Chapter 1 Basic Concepts of Graphs

§ 1.5 Walks, Paths and Connection (2)

1.5 Walks, Paths and Connection

- Def: Let G be a loopless graph, $x \in V(G)$ and $e \in E(G)$:
- If $\omega(G-x)>\omega(G)$, then x is called a cut-vertex.
- If $\omega(G-e)>\omega(G)$, then e is called a cut-edge.
- A connected graph is called a block if it contains no cut-vertex.
- Note: (1) If $|\nu(G)| \geq 3, G$ contains a cut-edge $\Rightarrow G$ contains a cut-vertex.
(2) Every graph can be expressed as the union of several blocks.
- ex: Fig 1.17

(c) Spring 2019, Justie Su-Tzu Juan

1.5 Walks, Paths and Connection

- Example 1.5.3: G : graph with $\gamma(G) \geq 2$,
$\exists 2$ vertices that are not cut-vertices in G.
Proof.
Let $P=x_{0} e_{1} x_{1} e_{2} x_{2} \ldots x_{k-1} e_{k} x_{k}$ be a longest path in G.
Then $k \geq 1$. (If G is empty, then all vertices are not cut vertices)
Suppose x_{0} is a cut-vertex. $\Rightarrow \omega\left(G-x_{0}\right)>\omega(G)$.
Let G_{0}, G_{1} be two connected components of $G-x_{0}$, where
G_{1} contains x_{1}. (i.e. $x_{1}, x_{2}, \ldots, x_{k}$ all in $G_{1 .}$)
Choose $y \in N_{G}\left(x_{0}\right) \cap V\left(G_{0}\right)$, i.e. $\exists e \in E(G)$ with end-vertices x_{0}, y.
$\because y \in V\left(G_{0}\right), \therefore y \neq x_{i}, \forall 1 \leq i \leq k$
$\therefore Q=y e x_{0} e_{1} x_{1} e_{2} x_{2} \ldots x_{k-1} e_{k} x_{k}$ is a path in G and length $(P)<$ length $(Q) \rightarrow \leftarrow$

Def: length $(P) \equiv$ the length of P
$\therefore x_{0}$ is not a cut-vertex of G.
Similarly, x_{k} is not a cut-vertex of G, too.
(c) Spring 2019, Justie Su-Tzu Juan

1.5 Walks, Paths and Connection

- Def: Let G be a digraph,
- $x, y \in V(G)$ are said to be strongly connected if $\exists(x, y)$-path and (y, x)-path in G.
- "to be strongly connected" is an equivalence relation on $V(G)$.
- The subgraph induced by an equivalence class is called a strongly connected component of \boldsymbol{G}.
- G is called to be strongly connected if it has one strongly connected component $\Leftrightarrow \forall x, y \in V(G), x, y$ are strongly connected.
- Note: (1) For undirected graph, the definition are the same.
(2) For a digraph G, G is strongly connected $\Rightarrow G$ is connected.
(3) For a digraph G, G is strongly connected \Leftrightarrow both $(S, \bar{S}) \neq \phi$ and $(\bar{S}, S) \neq \phi, \forall S \neq \phi \subseteq V(G)$.

1.5 Walks, Paths and Connection

- Example 1.5.4: A simple digraph G with $\varepsilon>(v-1)^{2}$ is strongly connected. Proof.

If not, i.e. G is not strongly connected.
By note, $\exists S \neq \phi \subseteq V(G)$ s.t. $(S, \bar{S})=\phi$.
Let $|S|=k . \because|(\bar{S}, S)| \leq k(v-k)$

$$
\begin{aligned}
\therefore \varepsilon & \leq 2\left({ }_{2}\right)+2\left({ }^{\wedge-k} 2\right)+k(v-k) \\
& =k(k-1)+(v-k)(v-k-1)+k(v-k) \\
& =k(k-1)+(v-k)(v-1) \\
& =k(k-1)+[v-1-(k-1)](v-1) \\
& =k(k-1)+(v-1)^{2}-(v-1)(k-1) \\
& =(v-1)^{2}-(k-1)(v-k-1) \leq(v-1)^{2} \rightarrow \leftarrow
\end{aligned}
$$

$\therefore G$ is strongly connected.

