Chapter 1 Basic Concepts of Graphs

§ 1.5 Walks, Paths and Connection (2)

- **<u>Def</u>**: Let *G* be a loopless graph, $x \in V(G)$ and $e \in E(G)$:
 - If $\omega(G x) > \omega(G)$, then x is called a cut-vertex.
 - If $\omega(G e) > \omega(G)$, then *e* is called a cut-edge.
 - A connected graph is called a **block** if it contains no cut-vertex.

<u>Note</u>: ① If |v(G)| ≥ 3, G contains a cut-edge ⇒ G contains a cut-vertex.
 ② Every graph can be expressed as the union of several blocks.

Example 1.5.3: *G*: graph with $\nu(G) \ge 2$,

```
\exists 2 vertices that are not cut-vertices in G.
```

Proof.

Let $P = x_0 e_1 x_1 e_2 x_2 \dots x_{k-1} e_k x_k$ be a longest path in *G*. Then $k \ge 1$. (If *G* is empty, then all vertices are not cut vertices) Suppose x_0 is a cut-vertex. $\Rightarrow \omega(G - x_0) > \omega(G)$. Let G_0 , G_1 be two connected components of $G - x_0$, where G_1 contains x_1 . (i.e. $x_1, x_2, ..., x_k$ all in G_1 .) Choose $y \in N_G(x_0) \cap V(G_0)$, i.e. $\exists e \in E(G)$ with end-vertices x_0, y . $\therefore y \in V(G_0), \therefore y \neq x_i, \forall 1 \le i \le k$ $\therefore Q = yex_0e_1x_1e_2x_2\dots x_{k-1}e_kx_k$ is a path in G and length(P) < length(Q) $\rightarrow \leftarrow$ **Def:** length(P) = the length of P $\therefore x_0$ is not a cut-vertex of G. Similarly, x_k is not a cut-vertex of G, too.

- **<u>Def</u>:** Let G be a digraph,
 - $x, y \in V(G)$ are said to be strongly connected if ∃ (x, y)-path and (y, x)-path in *G*.
 - "to be strongly connected" is an equivalence relation on V(G).
 - The subgraph induced by an equivalence class is called a strongly connected component of G.
 - *G* is called to be strongly connected if it has one strongly connected component ⇔ $\forall x, y \in V(G), x, y$ are strongly connected.
- Note: ① For undirected graph, the definition are the same.
 - **②** For a digraph *G*, *G* is strongly connected \Rightarrow *G* is connected.
 - **③** For a digraph *G*, *G* is strongly connected \Leftrightarrow

both $(S, \overline{S}) \neq \phi$ and $(\overline{S}, S) \neq \phi$, $\forall S \neq \phi \subseteq V(G)$.

Example 1.5.4: A simple digraph G with $\varepsilon > (\nu - 1)^2$ is strongly connected. Proof.

> If not, i.e. *G* is not strongly connected. By note, $\exists S \neq \phi \subseteq V(G)$ s.t. $(S, \overline{S}) = \phi$. Let |S| = k. $\therefore |(\overline{S}, S)| \le k(v-k)$ $\therefore \varepsilon \le 2(^{k}_{2}) + 2(^{v-k}_{2}) + k(v-k)$ = k(k-1) + (v-k)(v-k-1) + k(v-k) = k(k-1) + (v-k)(v-1) = k(k-1) + [v-1-(k-1)](v-1) $= k(k-1) + (v-1)^{2} - (v-1)(k-1)$ $= (v-1)^{2} - (k-1)(v-k-1) \le (v-1)^{2} \rightarrow \leftarrow$

... *G* is strongly connected.

<u>Thm 1.2</u>: Every tournament contains Hamilton directed path.

<u>Def</u>: A digraph *G* is called be unilateral connected if \exists either (x, y)-path or (y, x)-path for any $x, y \in V(G)$.

Example 1.5.5: *G* is unilateral connected ⇔

G contain a directed walk going through all vertices of G.

