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« Def: Let G be a loopless graph, x € V(G) and e € E(G):
— If (G — X) > &(G), then x is called a cut-vertex.
— If (G —e) > @(G), then e is called a cut-edge.
— A-connected graph is called a block if it contains no cut-vertex.

« Note: @ If [M(G)| = 3, G contains a cut-edge = G contains a cut-vertex.
@ Every graph can be expressed as the union of several blocks.

« ex:Figl.17 .
& (a) X,, X,: cute-vertices i?’
X,X,: cut-edge X, X2 X4 X,
" (b) the blocks of (a)
X4 X1 X X
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| ? 1.5 Walks, Paths and Connection

 Example 1.5.3: G: graph with y(G) > 2,
3 2 vertices that are not cut-vertices in G.

Proof.
Let P = X,e,X,€,X,...X, 18X, be a longest path in G.
Then k > 1. (If G is empty, then all vertices are not cut vertices)
Suppose X, Is a cut-vertex. = &G — X;) > a(G).
Let G,, G, be two connected components of G — X, where
G, contains X;. (1.e. Xy, X5y ... X all in Gy.)
Choose y € Ng(X) N V(Gy), I.e. 3 e € E(G) with end-vertices X,, Y.
Ty eV(Gy), SLy#EX, V1Li<k
U Q = YEXe X €5X5. . Xy 18X IS a path in G

and length(P) < length(Q) —« Def: length(P) = the length of P

.". Xy IS not a cut-vertex of G.

Similarly, x, is not a cut-vertex of G, too.
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)\) 1.5 Walks, Paths and Connection

« Def: Let G be a digraph,

X,y € V(G) are said to be strongly connected if 3 (x, y)-path and
(Y, X)-path in G.
“to be strongly connected” is an equivalence relation on V(G).

The subgraph induced by an equivalence class is called a strongly connected
component of G.

G is called to be strongly connected if it has one strongly connected component
& VX ¥ e V(G), X, y are strongly connected.

« Note: @ For undirected graph, the definition are the same.

@ For adigraph G, G is strongly connected = G is connected.
® For a digraph G, G is strongly connected <
both (S,S) = gand (S,S) = ¢ VS = dc V(G).
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Lo ) 1.5 Walks, Paths and Connection

Example 1.5.4: Asimple digraph G with &> (v— 1)?is strongly connected.
Proof.
If not, 1.e. G is not strongly connected.
By note, 3S# ¢ V(G) s.t. (S, S) = ¢
Let|S|=k. "."|(S, S)| < k(v—-Kk)

CoeL2(K,) + 2(mK,) + k(v—=Kk)
=k(k-1)+(v—-k)(v—k—- 1) + k(v-Kk)
=k(k-1) + (v=k)(v-1)
=k(k-1)+[v-1-(k-D](v-1)
=k(k=-1)+(v=-1)°-(v-1)(k-1)
=(v=-1) = (k=1 (v=-k-1) < (v=-1)? 5«

.". G is strongly connected.

(c) Spring 2019, Justie Su-Tzu Juan 5



:’ 1.5 Walks, Paths and Connection

Thm 1.2: Every tournament contains Hamilton directed path.

Def: Adigraph G is called be unilateral connected if 3 either (X, y)-path
or (y, X)-path for any x, y € V(G).

Example 1.5.5: G is unilateral connected <
G contain a directed walk going through all vertices of G.

Proof.
(<) trivial (By Ex 1.5.1 (a) + (b))
(=) Construct a simple digraph G’where
V(G’) =V(G)
E(G”) ={(x,y): 3 (X, y)-path P, in G}
By hypothesis, G’contains a tournament as its spanning subgraph.
By Thm 1.2, G’contains a Hamilton directed path P,
= let W = replacing an edge (x, y) in P’with P, in G.
Then W is a directed walk going through all vertices of G.
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1.5 Walks, Paths and Connection

Exercises: 1.5.11 (a)

4e:1.5.1(b), 1.5.8
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9 1.6 Distances and Diameter

« Def:VXxyeV(G)
@ d(x, y) =min{length(P): P is a (x, y) path in G} = the distance from x to y.
@ P is a shortest (x, y)-path if length(P) = d5(x, y) for (X, y)-path P.

