .". §G) > 1.
If {G) > 2, then by Coro. 1.1:
(c) Spring 2019, Justie Su-Tzu Juan
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) 2.1 Trees and Spanning Trees

Theorem 2.1: The following statements are equivalent :
(a) G is a tree.
(b) G has no loop and V x, y € V(G), 3! xy-path.
(c) G is connected and Ve € E(G), (G —¢) =2
(d) G is connected and = v- 1.
Proof. (7/7)
(d) = (a): If §G) > 2, then by Coro. 1.1:
2n=2¢= 2, d:(X)=2(n+1) >«
5. 8G)=1,Te Ix e V(G), s.t. ds(x) = 1,
then G — x is connected graph of ordern, e=n—1.
.. By I.LH., G — x contains no cycle.
=> G contains no cycle.
=> G is connected and contains no cycle.
. Gisatree.
(c) Spring 2019, Justie Su-Tzu Juan
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| /’ 2.1 Trees and Spanning Trees

Corollary 2.1: Agraph Gisaforest & e=v— @

Example 2.1.1: G: a forest and &G) = 1, G contains > 2w 1-degree vertices.

Proof.
LetR ={x|dg(x) =1,V x e V(G)}, and |[R| =.
By Coro. 2.1, and Coro. 1.1:
2(v—w) =2&= Y dg(x) = Y dg(x) + 1

veV (G) veV\R
22(v=r)+r=2v—r

=>r22mw
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