1.5 Walks, Paths and Connection

Thm 1.2: Every tournament contains Hamilton directed path.

- Def: A digraph G is called be unilateral connected if \exists either (x, y)-path or (y, x)-path for any $x, y \in V(G)$.
- Example 1.5.5: G is unilateral connected \Leftrightarrow
\boldsymbol{G} contain a directed walk going through all vertices of \boldsymbol{G}.
Proof.
(\Leftarrow) trivial (By Ex 1.5.1 (a) + (b))
(\Rightarrow) Construct a simple digraph G^{\prime} where

$$
\left\{\begin{array}{l}
V\left(G^{\prime}\right)=V(G) \\
E\left(G^{\prime}\right)=\left\{(x, y): \exists(x, y) \text {-path } P_{x y} \text { in } G\right\}
\end{array}\right.
$$

By hypothesis, G^{\prime} contains a tournament as its spanning subgraph.
By Thm 1.2, G^{\prime} contains a Hamilton directed path P^{\prime}.
\Rightarrow let $W=$ replacing an edge (x, y) in P^{\prime} with $P_{x y}$ in G.
Then W is a directed walk going through all vertices of G.
(c) Spring 2019, Justie Su-Tzu Juan

1.5 Walks, Paths and Connection

- Exercises: 1.5.11 (a)
- 加: 1.5.1(b), 1.5 .8

Chapter 1
 Basic Concepts of Graphs

§ 1.6 Distances and Diameter

1.6 Distances and Diameter

- Def: $\forall x, y \in V(G)$
(1) $d_{G}(x, y) \equiv \min \{l e n g t h(P): P$ is a (x, y) path in $G\}=$ the distance from x to y.
(2) P is a shortest (x, y)-path if length $(P)=d_{G}(x, y)$ for (x, y)-path P.
- Note: (1) In undirected graph $G, d_{G}(x, y)=d_{G}(y, x)$ (2) (1) is not always true for digraph.
- Def:
- The diameter of $G \equiv d(G) \equiv \max \left\{d_{G}(x, y): \forall x, y \in V(G)\right\}$
- A graph G is called path, denoted by P_{n} if G is a path of n vertices.

1.6 Distances and Diameter

- ex:
(1) $d\left(P_{n}\right)= \begin{cases}n-1, & \text { if } P_{n} \text { is undirected; } \\ \infty, & \text { if } P_{n} \text { is directed. }\end{cases}$
(2) $d\left(K_{n}\right)=1$
(3) $d\left(K_{m, n}\right)=2$ if $\max \{m, n\}>1$
(4) For Petersen graph $G, d(G)=2$
(5) $d\left(Q_{n}\right)=n$
- Note: (1) $d(G)=1 \Leftrightarrow K_{v} \subseteq G$.
(2) $d(G)$ is well-defined if G is $\left\{\begin{array}{l}\text { connected undirected graph or } \\ \text { a strongly connected digraph. }\end{array}\right.$

1.6 Distances and Diameter

- Example 1.6.1: G : a connected undirected graph with $K_{2}{ }^{C} \subseteq G$

$$
\exists x, y \in V(G) \text { s.t. } d_{G}(x, y)=2
$$

Proof.
Let x, z be two nonadjacent vertices in G.
$\because G$ is connected.
$\therefore \exists$ a shortest $x z$-path $P=x e_{1} x_{1} e_{2} x_{2} e_{3} \ldots x_{k-1} e_{k} z$, where $k \geq 2$.
Let $y=x_{2}$, then
$\because x e_{1} x_{1} e_{2} x_{2}$ is a $x y$-path.
$\therefore d_{G}(x, y) \leq 2$.
If $d_{G}(x, y)=1$, then $\exists e \in E(G)$ s.t. $\psi_{G}(e)=x y \rightarrow \leftarrow($ shortest $)$
$\therefore d_{G}(x, y)=2$