« Note: @ In undirected graph G, dg(X, y) = dg(y, X)
@ @ is not always true for digraph.

* Def:

— The diameter of G =d(G) = max{ds(Xx, y): V X,y € V(G)}
— Agraph G is called path, denoted by P, if G is a path of n vertices.
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’ 1.6 Distances and Diameter

¥

ex:
@ d(P,,) :{ n—1, if P, isundirected;
o, If P, is directed.
@d(K,)=1

@ d(K,,) =2 ifmax{m,n}>1
@ For Petersen graph G, d(G) =2
©® d(Qn) =n

Note: @ d(G) =1 K, cG.

@ d(G) is well-defined if G is {connected undirected graph or
a strongly connected digraph.

(c) Spring 2019, Justie Su-Tzu Juan
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) 1.6 Distances and Diameter

« Example 1.6.1: G: a connected undirected graph with K,¢ = G
Ax,yeV(G)s.t.dg(x,y)=2

Proof.
Let X, z be two nonadjacent vertices in G.
"." G iIs connected.
.". A a shortest xz-path P = xe;X,8,X,€5...X,_41€,Z, where k > 2.
Lety = X,, then
" Xe[X.8,X, IS a Xy-path.
J.dg(xy) L2
If dg(X,y) =1, thenJ e € E(G) s.t. y5(e) =Xy —>« (shortest)
Sodg(X y) =2
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| ‘ 1.6 Distances and Diameter

« Example 1.6.2: G: a connected simple undirected graph of order v,
and G) =6, thend(G) L 3v/ (8+1).

Proof.
Let X, y be two vertices of G, s.t. d5(x, y) =d(G) = d and
P = (Xg, Xqs «es Xq_1, Xg) D€ @ shortest xy-path in G.
" Ng(Xs) N Ng(Xg) = ¢, VO<i<j<ld/zl.
(0.w. P is not shortest. “." (Xg, Xg5 ++25 X3j, Y, Xgj5 +-+5 Xg) IS ShOrten then P,
where y € N(X3;) N N(X3;).)
cov2 &Lda)+ 1) + (di3] +1) = 8- (d/3) + di3 = (dI3)(5+1)
= d(G)=d<3v(d+1)
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| ‘ 1.6 Distances and Diameter

« Example 1.6.3: G: a strongly connected digraph of order vand A(G) = A4,
thend(G) (= v-1 ,fora=1;
{ Zl_logA(v(A— 1)+1)]-1, fora>2.

Proof.
"." Gis astrongly connected digraph. .*. G is well-defined.
Let d(G) =k, and x € V(G).
Let R, ={y|ds(X,y) =i}, then |R| <4V 1<i<k.
SovS1l+t A+ A+ AT+ A= k+ 1 ,forda=1
{ (A1 =1)/(4-1), for 4> 2.
Casel:forda=1: vsk+l1=k2>2v-1
butk=d(G)<v-1...k=d(G)=v-1
Case2:ford>2: (4-1)v<A+1 -1
(A-1Dyv+ 141
" A22,..dG)=k=[log {(4- 1) v+ 1}]-1(." ke N)
(c) Spring 2019, Justie Su-Tzu Juan 13
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)) 1.6 Distances and Diameter

vsl+A+A2+...+A'<—1+A'<={k+1 . forda=1
(A1 -1/(4-1), forAa>2.

*  Det:

— The upper bounds in (1.6) is called (A4, k)-Moore bounds for digraphs of
maximum degree A4 and diameter k.

— The digraphs whose order = Moore bounds is called a (4, k)-Moore digraph.

