

1.6 Distances and Diameter

- Def:
 - The radius of $G \equiv \operatorname{rad}(G) = \min_{x \in V(G)} \{ \max_{y \in V(G)} \{ d_G(x, y) \} \}$
 - A vertex x is called a central of G if $\max_{y \in V(G)} \{d_G(x, y)\} = \min_{x \in V(G)} \{\max_{y \in V(G)} \{d_G(x, y)\}\} = \operatorname{rad}(G)$
- Note: $rad(G) \le d(G) \le 2rad(G)$ Proof. exercise 1.6.6
- Example 1.6.4: For digraph G, rad $(G) \le r \Rightarrow \nu(G) \le 1 + r \cdot \Delta^r$.

 Proof.

Let x be a central vertex of G, and $J_i = \{y | d_G(x, y) = i\}$

$$\Rightarrow \left\{ \begin{array}{c} |J_1| \leq \Delta \\ |J_i| \leq \Delta \cdot |J_{i-1}| \end{array} \right\} \Rightarrow |J_i| \leq \Delta^r$$

$$\Rightarrow \nu(G) \le 1 + \Delta + \Delta^2 + \dots + \Delta^r \le 1 + r \cdot \Delta^r$$

1.6 Distances and Diameter

- Def: G: connected undirected graph or strongly connected digraph with $\nu \ge 2$.
 - ① The mean or average distance of $G \equiv$

$$m(G) \equiv \frac{1}{\nu(\nu-1)} \sum_{x,y \in V(G)} (d_G(x,y)),$$

- Note:
 - ① $m(G) \ge 1$
 - $\mathfrak{D} m(G) = 1 \Leftrightarrow G$ is a complete graph
 - ③ For a directed cycle C_n , $n \ge 3$, $\sigma(C_n) = (1/2)n^2(n-1)$, $m(C_n) = n/2$ $< sol > \sigma(C_n) = n(1+2+...+(n-1)) = n \cdot (n(n-1))/2 = (1/2)n^2(n-1)$ $m(C_n) = (1/(n(n-1))) \cdot \sigma(C_n) = n/2$
 - **4** For an undirected cycle C_n , $m(C_n) = \begin{cases} (n+1)/4 & \text{, if } n \text{ is odd;} \\ n^2/(4(n-1)), \text{ if } n \text{ is even.} \end{cases}$

<sol> exercise 1.6.6

1.6 Distances and Diameter

• Exercise: 1.6.4 (a), 1.6.6

• 加: 1.6.4 (b), (c)

音樂劇欣賞6-1

日落大道 Sunset Boulevard

著:Billy Wilder 一九五〇年的電影「紅樓金粉」。 曲:Andrew Lloyd Webber 詞:Don Black & Christopher Hampton 影原導演:Billy Wilder 演:倫敦首演: 1993年7月12日 - 1997年4

洛杉磯首演: 1993年12月9日 叔伯 百老匯首演: 1994年11月17日 - 199 加拿大首演: 1995年10月15日 - (N 電影首映: 1964年10月21日

- Def: ① A cycle of length k is called a k-cycle, denoted by C_k .
 - ② odd cycle (even cycle)
 - ③ 3-cycle ≡ triangle
 - **4** "cycle": graph or subgraph; undirected or directed

- Example 1.7.1: G: undirected graph with $\delta \geq 2$.
 - ① G contains a cycle C_n .
 - ② If *G* is simple, then $n \ge \delta + 1$

Proof.

If G contains loops or parallel edges, then the conclusion holds clearly.

Suppose G is simple and let $P = (x_0, x_1, ..., x_k)$ be a longest path.

$$\therefore N_G(x_0) \subseteq \{x_1, x_2, ..., x_k\}$$
and $|N_G(x_0)| = d_G(x_0) \ge \delta(G) \ge 2$

$$\therefore \exists x_i \in N_G(x_0), \delta \le i \le k$$
i.e. $(x_0, x_1, ..., x_{i-1}, x_i, x_0)$ is a cycle of length $i + 1$

$$\Rightarrow G \text{ contains a cycle of length } \ge \delta + 1$$

• <u>Def</u>: The girth of G, $g(G) \equiv$ the length of a shortest (directed) cycle in a (di)graph G.