1.6 Distances and Diameter

- Example 1.6.2: G : a connected simple undirected graph of order v, and $\delta(G)=\delta$, then $d(G) \leq 3 v /(\delta+1)$.
Proof.
Let x, y be two vertices of G, s.t. $d_{G}(x, y)=d(G)=d$ and $P=\left(x_{0}, x_{1}, \ldots, x_{d-1}, x_{d}\right)$ be a shortest $x y$-path in G.
$\because N_{G}\left(x_{3 i}\right) \cap N_{G}\left(x_{3 j}\right)=\phi, \forall 0 \leq i<j \leq\lfloor d / 3\rfloor$.
(o.w. P is not shortest. $\because\left(x_{0}, x_{1}, \ldots, x_{3 i}, y, x_{3 j}, \ldots, x_{d}\right)$ is shorten then P, where $\left.y \in N\left(x_{3 i}\right) \cap N\left(x_{3 j}\right).\right)$
$\therefore v \geq \delta(\lfloor d / 3\rfloor+1)+(\lfloor d / 3\rfloor+1) \geq \delta \cdot(d / 3)+d / 3=(d / 3)(\delta+1)$
$\Rightarrow d(G)=d \leq 3 v(\delta+1)$

1.6 Distances and Diameter

- Example 1.6.3: G : a strongly connected digraph of order v and $\Delta(G)=\Delta$,

$$
\text { then } d(G)\left\{\begin{array}{lr}
=v-1 & , \text { for } \Delta=1 \\
\geq\left\lceil\log _{\Delta}(v(\Delta-1)+1)\right\rceil-1, \text { for } \Delta \geq 2
\end{array}\right.
$$

Proof.
$\because G$ is a strongly connected digraph. $\therefore G$ is well-defined.
Let $d(G)=k$, and $x \in V(G)$.
Let $R_{i}=\left\{y \mid d_{G}(x, y)=i\right\}$, then $\left|R_{i}\right| \leq \Delta^{i}, \forall 1 \leq i \leq k$.
$\therefore v \leq 1+\Delta+\Delta^{2}+\ldots+\Delta^{k-1}+\Delta^{k}=\left\{\begin{array}{l}k+1 \quad, \text { for } \Delta=1 \\ \left(\Delta^{k+1}-1\right) /(\Delta-1), \text { for } \Delta \geq 2 .\end{array}\right.$
Case 1: for $\Delta=1: v \leq k+1 \Rightarrow k \geq v-1$
but $k=d(G) \leq v-1 . \therefore k=d(G)=v-1$
Case 2: for $\Delta \geq 2:(\Delta-1) v \leq \Delta^{k+1}-1$

$$
\begin{aligned}
& (\Delta-1) v+1 \leq \Delta^{k+1} \\
\because & \Delta \geq 2, \therefore d(G)=k \geq\left\lceil\log _{\Delta}\{(\Delta-1) v+1\}\right\rceil-1(\because k \in N)
\end{aligned}
$$

(c) Spring 2019, Justie Su-Tzu Juan

1.6 Distances and Diameter

$$
v \leq 1+\Delta+\Delta^{2}+\ldots+\Delta^{k-1}+\Delta^{k}= \begin{cases}k+1 & \text { for } \Delta=1 \\ \left(\Delta^{k+1}-1\right) /(\Delta-1), & \text { for } \Delta \geq 2 .\end{cases}
$$

- Def:
- The upper bounds in (1.6) is called (Δ, k)-Moore bounds for digraphs of maximum degree Δ and diameter k.
- The digraphs whose order $=$ Moore bounds is called a (Δ, k)-Moore digraph.
- Note:
- A directed cycle of length $k+1$ is the unique $(1, k)$-Moore digraph.
- No (Δ, k)-Moore digraph for $\Delta \geq 2$ and $k \geq 2$. (Example 1.10.1)
- The Moore-bounds for undirected graph are given in Exercise 1.6.5.