Proof.

(\Leftarrow) trivial (By Ex 1.5.1 (a) + (b)) (\Rightarrow) Construct a simple digraph *G'* where $\begin{cases} V(G') = V(G) \\ E(G') = \{(x, y): \exists (x, y)\text{-path } P_{xy} \text{ in } G\} \end{cases}$ By hypothesis, *G'* contains a tournament as its spanning subgraph. By <u>Thm 1.2</u>, *G'* contains a Hamilton directed path *P'*. \Rightarrow let *W* = replacing an edge (*x*, *y*) in *P'* with *P_{xy}* in *G*. Then *W* is a directed walk going through all vertices of *G*. (c) Spring 2019, Justie Su-Tzu Juan 6

Exercises: 1.5.11 (a)

加: 1.5.1(b), 1.5.8

Chapter 1 Basic Concepts of Graphs

§ 1.6 Distances and Diameter

- <u>**Def</u>:** $\forall x, y \in V(G)$ </u>
 - ① d_G(x, y) = min{length(P): P is a (x, y) path in G} = the distance from x to y.
 ② P is a shortest (x, y)-path if length(P) = d_G(x, y) for (x, y)-path P.
- Note: ① In undirected graph *G*, *d_G*(*x*, *y*) = *d_G*(*y*, *x*) ② ① is not always true for digraph.

Def:

- The diameter of $G \equiv d(G) \equiv \max\{d_G(x, y): \forall x, y \in V(G)\}$
- A graph G is called path, denoted by P_n if G is a path of n vertices.

ex: $\begin{array}{l}
\textcircled{0} d(P_n) = \begin{cases} n-1, & \text{if } P_n \text{ is undirected;} \\
& & & \text{if } P_n \text{ is directed.} \\
\textcircled{0} d(K_n) = 1 \\
\textcircled{0} d(K_{m,n}) = 2 & \text{if } \max\{m, n\} > 1 \\
\textcircled{0} \text{ For Petersen graph } G, d(G) = 2 \\
& & \textcircled{0} d(Q_n) = n
\end{array}$

<u>Note</u>: ① $d(G) = 1 \Leftrightarrow K_{\nu} \subseteq G$. ② d(G) is well-defined if *G* is {connected undirected graph or a strongly connected digraph.

Example 1.6.1: *G*: a connected undirected graph with $K_2^C \subseteq G$ $\exists x, y \in V(G)$ s.t. $d_G(x, y) = 2$ **Proof. Let** x, z be two nonadjacent vertices in *G*. \therefore *G* is connected. \therefore *G* is connected. \therefore *J* a shortest xz-path $P = xe_1x_1e_2x_2e_3...x_{k-1}e_kz$, where $k \ge 2$. Let $y = x_2$, then $\therefore xe_1x_1e_2x_2$ is a xy-path. $\therefore d_G(x, y) \le 2$. If $d_G(x, y) = 1$, then $\exists e \in E(G)$ s.t. $\psi_G(e) = xy \rightarrow \leftarrow$ (shortest)

 $\therefore d_G(x,y)=2$

Example 1.6.2: *G*: a connected simple undirected graph of order *v*, and $\delta(G) = \delta$, then $d(G) \le 3v/(\delta+1)$.

Proof.

Let x, y be two vertices of G, s.t. $d_G(x, y) = d(G) = d$ and $P = (x_0, x_1, ..., x_{d-1}, x_d)$ be a shortest xy-path in G. $\therefore N_G(x_{3i}) \cap N_G(x_{3j}) = \phi, \forall 0 \le i < j \le \lfloor d/3 \rfloor$. (o.w. P is not shortest. $\therefore (x_0, x_1, ..., x_{3i}, y, x_{3j}, ..., x_d)$ is shorten then P, where $y \in N(x_{3i}) \cap N(x_{3j})$.) $\therefore v \ge \delta(\lfloor d/3 \rfloor + 1) + (\lfloor d/3 \rfloor + 1) \ge \delta \cdot (d/3) + d/3 = (d/3)(\delta + 1)$ $\Rightarrow d(G) = d \le 3v/(\delta + 1)$

Example 1.6.3: *G*: a strongly connected digraph of order ν and $\Delta(G) = \Delta$, then $d(G) = \nu - 1$, for $\Delta = 1$; $\geq \lceil \log_{\Delta}(\nu(\Delta - 1) + 1) \rceil - 1$, for $\Delta \geq 2$.