• Example 1.7.2: *G*: *k*-regular undirected graph with $g(G) = g \ge 3$, then $\nu(G) \ge \begin{cases} 1 + k + k(k-1) + \dots + k(k-1)^{\frac{1}{2}(g-3)}, & \text{if } g \text{ is odd,} \\ 2(1 + (k-1) + \dots + (k-1)^{\frac{1}{2}(g-2)}) & \text{, if } g \text{ is even.} \end{cases}$

Proof. (1/2)

• Example 1.7.2: *G*: *k*-regular undirected graph with $g(G) = g \ge 3$, then $v(G) \ge \begin{cases} 1 + k + k(k-1) + \dots + k(k-1)^{\frac{1}{2}(g-3)}, & \text{if } g \text{ is odd,} \\ 2(1 + (k-1) + \dots + (k-1)^{\frac{1}{2}(g-2)}) & \text{, if } g \text{ is even.} \end{cases}$

Proof. (2/2)

∴ $g \ge 3$, ∴ G is simple. case 1: g is odd: let g = 2d + 1, $d \ge 1$. ∴ $\nu(G) \ge 1 + k + k(k - 1) + \dots + k(k - 1)^{d - 1}$ ∴ d = (g - 1)/2∴ $\nu(G) \ge 1 + k + k(k - 1) + \dots + k(k - 1)^{\frac{1}{2}(g - 3)}$ case 2: exercise 1.7.10(b)

• <u>Def</u>: A (di)graph G of order $\nu (\geq 3)$ is vertex-pancyclic if $\forall x \in V(G), x$ is contained in (directed) cycle of length $k, \forall 3 \leq k \leq \nu$.

• Thm 1.5: Every strongly connected tournament of order $\nu (\geq 3)$ is vertex-pancyclic. Proof. (1/3)

Prove by induction on $k \ge 3$:

Let G be a strongly connected tournament.

 $\forall u \in V(G)$:

① For
$$k = 3$$
, let $S = N_G^+(u)$, $T = N_G^-(u)$.

$$\therefore$$
 G is strongly connected, \therefore $S \neq \phi$, $T \neq \phi$.

$$\therefore$$
 G is tournament. \therefore $S \cup T \cup \{u\} = V(G)$

i.e.
$$T \cup \{u\} = \overline{S}$$

 \therefore G is strongly connected. \therefore $(S, T) = (S, \overline{S}) \neq \phi$

(o.w.
$$\forall x \in S, y \in T, \not\exists (x, y)\text{-path } \rightarrow \leftarrow$$
)

i.e.
$$\exists x \in S, y \in T \text{ s.t. } (x, y) \in E(G)$$

 \therefore (u, x, y, u) is a directed 3-cycle containing u.

- Thm 1.5: Every strongly connected tournament of order ν(≥ 3) is vertex-pancyclic.
 Proof. (2/3)
 - ② Suppose that u is contained in directed cycles of all lengths between 3 and n, where n < v:

Let $C = (u = u_0, u_1, ..., u_{n-1}, u_0)$ be a directed *n*-cycle.

$$\forall x \in V(G) \setminus V(C), \underline{\text{if}} N_G^+(x) \cap V(C) \neq \emptyset \text{ and } N_G^-(x) \cap V(C) \neq \emptyset,$$

then $\exists u_i \in V(C), \text{ s.t. } (u_i, x), (x, u_{i+1}) \in E(G).$

 \Rightarrow $(u_0, u_1, u_2, ..., u_i, x, u_{i+1}, ..., u_{n-1}, u_0)$ be a directed (n+1)-cycle containing u.

otherwise, let
$$S = \{x \in V(G) \setminus V(C) : N_G^+(x) \cap V(C) = \emptyset\}$$

$$T = \{x \in V(G) \backslash V(C) \colon N_G^-(x) \cap V(C) = \emptyset\}$$

either $x \in S$ or $x \in T$.