 Note:
— Adirected cycle of length k + 1 is the unique (1, k)-Moore digraph.
— No (4, k)-Moore digraph for 4> 2 and k> 2. (Example 1.10.1)

« The Moore-bounds for undirected graph are given in Exercise 1.6.5.
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9 1.6 Distances and Diameter

o Def:
— 1 P = (Xq, Vi, Vs «eey Vi, Vq) IS @N (X4, Y4)-path in G, then V b € V(G,), say
Pb = (x,b, y,b)-path = (x,b, v,b, v,b, ..., v b, y;b) In G, x G,.
— IfW=(X,, Uy, Uy, ..., Uy, Y,) IS @N (X5, Y,)-path in G,, then V a € V(G,), say
aW = (ax,, ay,)-path in G; x G, = (ax,, auy, auy, ..., au,, ay,).

« Note: Let Q = Px, uy,Wisan (Xx;X,, y;Y,)-path in G; x G, with length &P) + &W).

(c) Spring 2019, Justie Su-Tzu Juan 15



1.6 Distances and Diameter

« Theorem1.3: ® d(G; x G, x ... x G,) =d(G,) +d(G,) +... +d(G,)
@ d(Q,) = n, where Q,, is an n-cube.
Proof. (1/3)
@ By associative law and the induction on n > 2, we need to only prove
d(G; x Gy) =d(G,) + d(G,).
(1) V X =X1X5, Y = V1Y, € V(Gy x Gy), where Xy, y; € V(Gy), X,, Y, € V(Gy).
Let P be a shortest (x;, y;)-path in G,,
W be a shortest (x,, y,)-path in G,.
case 1: x;=Yy;; X,W is a (shortest) (X, y)-path in G, x G..
ey, (% ¥) < EX W) = W) < d(G,) <d(Gy) + d(G,)
case2: x, = Y,: Px, is a (shortest) (X, y)-path in G, x G,
"+ ape, (X, ¥) < &Px)) = o(P) < d(G,) < d(Gy) + d(G,)
case 3: X; #Y; A X, #Y,I PX, Uy,Wis an (x, y)-path in G, x G,.

S opxe, (X0 Y) S &(PXy) + &(y,W) £d(Gy) +d(Gy)
(c) Spring 2019, Justie Su-Tzu Juan 16




) 1.6 Distances and Diameter

« Theorem1.3: ® d(G; x G, x ... x G,) =d(G,) +d(G,) +... +d(G,)
@ d(Q,) = n, where Q,, is an n-cube.
Proof. (2/3)
(i) Let x4, y; € V(Gy), X5, ¥, € V(G,) such that
dg, (X3, Y1) = d(Gy), dg, (X5, ¥2) = d(Gy).
Let P be a shortest (x,, y;)-path in G, and
W be a shortest (x,, y,)-path in G..
If 3 Q" is an (X,X,, Y,Y,)-path in G; x G, shorter than Px, U y,W, say
Q" = ((X;%3) =)Cydy, Codsy, «ovs €y (F Y1Y2)),
then: let P’ be an (x,, y,)-walk in G; such that P’ determined by distinct
vertices in the first coordinates of vertices of Q' in the original order

(c) Spring 2019, Justie Su-Tzu Juan 17



) 1.6 Distances and Diameter

« Theorem1.3: ® d(G; x G, x ... x G,) =d(G,) +d(G,) +... +d(G,)

@ d(Q,) = n, where Q,, is an n-cube.
Proof. (3/3)

let W’ be an (X,, y,)-walk in G, such that W' determined by distinct

vertices in the second coordinates of vertices of Q' in the original
order.

L gP) + W) = £(Q) < &Px, Ly, W) = &P) + W)
.. either gP’) < &P) or e(W') < g(W) >«
= d(G; x Gy) 2 d(X;Xy, Y1Y,) 2 &(Px, Uy W) = &P) + W) = d(G,) + d(G,).
. By (i) and (i), d(G, x G,) = d(G,) + d(G,)
@ " Q,=K,xK,x ... x Ky, and d(K,) = 1
SdQ)=1+1+...+1=n

g
n
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1.6 Distances and Diameter

 Theorem 1.4: Let G be a strongly connected digraph with v> 2, and L be the
line digraph of G. Then © d(G) <d(L) £d(G) + 1.
@ d(G) =d(L) & G is a directed cycle.
® d(K(d, n)) =d(B(d, n)) =n.