Proof.

G is a strongly connected digraph. **G** is well-defined. Let d(G) = k, and $x \in V(G)$. Let $R_i = \{y \mid d_G(x, y) = i\}$, then $|R_i| \le \Delta^i, \forall 1 \le i \le k$. $\therefore \nu \le 1 + \varDelta + \varDelta^2 + \ldots + \varDelta^{k-1} + \varDelta^k = \begin{cases} k+1 & \text{, for } \varDelta = 1\\ (\varDelta^{k+1} - 1)/(\varDelta - 1), \text{ for } \varDelta \ge 2. \end{cases}$ (1.6)Case 1: for $\Delta = 1$: $\nu \le k + 1 \Longrightarrow k \ge \nu - 1$ but $k = d(G) \le v - 1$. k = d(G) = v - 1Case 2: for $\Delta \ge 2$: $(\Delta - 1) \nu \le \Delta^{k+1} - 1$ $(\varDelta - 1)\nu + 1 \leq \varDelta^{k+1}$ $\therefore \Delta \ge 2, \therefore d(G) = k \ge \lceil \log_{\mathcal{A}} \{ (\Delta - 1)\nu + 1 \} \rceil - 1 \ (\therefore k \in N)$ (c) Spring 2019, Justie Su-Tzu Juan 13

 $\nu \le 1 + \varDelta + \varDelta^2 + \ldots + \varDelta^{k-1} + \varDelta^k = \begin{cases} k+1 &, \text{ for } \varDelta = 1\\ (\varDelta^{k+1} - 1)/(\varDelta - 1), & \text{ for } \varDelta \ge 2. \end{cases}$

Def:

- The upper bounds in (1.6) is called (Δ, k) -Moore bounds for digraphs of maximum degree Δ and diameter k.
- The digraphs whose order = Moore bounds is called a (Δ, k) -Moore digraph.

Note:

- A directed cycle of length k + 1 is the unique (1, k)-Moore digraph.
- No (Δ, k) -Moore digraph for $\Delta \ge 2$ and $k \ge 2$. (Example 1.10.1)
- The Moore-bounds for undirected graph are given in Exercise 1.6.5.

Def:

- If $P = (x_1, v_1, v_2, ..., v_m, y_1)$ is an (x_1, y_1) -path in G_1 , then $\forall b \in V(G_2)$, say $Pb = (x_1b, y_1b)$ -path $= (x_1b, v_1b, v_2b, ..., v_mb, y_1b)$ in $G_1 \times G_2$.
- If $W = (x_2, u_1, u_2, ..., u_l, y_2)$ is an (x_2, y_2) -path in G_2 , then $\forall a \in V(G_1)$, say $aW = (ax_2, ay_2)$ -path in $G_1 \times G_2 = (ax_2, au_1, au_2, ..., au_l, ay_2)$.

<u>Note</u>: Let $Q = Px_2 \cup y_1W$ is an (x_1x_2, y_1y_2) -path in $G_1 \times G_2$ with length $\varepsilon(P) + \varepsilon(W)$.