- \therefore G is strongly connected and $n < \nu$.
- $\therefore S \neq \emptyset, T \neq \emptyset, \text{ and } (S, T) \neq \emptyset.$

- Thm 1.5: Every strongly connected tournament of order ν(≥ 3) is vertex-pancyclic.
 Proof. (3/3)
 - ② : G is strongly connected and n < v.

$$\therefore S \neq \phi, T \neq \phi, \text{ and } (S, T) \neq \phi.$$

let
$$x \in S$$
, $y \in T$ s.t. $(x, y) \in E(G)$

Thus u is contained in the directed (n + 1)-cycle

$$(u_0, x, y, u_2, u_3, ..., u_{n-1}, u_0)$$

音樂劇欣賞6-2

荒廢的豪宅, 序 這具屍體展開。 星若瑪也斯的人 台了他的劇作家 利斯對大導演 要把這本劇本並 目攝影場。這位 印伊利斯都不敢 作的貝蒂一見氫 主氣,將所有事 用這間大屋的包 的,他叫巨名的 安執人心醜陋的

也裹發現 寸款所逼 委託,修

管家侍 各比德導 老爺車感 馬。

(c) Fall 2019, Justie Su-Tzu Juan

Thm 1.5: Every strongly connected tournament of order $\nu (\geq 3)$ is vertex-pancyclic.

• Corollary 1.5: G: a strongly connected tournament of order $v \ge 5$. $\forall x, y \in V(G)$, $\exists (x, y)$ -walk of length = d + 3, where d = the diameter of G.

Proof.

Let P be a shortest (x, y)-path in G.

$$0 \le d_G(x, y) \le d \le \nu - 1, \ 0 \le d - d_G(x, y) \le \nu - 1$$

$$\therefore 3 \le d - d_G(x, y) + 3 \le v + 2$$

$$\therefore \nu \geq 5$$
, \therefore By Thm 1.5, \exists 3, 4, 5-cycle containing y.

case 1: if
$$d - d_G(x, y) = 0$$
 or 1 or 2:

$$\therefore \nu \ge 5$$
, \therefore By Thm 1.5, $\exists (d - d_G(x, y) + 3)$ -cycle C containing y,

Thus, $P \oplus C$ is an (x, y)-walk of length

$$d_G(x, y) + (d - d_G(x, y) + 3) = d + 3$$

case 2: If
$$3 \le d - d_G(x, y) \le v - 1$$

By Thm 1.5:
$$\exists (d - d_G(x, y))$$
-cycle C containing y and \exists 3-cycle C_3 containing y .

Thus
$$P \oplus C \oplus C_3$$
 is an (x, y) -walk of length $d_G(x, y) + (d - d_G(x, y)) + 3$
= $d + 3$

- Thm 1.6: A strongly connected digraph G is bipartite ⇔ G contains no odd directed circuit
 - **Proof.** (1/4)
 - (\Rightarrow) Let $\{X, Y\}$ be the bipartition of G.

Suppose $C = x_0 e_1 x_1 ... x_{k-1} e_k x_0$ is a directed k-circuit in G.

W.L.O.G. say $x_0 \in X$, then $x_1 \in Y$

$$x_2 \in X$$
, then $x_3 \in Y$,

$$x_{k-1} \in Y$$

In general, $x_{2i} \in X$ and $x_{2i+1} \in Y$

$$\therefore k-1=2i+1$$
 for some integer *i*.

$$\Rightarrow k = 2i + 2$$
 i.e. C is even.

• Thm 1.6: A strongly connected digraph G is bipartite ⇔ G contains no odd directed circuit

Proof. (2/4)

 (\Leftarrow) : G contains no odd directed circuit. : G has no loop.

Choose $u \in V(G)$, define $X = \{x \in V(G) : d_G(u, x) \text{ is even}\}$ $Y = \{y \in V(G) : d_G(u, y) \text{ is odd}\}.$

 \therefore *G* is strongly connected. \therefore $X \cup Y = V(G)$

i.e. $\{X, Y\}$ is a partition of V(G)

Consider G[Y], $\forall y, z \in Y$, by definition $\exists P_1 = a \text{ shortest } (u, y) = b$ -path and $\exists Q_1 = a \text{ shortest } (u, z) = b$ -path in G and length (P_1) , length (Q_1) are odd.