1.6 Distances and Diameter

- Def:
- If $P=\left(x_{1}, v_{1}, v_{2}, \ldots, v_{m}, y_{1}\right)$ is an $\left(x_{1}, y_{1}\right)$-path in G_{1}, then $\forall b \in V\left(G_{2}\right)$, say $P b=\left(x_{1} b, y_{1} b\right)$-path $=\left(x_{1} b, v_{1} b, v_{2} b, \ldots, v_{m} b, y_{1} b\right)$ in $G_{1} \times G_{2}$.
- If $W=\left(x_{2}, u_{1}, u_{2}, \ldots, u_{l}, y_{2}\right)$ is an $\left(x_{2}, y_{2}\right)$-path in G_{2}, then $\forall a \in V\left(G_{1}\right)$, say $a W=\left(a x_{2}, a y_{2}\right)-$ path in $G_{1} \times G_{2}=\left(a x_{2}, a u_{1}, a u_{2}, \ldots, a u_{l}, a y_{2}\right)$.
- Note: Let $Q=P x_{2} \cup y_{1} W$ is an $\left(x_{1} x_{2}, y_{1} y_{2}\right)$-path in $G_{1} \times G_{2}$ with length $\varepsilon(P)+\varepsilon(W)$.

1.6 Distances and Diameter

- Theorem 1.3: (1) $d\left(G_{1} \times G_{2} \times \ldots \times G_{n}\right)=d\left(G_{1}\right)+d\left(G_{2}\right)+\ldots+d\left(G_{n}\right)$ (2) $d\left(Q_{n}\right)=n$, where Q_{n} is an n-cube.

Proof. (1/3)
(1) By associative law and the induction on $n \geq 2$, we need to only prove

$$
d\left(G_{1} \times G_{2}\right)=d\left(G_{1}\right)+d\left(G_{2}\right) .
$$

(i) $\forall x=x_{1} x_{2}, y=y_{1} y_{2} \in V\left(G_{1} \times G_{2}\right)$, where $x_{1}, y_{1} \in V\left(G_{1}\right), x_{2}, y_{2} \in V\left(G_{2}\right)$.

Let P be a shortest $\left(x_{1}, y_{1}\right)$-path in G_{1},
W be a shortest $\left(x_{2}, y_{2}\right)$-path in G_{2}.
case 1: $x_{1}=y_{1} ; x_{1} W$ is a (shortest) (x, y)-path in $G_{1} \times G_{2}$.

$$
\therefore d_{G_{1} \times G_{2}}(x, y) \leq \varepsilon\left(x_{1} W\right)=\varepsilon(W) \leq d\left(G_{2}\right) \leq d\left(G_{1}\right)+d\left(G_{2}\right)
$$

case2: $x_{2}=y_{2}: P x_{2}$ is a (shortest) (x, y)-path in $G_{1} \times G_{2}$

$$
\therefore d_{G_{1} \times G_{2}}(x, y) \leq \varepsilon\left(P x_{2}\right)=\varepsilon(P) \leq d\left(G_{1}\right) \leq d\left(G_{1}\right)+d\left(G_{2}\right)
$$

case 3: $x_{1} \neq y_{1} \wedge x_{2} \neq y_{2}: P x_{2} \cup y_{1} W$ is an (x, y)-path in $G_{1} \times G_{2}$.

$$
\therefore d_{G_{1} \times G_{2}}(x, y) \leq \varepsilon\left(P x_{2}\right)+\varepsilon\left(y_{1} W\right) \leq d\left(G_{1}\right)+d\left(G_{2}\right)
$$

(c) Spring 2019, Justie Su-Tzu Juan

1.6 Distances and Diameter

- Theorem 1.3: (1) $d\left(G_{1} \times G_{2} \times \ldots \times G_{n}\right)=d\left(G_{1}\right)+d\left(G_{2}\right)+\ldots+d\left(G_{n}\right)$
(2) $d\left(Q_{n}\right)=n$, where Q_{n} is an n-cube.