Theorem 1.3: ① $d(G_1 \times G_2 \times ... \times G_n) = d(G_1) + d(G_2) + ... + d(G_n)$ $\bigcirc d(Q_n) = n$, where Q_n is an *n*-cube. **Proof.** (1/3) **(1)** By associative law and the induction on $n \ge 2$, we need to only prove $d(G_1 \times G_2) = d(G_1) + d(G_2).$ (i) $\forall x = x_1x_2, y = y_1y_2 \in V(G_1 \times G_2)$, where $x_1, y_1 \in V(G_1), x_2, y_2 \in V(G_2)$. Let P be a shortest (x_1, y_1) -path in G_1 , W be a shortest (x_2, y_2) -path in G_2 . case 1: $x_1 = y_1$; x_1W is a (shortest) (x, y)-path in $G_1 \times G_2$. $d_{G_1 \times G_2}(x, y) \le \varepsilon(x_1 W) = \varepsilon(W) \le d(G_2) \le d(G_1) + d(G_2)$ case2: $x_2 = y_2$: Px_2 is a (shortest) (x, y)-path in $G_1 \times G_2$ $\therefore d_{G_1 \times G_2}(x, y) \le \varepsilon(Px_2) = \varepsilon(P) \le d(G_1) \le d(G_1) + d(G_2)$ case 3: $x_1 \neq y_1 \land x_2 \neq y_2$: $Px_2 \cup y_1W$ is an (x, y)-path in $G_1 \times G_2$. $\therefore d_{G_1 \times G_2}(x, y) \le \varepsilon(Px_2) + \varepsilon(y_1W) \le d(G_1) + d(G_2)$ (c) Spring 2019, Justie Su-Tzu Juan 16

```
Theorem 1.3: ① d(G_1 \times G_2 \times \ldots \times G_n) = d(G_1) + d(G_2) + \ldots + d(G_n)
                 \bigcirc d(Q_n) = n, where Q_n is an n-cube.
 Proof. (2/3)
      (ii) Let x_1, y_1 \in V(G_1), x_2, y_2 \in V(G_2) such that
            d_{G_1}(x_1, y_1) = d(G_1), d_{G_2}(x_2, y_2) = d(G_2).
          Let P be a shortest (x_1, y_1)-path in G_1 and
               W be a shortest (x_2, y_2)-path in G_2.
          If \exists Q' is an (x_1x_2, y_1y_2)-path in G_1 \times G_2 shorter than Px_2 \cup y_1W, say
            Q' = ((x_1x_2) =)c_1d_1, c_2d_2, \dots, c_nd_n (= y_1y_2)),
          then: let P' be an (x_1, y_1)-walk in G_1 such that P' determined by distinct
                  vertices in the first coordinates of vertices of Q' in the original order
```

Theorem 1.3:
$$\bigcirc d(G_1 \times G_2 \times ... \times G_n) = d(G_1) + d(G_2) + ... + d(G_n)$$

 $\oslash d(Q_n) = n$, where Q_n is an *n*-cube.
Proof. (3/3)
let W' be an (x_2, y_2) -walk in G_2 such that W' determined by distinct vertices in the second coordinates of vertices of Q' in the original order.
 $\therefore \varepsilon(P') + \varepsilon(W') = \varepsilon(Q') < \varepsilon(Px_2 \cup y_1W) = \varepsilon(P) + \varepsilon(W)$
 \therefore either $\varepsilon(P') < \varepsilon(P)$ or $\varepsilon(W') < \varepsilon(W) \rightarrow \leftarrow$
 $\Rightarrow d(G_1 \times G_2) \ge d(x_1x_2, y_1y_2) \ge \varepsilon(Px_2 \cup y_1W) = \varepsilon(P) + \varepsilon(W) = d(G_1) + d(G_2).$
 \therefore By (i) and (ii), $d(G_1 \times G_2) = d(G_1) + d(G_2)$
 $@ \because Q_n = \overbrace{K_2 \times K_2 \times ... \times K_2}^n$, and $d(K_2) = 1$
 $\therefore d(Q_n) = \underbrace{1 + 1 + ... + 1}_n = n.$

<u>Theorem 1.4</u>: Let G be a strongly connected digraph with v≥ 2, and L be the line digraph of G. Then ① d(G) ≤ d(L) ≤ d(G) + 1.
② d(G) = d(L) ⇔ G is a directed cycle.
③ d(K(d, n)) = d(B(d, n)) = n.