- $\therefore P_1 \cup P_2$ and $Q_1 \cup Q_2$ both are directed close walks
- \therefore length(P_2), length(Q_2) are odd. (by following Note)

• Thm 1.6: A strongly connected digraph G is bipartite ⇔
G contains no odd directed circuit

Proof. (3/4)

Note: length(P_2) is odd:(length(Q_2) in the same)

By exercise 1.5.1, $P_1 \cup P_2$ = the union of several directed closed trail.

$$\begin{aligned} & \text{let } E_1 = \{e \colon e \in E(P_1) \text{ and } e \not\in E(P_2)\} \\ & E_2 = \{e \colon e \in E(P_2) \text{ and } e \not\in E(P_1)\} \\ & E_{12} = \{e \colon e \in E(P_1) \cap E(P_2)\} \end{aligned}$$

- ∴ $2|E_{12}| + |E_1| + |E_2| = \text{length}(P_1 \oplus P_2) = \Sigma|\text{directed closed trail}|$ is even number.
- $\Rightarrow |E_1| + |E_2|$ is a even number
- $|E_1|$ and $|E_2|$ are either odd or even in the same time and $|E_1| + |E_{12}| = \text{length}(P_1)$ is odd.
- $|E_2| + |E_{12}| = \text{length } (P_2) \text{ is odd, too.}$

• Thm 1.6: A strongly connected digraph G is bipartite ⇔
G contains no odd directed circuit

Proof. (4/4)

If $\exists (y, z) \in E(G)$, then $P_1 \oplus (y, z) \oplus Q_2$ contains an odd dicircuit. $\rightarrow \leftarrow$ If $\exists (z, y) \in E(G)$, then $Q_1 \oplus (z, y) \oplus P_2$ contains an odd dicircuit. $\rightarrow \leftarrow$ \therefore G[Y] is empty.

By the same argument, we can prove that G[X] is empty too.

 \therefore {X, Y} is a bipartition of G and G is a bipartite graph.

Thm 1.6: A strongly connected digraph G is bipartite \Leftrightarrow G contains no odd directed circuit

• <u>Note</u>: The strongly connectedness is no necessary for "⇒", but is necessary for "⇐." ex:

• Corollary 1.6.1: G: a strongly connected digraph; G is bipartite $\Leftrightarrow G$ contains no odd directed cycle.

Proof. (\Rightarrow) By Thm 1.6, G contains no odd circuit.

 \therefore G contains no odd cycle.

(: an odd directed cycle is a special odd directed circuit)

 (\Leftarrow) Suppose C is an odd directed circuit in G.

Then C is not a directed cycle (by assumption) and

let $C = C_1 \oplus C_2 \oplus ... \oplus C_k$, $k \ge 2$ where C_i is a cycle for $1 \le i \le k$.

 \therefore C is odd, \therefore \exists 1 \le i \le k, C_i is odd $\rightarrow \leftarrow$

... G contains no odd directed circuit.

By $\underline{\text{Thm 1.6}}$, G is a bipartite graph.

- Corollary 1.6.2: G: an undirected graph, G is bipartite \Leftrightarrow G contains no odd cycle.
- Corollary 1.6.3: G: a digraph: G is bipartite $\Leftrightarrow G$ contains no odd cycle
- Example 1.7.3: G: an undirected graph,
 G has a balanced oriented graph ⇔ G contains no vertex of odd degree.
 Proof. (1/2)
 - (\Rightarrow) It is clearly.
 - (\Leftarrow) Prove by induction on ε .
 - ① $\varepsilon = 0$: trivial
 - ② If the assertion holds $\forall \varepsilon \leq m$, now consider G be an undirected graph without vertices of odd degree and $\varepsilon(G) = m + 1$ Let $S = \{x \in V(G): d_G(x) = 0\}$, and let $G_1 = G - S$.

Example 1.7.1: G: undirected graph with $\delta \geq 2$.

① *G* contains a cycle C_n . ② If *G* is simple, then $n \ge \delta + 1$

• Example 1.7.3: G: an undirected graph,

G has a balanced oriented graph \Leftrightarrow G contains no vertex of odd degree.

Proof. (2/2)

 (\Leftarrow) Prove by induction on ε .

$$\therefore \forall v \in V(G_1), d_{G_1}(v) \ge 2$$
, i.e. $\delta(G_1) \ge 2$

By Ex 1.7.1, G_1 contains a cycle C.

Given each edge in C an orientation to get a directed cycle C'.

Let
$$G_2 = G - E(C) \Rightarrow \varepsilon(G_2) = \varepsilon(G) - \varepsilon(C) < \varepsilon(G) = m + 1$$

and G_2 contains no odd vertices.