Proof. (2/3)
(ii) Let $x_{1}, y_{1} \in V\left(G_{1}\right), x_{2}, y_{2} \in V\left(G_{2}\right)$ such that

$$
d_{G_{1}}\left(x_{1}, y_{1}\right)=d\left(G_{1}\right), d_{G_{2}}\left(x_{2}, y_{2}\right)=d\left(G_{2}\right) .
$$

Let P be a shortest $\left(x_{1}, y_{1}\right)$-path in G_{1} and
W be a shortest $\left(x_{2}, y_{2}\right)$-path in G_{2}.
If $\exists Q^{\prime}$ is an $\left(x_{1} x_{2}, y_{1} y_{2}\right)$-path in $G_{1} \times G_{2}$ shorter than $P x_{2} \cup y_{1} W$, say
$\left.Q^{\prime}=\left(\left(x_{1} x_{2}\right)=\right) c_{1} d_{1}, c_{2} d_{2}, \ldots, c_{n} d_{n}\left(=y_{1} y_{2}\right)\right)$,
then: let P^{\prime} be an $\left(x_{1}, y_{1}\right)$-walk in G_{1} such that P^{\prime} determined by distinct vertices in the first coordinates of vertices of Q^{\prime} in the original order

1.6 Distances and Diameter

- Theorem 1.3: (1) $d\left(G_{1} \times G_{2} \times \ldots \times G_{n}\right)=d\left(G_{1}\right)+d\left(G_{2}\right)+\ldots+d\left(G_{n}\right)$
(2) $d\left(Q_{n}\right)=n$, where Q_{n} is an n-cube.

Proof. (3/3)
let W^{\prime} be an $\left(x_{2}, y_{2}\right)$-walk in G_{2} such that W^{\prime} determined by distinct vertices in the second coordinates of vertices of Q^{\prime} in the original order.
$\because \varepsilon\left(P^{\prime}\right)+\varepsilon\left(W^{\prime}\right)=\varepsilon\left(Q^{\prime}\right)<\varepsilon\left(P x_{2} \cup y_{1} W\right)=\varepsilon(P)+\varepsilon(W)$
\therefore either $\varepsilon\left(P^{\prime}\right)<\varepsilon(P)$ or $\varepsilon\left(W^{\prime}\right)<\varepsilon(W) \rightarrow \leftarrow$
$\Rightarrow d\left(G_{1} \times G_{2}\right) \geq d\left(x_{1} x_{2}, y_{1} y_{2}\right) \geq \varepsilon\left(P x_{2} \cup y_{1} W\right)=\varepsilon(P)+\varepsilon(W)=d\left(G_{1}\right)+d\left(G_{2}\right)$.
\therefore By (i) and (ii), $d\left(G_{1} \times G_{2}\right)=d\left(G_{1}\right)+d\left(G_{2}\right)$
(2) $\because Q_{n}=\overbrace{K_{2} \times K_{2} \times \ldots \times K_{2}}^{n}$, and $d\left(K_{2}\right)=1$
$\therefore d\left(Q_{n}\right)=\underbrace{1+1+\ldots+1}_{n}=n$.
(c) Spring 2019, Justie Su-Tzu Juan

1.6 Distances and Diameter

- Theorem 1.4: Let G be a strongly connected digraph with $v \geq 2$, and L be the line digraph of G. Then (1) $d(G) \leq d(L) \leq d(G)+1$.

$$
\begin{aligned}
& \text { (2) } d(G)=d(L) \Leftrightarrow G \text { is a directed cycle. } \\
& \text { (3) } d(K(d, n))=d(B(d, n))=n .
\end{aligned}
$$

Proof. (1/5) (略)
(1) By ex $1.6 .3, L$ is also strongly connected, $\therefore d(G), d(L)$ are well-defined.
(i) Let $x, y \in V(G)$, such that $d_{G}(x, y)=d(G)$.

Let $P=$ a shortest (x, y)-path in G.
$\because G$ is strongly connected. $\therefore \exists a \in E_{G^{-}}(x)$.
Let $b \in E_{G}{ }^{-}(y) \cap E(P)$, and $Q=a+P$

$\Rightarrow L(Q)$ is a shortest (a, b)-path in L.
(o.w. P is not a shortest (x, y)-path in $G \rightarrow \leftarrow$)
$\therefore d(L) \geq \varepsilon(L(Q))=\varepsilon(P)=d(G)$
(c) Spring 2019, Justie Su-Tzu Juan

1.6 Distances and Diameter

- Theorem 1.4: Let G be a strongly connected digraph with $v \geq 2$, and L be the line digraph of G. Then (1) $d(G) \leq d(L) \leq d(G)+1$.
(2) $d(G)=d(L) \Leftrightarrow G$ is a directed cycle.
(3) $d(K(d, n))=d(B(d, n))=n$.