Proof. (1/5) (略)

① By <u>ex 1.6.3</u>, *L* is also strongly connected, $\therefore d(G)$, d(L) are well-defined.

(i) Let $x, y \in V(G)$, such that $d_G(x, y) = d(G)$.

Let P = a shortest (x, y)-path in G.

∴ *G* is strongly connected. ∴ $\exists a \in E_G^{-}(x)$.

Let $b \in E_G^{-}(y) \cap E(P)$, and Q = a + P

 \Rightarrow *L*(*Q*) is a shortest (*a*, *b*)-path in *L*.

(o.w. *P* is not a shortest (x, y)-path in $G \rightarrow \leftarrow$)

 $\therefore d(L) \ge \varepsilon(L(Q)) = \varepsilon(P) = d(G)$

<u>Theorem 1.4</u>: Let *G* be a strongly connected digraph with $v \ge 2$, and *L* be the line digraph of *G*. Then $\textcircled{O} d(G) \le d(L) \le d(G) + 1$. $\textcircled{O} d(G) = d(L) \Leftrightarrow G$ is a directed cycle. O d(K(d, n)) = d(B(d, n)) = n. **Proof.** (2/5) O(ii) Let $a, b \in V(L)$ s.t. $d_L(a, b) = d(L)$ $\Rightarrow \exists x, y, z, u \in V(G)$ s.t. a = (z, x), b = (y, u).

- $\Rightarrow d_G(x, y) = d_L(a, b) 1. \text{ (o.w. } d_L(a, b) \le d(L) 1 \rightarrow \leftarrow)$ $\Rightarrow d(G) \ge d_G(x, y) = d_L(a, b) 1 = d(L) 1$
- : By (i)(ii), $d(G) \le d(L) \le d(G) + 1$

(c) Spring 2019, Justie Su-Tzu Juan

Theorem 1.4: Let G be a strongly connected digraph with $\nu \ge 2$, and L be the line digraph of *G*. Then $\oplus d(G) \le d(L) \le d(G) + 1$. $(a) d(G) = d(L) \Leftrightarrow G$ is a directed cycle. ((d, n)) = d(B(d, n)) = n.**Proof.** (3/5) $\textcircled{O}(\Leftarrow) : L(C_n) = C_n : d(G) = d(L).$ (\Rightarrow) Let d(G) = d, and $x, y \in V(G)$ s.t. $d_G(x, y) = d$. Let P = (x, y)-path of length d in G. : G is strongly connected, $d_G(x) \ge 1$ and $d_G(y) \ge 1$ i.e. $\exists x', y' \in V(G)$, s.t. $a = (x', x), b = (y, y') \in E(G)$. (i) If $a \neq b$, then $d_L(a, b) = d + 1 \rightarrow \leftarrow (d(L) \ge d_L(a, b) = d + 1 = d(G) + 1)$ $P: \overset{\mathbf{v}}{\underset{a}{\longrightarrow}} \bullet \cdots \bullet \overset{\mathbf{v}}{\underset{b}{\longrightarrow}} b$

Theorem 1.4: Let G be a strongly connected digraph with $v \ge 2$, and L be the line digraph of G. Then (1) $d(G) \le d(L) \le d(G) + 1$. (2) $d(G) = d(L) \Leftrightarrow G$ is a directed cycle. (3) d(K(d, n)) = d(B(d, n)) = n. **Proof.** (4/5) (ii) If a = b, i.e. $\exists c = (v, x) \in E(G)$, i.e. $P \cup \{c\}$ is a dicycle in G.