... By I. H., \exists a balanced oriented graph D' of G_2 .

 \Rightarrow Let $D = D' \oplus C'$, D is a balanced oriented graph of G.

17 Circuite and Cyclas

Exercise 1.5.1(c): Prove that any directed closed walk can be expressed as the union of several edge-disjoint closed trails, and construct an example to show that the term "directed" can not be deleted.

• Example 1.7.4: G: a strongly connected digraph: G contains an odd circuit \Rightarrow G contains an odd directed circuit (\Rightarrow G contains an odd directed cycle.)

Proof. (method 1) By Corollary 1.6.3 \rightarrow reader.

 $\langle \text{method 2} \rangle \text{ Let } C = x_1 e_1 x_2 e_2 \dots x_i e_i x_{i+1} \dots x_{2k+1} e_{2k+1} x_1 \text{ be an odd circuit in } G,$ where $x_i \in V(G), e_i \in E(G).$

 \therefore G is strongly connected.

... let $P_i \equiv$ a shortest (x_i, x_{i+1}) -path, $\forall 1 \le i \le 2k$ $P_{2k+1} \equiv$ a shortest (x_{2k+1}, x_1) -path.

If $\exists 1 \le i \le 2k + 1$, length(P_i) is even,

then $\psi_G(e_i) = (x_{i+1}, x_i)$ and $P_i + e_i$ is an odd directed cycle in G. o.w. $\forall \ 1 \le i \le 2k+1$, length(P_i) is odd.

Let $W = P_1 \oplus P_2 \oplus ... \oplus P_{2k+1}$, W is a odd closed directed walk. By exercise 1.5.1(c), W = the union of several directed circuit.

 \therefore 3 at least one is odd.

• Example 1.7.5: G: a non-bipartite undirected graph

G is simple and $\varepsilon > (1/4)(\nu - 1)^2 + 1 \Rightarrow G$ contains a triangle.

Proof. (1/2)

∴ *G* is non-bipartite, by Corollary 1.6.2, ∴ *G* contains odd cycle. Let *C* be a shortest odd cycle, where V(C) = S, and |S| = k. Suppose $k \ge 5$: If $|(S, \overline{S})| > 2(\nu - k)$, then $\exists \ u \in \overline{S}$, s.t. $|N_G(u) \cap S| \ge 3$. Say $x, y, z \in N_G(u) \cap S$ but ∴ the length of a shortest odd cycle ≥ 5 , ∴ $\exists \ a, b, c \in S \setminus \{x, y, z\}$ and $C_1 = (u, x, ..., a, ..., y, u)$; $C_2 = (u, y, ..., b, ..., z, u)$; $C_3 = (u, z, ..., c, ..., x, u)$ is three cycles on *G*.

Example 1.3.1: If G is a simple undirected graph without triangles, then $\varepsilon(G) \leq (1/4) v^2$.

• Example 1.7.5: G: a non-bipartite undirected graph

G is simple and $\varepsilon > (1/4)(\nu - 1)^2 + 1 \Rightarrow G$ contains a triangle.

Proof. (2/2)

- : length (C_1) , length (C_2) , length $(C_3) < k$ and length $(C_1) 2 + \text{length}(C_2) 2 + \text{length}(C_3) 2 = k$, is odd.
- \therefore \exists 1 \le i \le 3, s.t. C_i is a odd cycle with length $< k \rightarrow \leftarrow$

$$||(S, \overline{S})| \leq 2(\nu - k) \dots \oplus$$

By Example 1.3.1, \overline{S} without triangle $\Rightarrow \varepsilon(G[\overline{S}]) \leq (1/4)(\nu - k)^2 \dots \bigcirc$

$$\varepsilon(G) = \varepsilon(G[S]) + |(S, \overline{S})| + \varepsilon(G[\overline{S}])$$

$$\leq k + 2(\nu - k) + (1/4)(\nu - k)^{2} \quad \text{(by } \mathbb{D}, \mathbb{Q})$$

$$\leq 2\nu - 5 + (1/4)(\nu - 5)^{2}$$

$$= (1/4)(\nu - 1)^{2} + 1 \rightarrow \leftarrow$$

 \therefore G contains a triangle.

• Exercise: 1.7.3(a)(c)

• 加: 1.7.4(c), 1.7.6, 1.7.8