Proof. (2/5)
(1)
(ii) Let $a, b \in V(L)$ s.t. $d_{L}(a, b)=d(L)$

$$
\begin{aligned}
& \Rightarrow \exists x, y, z, u \in V(G) \text { s.t. } a=(z, x), b=(y, u) . \\
& \Rightarrow d_{G}(x, y)=d_{L}(a, b)-1 .\left(0 . \mathrm{w} \cdot d_{L}(a, b) \leq d(L)-1 \rightarrow \leftarrow\right) \\
& \Rightarrow d(G) \geq d_{G}(x, y)=d_{L}(a, b)-1=d(L)-\mathbb{1}
\end{aligned}
$$

\therefore By (i)(ii), $d(G) \leq d(L) \leq d(G)+1$

(c) Spring 2019, Justie Su-Tzu Juan

1.6 Distances and Diameter

- Theorem 1.4: Let G be a strongly connected digraph with $v \geq 2$, and L be the line digraph of G. Then (1) $d(G) \leq d(L) \leq d(G)+1$.
(2) $d(G)=d(L) \Leftrightarrow G$ is a directed cycle.
(3) $d(K(d, n))=d(B(d, n))=n$.

Proof. (3/5)
(2) $(\Leftarrow) \because L\left(C_{n}\right)=C_{n} . \quad \therefore d(G)=d(L)$.
$\Leftrightarrow)$ Let $d(G)=d$, and $x, y \in V(G)$ s.t. $d_{G}(x, y)=d$.
Let $P=(x, y)$-path of length d in G.
$\because G$ is strongly connected, $\therefore d_{G}^{-}(x) \geq 1$ and $d_{G}{ }^{+}(y) \geq 1$
i.e. $\exists x^{\prime}, y^{\prime} \in V(G)$, s.t. $a=\left(x^{\prime}, x\right), b=\left(y, y^{\prime}\right) \in E(G)$.
(i) If $a \neq b$, then $d_{L}(a, b)=d+1 \rightarrow \leftarrow\left(d(L) \geq d_{L}(a, b)=d+\mathbb{1}=d(G)+\mathbb{1}\right)$

(c) Spring 2019, Justie Su-Tzu Juan

1.6 Distances and Diameter

- Theorem 1.4: Let G be a strongly connected digraph with $v \geq 2$, and L be the line digraph of G. Then (1) $d(G) \leq d(L) \leq d(G)+1$.

$$
\begin{aligned}
& \text { (2) } d(G)=d(L) \Leftrightarrow G \text { is a directed cycle. } \\
& \text { (3) } d(K(d, n))=d(B(d, n))=n .
\end{aligned}
$$

Proof. (4/5)
(ii) If $a=b$, i.e. $\exists c=(y, x) \in E(G)$, i.e. $P \cup\{c\}$ is a dicycle in G.

Let $P \cup\{c\}=\left(x_{0}, x_{1}, x_{2}, \ldots, x_{d}, x_{0}\right)=C$, where $x_{0}=x, x_{d}=y$.
If $G \neq$ dicycle, then $\exists x_{i} \in E(G)$ and $z \in V(G)$ s.t. $\left(x_{i}, z\right)$ or $\left(z, x_{i}\right) \in E(G)$.
Choose such x_{i} s.t. i is as large as possible. W.L.O.G., say $\left(x_{i}, z\right) \in E(G)$.
$\Rightarrow d_{G}\left(x_{i+1}, x_{i}\right)=d$ (o.w. P is not shortest)
Let $a=\left(x_{i}, x_{i+1}\right)$ and $b=\left(x_{i}, z\right) \Rightarrow d_{L}(a, b)=d+1 \rightarrow \leftarrow$