(ii) If
$$a = b$$
, i.e. $\exists c = (y, x) \in E(G)$, i.e. $P \cup \{c\}$ is a dicycle in G .
Let $P \cup \{c\} = (x_0, x_1, x_2, ..., x_d, x_0) = C$, where $x_0 = x, x_d = y$.
If $G \neq$ dicycle, then $\exists x_i \in E(G)$ and $z \in V(G)$ s.t. (x_i, z) or $(z, x_i) \in E(G)$.
Choose such x_i s.t. i is as large as possible. W.L.O.G., say $(x_i, z) \in E(G)$.
 $\Rightarrow d_G(x_{i+1}, x_i) = d$ (o.w. P is not shortest)
Let $a = (x_i, x_{i+1})$ and $b = (x_i, z) \Rightarrow d_L(a, b) = d + 1 \rightarrow \leftarrow$
 $((z, x_i) \in E(G)$ the same)
 x_d
 x_{i+1} (c) Spring 2019, Justie Su-Tzu Juan 22

<u>Theorem 1.4</u>: Let *G* be a strongly connected digraph with $v \ge 2$, and *L* be the line digraph of *G*. Then $\textcircled{O} d(G) \le d(L) \le d(G) + 1$. $\textcircled{O} d(G) = d(L) \Leftrightarrow G$ is a directed cycle. O d(K(d, n)) = d(B(d, n)) = n.

Proof. (5/5)

③ ∵ K_{d+1} and K_d^+ ($d \ge 2$) not directed cycle and $d(K_{d+1}) = d(K_d^+) = 1$

:
$$d(K(d, n)) = d(L^{n-1}(K_{d+1})) = 1 + n - 1 = n$$

 $d(B(d, n)) = d(L^{n-1}(K_d^+)) = 1 + n - 1 = n$

Def:

- The radius of $G \equiv \operatorname{rad}(G) = \min_{x \in V(G)} \{ \max_{y \in V(G)} \{ d_G(x, y) \} \}$
- A vertex x is called a central of G if $\max_{y \in V(G)} \{ d_G(x, y) \} (= \min_{x \in V(G)} \{ \max_{y \in V(G)} \{ d_G(x, y) \} \})$

 $= \operatorname{rad}(G)$

<u>Note</u>: $rad(G) \le d(G) \le 2rad(G)$ **Proof. exercise 1.6.6**

Example 1.6.4: For digraph G, $rad(G) \le r \Rightarrow \nu(G) \le 1 + r \cdot \Delta^r$. **Proof.**

Let x be a central vertex of G, and $J_i = \{y | d_G(x, y) = i\}$

$$\Rightarrow \left\{ \begin{array}{c} |J_1| \le \Delta \\ |J_i| \le \Delta \cdot |J_{i-1}| \end{array} \right\} \Rightarrow |J_i| \le \Delta^r$$
$$\Rightarrow \nu(G) \le 1 + \Delta + \Delta^2 + \dots + \Delta^r \le 1 + r \cdot \Delta$$

Def: *G*: connected undirected graph or strongly connected digraph with $v \ge 2$. **(1)** The mean or average distance of $G \equiv m(G) \equiv \frac{1}{v(v-1)} \sum_{x,y \in V(G)} (d_G(x,y)),$

Note:

 $\textcircled{1} m(G) \geq 1$

 \mathfrak{O} $m(G) = 1 \Leftrightarrow G$ is a complete graph

- ③ For a directed cycle C_n, n ≥ 3, σ(C_n) = (1/2)n²(n − 1), m(C_n) = n/2
 <sol> σ(C_n) = n(1 + 2 + ... + (n − 1)) = n ⋅(n(n − 1))/2 = (1/2)n²(n − 1) m(C_n) = (1/(n(n − 1))) ⋅ σ(C_n) = n/2
 ④ For an undirected cycle C m(C) = ((n + 1)/4 if n is odd:
- (a) For an undirected cycle C_n , $m(C_n) = \begin{cases} (n+1)/4 & \text{, if } n \text{ is odd;} \\ n^2/(4(n-1)), \text{ if } n \text{ is even.} \end{cases}$

<sol> exercise 1.6.6

Exercise: 1.6.6

加: 1.6.4 (b), (c)