(c) Spring 2019, Justie Su-Tzu Juan

1.6 Distances and Diameter

- Theorem 1.4: Let G be a strongly connected digraph with $v \geq 2$, and L be the line digraph of G. Then (1) $d(G) \leq d(L) \leq d(G)+1$.

$$
\begin{aligned}
& \text { (2) } d(G)=d(L) \Leftrightarrow G \text { is a directed cycle. } \\
& \text { (3) } d(K(d, n))=d(B(d, n))=n .
\end{aligned}
$$

Proof. (5/5)
(3) $\because K_{d+1}$ and $K_{d}{ }^{+}(d \geq 2)$ not directed cycle and

$$
\begin{aligned}
\quad d\left(K_{d+1}\right)=d\left(K_{d}^{+}\right)=1 \\
\therefore d(K(d, n))=d\left(L^{n-1}\left(K_{d+1}\right)\right)=1+n-1=n \\
d(B(d, n))=d\left(L^{n-1}\left(K_{d}+\right)\right)=1+n-1=n
\end{aligned}
$$

1.6 Distances and Diameter

- Def:
- The radius of $G \equiv \operatorname{rad}(G)=\min _{x \in V(G)}\left\{\max _{y \in V(G)}\left\{d_{G}(x, y)\right\}\right\}$
- A vertex x is called a central of G if $\max _{y \in V(G)}\left\{d_{G}(x, y)\right\}\left(=\min _{x \in V(G)}\left\{\max _{y \in V(G)}\left\{d_{G}(x, y)\right\}\right\}\right)$
$=\operatorname{rad}(G)$
- Note: $\operatorname{rad}(G) \leq d(G) \leq 2 \operatorname{rad}(G)$

Proof. exercise 1.6.6

- Example 1.6.4: For digraph $G, \operatorname{rad}(G) \leq r \Rightarrow \psi(G) \leq 1+r \cdot \Delta^{r}$. Proof.
Let x be a central vertex of G, and $J_{i}=\left\{y \mid d_{G}(x, y)=i\right\}$

$$
\begin{aligned}
& \Rightarrow\left\{\begin{array}{l}
\left|J_{1}\right| \leq \Delta \\
\left|J_{i}\right| \leq \Delta \cdot\left|J_{i-1}\right|
\end{array}\right\} \Rightarrow\left|J_{i}\right| \leq \Delta^{r} \\
& \Rightarrow v(G) \leq 1+\Delta+\Delta^{2}+\ldots+\Delta^{r} \leq 1+r \cdot \Delta^{r}
\end{aligned}
$$

(c) Spring 2019, Justie Su-Tzu Juan

1.6 Distances and Diameter

- Def: G : connected undirected graph or strongly connected digraph with $v \geq 2$.
(1) The mean or average distance of $G \equiv$

$$
m(G) \equiv \frac{1}{v(v-1)} \sum_{x, y \in V(G)}\left(d_{G}(x, y)\right)
$$

(2) $\sigma(G)=\sum_{x, y \in V(G)} d_{G}(x, y)$

- Note:
(1) $m(G) \geq 1$
(2) $m(G)=1 \Leftrightarrow G$ is a complete graph
(3) For a directed cycle $C_{n}, n \geq 3, \sigma\left(C_{n}\right)=(1 / 2) n^{2}(n-1), m\left(C_{n}\right)=n / 2$

$$
\begin{aligned}
<\text { sol }>\sigma\left(C_{n}\right) & =n(1+2+\ldots+(n-1))=n \cdot(n(n-1)) / 2=(1 / 2) n^{2}(n-1) \\
m\left(C_{n}\right) & =(1 /(n(n-1))) \cdot \sigma\left(C_{n}\right)=n / 2
\end{aligned}
$$

(4) For an undirected cycle $C_{n}, m\left(C_{n}\right)=\left\{\begin{array}{l}(n+1) / 4, \text { if } n \text { is odd; } \\ n^{2} /(4(n-1)), \text { if } n \text { is even. }\end{array}\right.$ <sol> exercise 1.6.6

1.6 Distances and Diameter

- Exercise: 1.6.6

加: 1.6.4 (b), (c)