Proof. (1/5) (v%)
@ By ex 1.6.3, L is also strongly connected, .*. d(G), d(L) are well-defined.
(i) Let X,y € V(G), such that d;(x, y) = d(G).

Q
Let P = a shortest (X, y)-path in G. Tt
o o : . — b
." G is strongly connected. .". 3 a € Eg7(X). éalé i

Letb e E.-(yY)nE(P),andQ=a+P 2'
= L(Q) Is a shortest (a, b)-path in L.
(o.w. Pisnotashortest (X,y)-pathinG—«) 1 2
. d(L) 2 &L(Q)) = &P) = d(G) oo t?' b
(c) Spring 2019, Justie Su-Tzu Juan L(Q) 19



1.6 Distances and Diameter

« Theorem 1.4: Let G be a strongly connected digraph with v> 2, and L be the
line digraph of G. Then @ d(G) £d(L) £d(G) + 1.
@ d(G) =d(L) < G is a directed cycle.
® d(K(d, n)) = d(B(d, n)) =n.

Proof. (2/5)
@
(i1) Leta, b e V(L) s.t. d (a, b) =d(L)
=>3dXY,z,ueV(G)s.t.a=(z,x),b=(y, u.
= dg(X,y) =d (a,b)-1. (o.w.d (a,b)<d(L) -1 >«)
= d(G)2ds(x,y)=d (a,b)—1=d(L)-1
. By (i)(ii), d(G) £d(L) <d(G) +1

L G
ﬁ—»‘—»‘—»‘——.—»t.) a 1 2 L t b
NN 2 il o

1' 2" t-1° 1" 2! t—1'
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1.6 Distances and Diameter

 Theorem 1.4: Let G be a strongly connected digraph with v> 2, and L be the
line digraph of G. Then © d(G) <d(L) £d(G) + 1.
@ d(G) =d(L) & G is a directed cycle.
® d(K(d, n)) =d(B(d, n)) =n.

Proof. (3/5)
@ (<) . L(C)=C,. ..d(G)=d(L).
(=) Letd(G) =d, and X,y € V(G) s.t. d5(x, y) = d.
Let P = (X, y)-path of length d in G.
"." Gisstrongly connected, .". dg"(x) 21 and d;*(y) =2 1
lLe. I,y e V(G),st.a=(X,x),b=(y,y) € E(G).
(i) Ifa=b,thend (a,b)=d+ 1o« (d(L)>d, (a,b)=d+1=d(G) + 1)

P: 3 (.3_“___
AR
X' %'
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1.6 Distances and Diameter

 Theorem 1.4: Let G be a strongly connected digraph with v> 2, and L be the
line digraph of G. Then © d(G) <d(L) £d(G) + 1.
@ d(G) =d(L) & G is a directed cycle.
® d(K(d, n)) =d(B(d, n)) =n.

Proof. (4/5)

(i) Ifa=Db,1.e.dc=(y,x) € E(G), 1.e. P u {c}isadicycle in G.
Let P U {C} = (Xg, X1, Xps «+es Xg» Xp) = C, Where X, = X, X4 =Y.
If G = dicycle, then 3 x; e E(G) and z € V(G) s.t. (X;, ) or (z, x;) € E(G).
Choose such x; s.t. i is as large as possible. W.L.O.G., say (x;, z) € E(G).
= dg(Xi.1, X;) =d (0.w. P is not shortest)

y Le)’g a=(X,X,)andb=(x,z)=>d(@b)=d+1 5«

2 \ ((z, X)) € E(G) the same)

X
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) 1.6 Distances and Diameter

 Theorem 1.4: Let G be a strongly connected digraph with v> 2, and L be the
line digraph of G. Then © d(G) <d(L) £d(G) + 1.
@ d(G) =d(L) & G is a directed cycle.
® d(K(d, n)) =d(B(d, n)) =n.

Proof. (5/5)
® °." Ky, and Kt (d = 2) not directed cycle and
d(Kgey) = d(Kg*) = 1
o d(K(d, n)) =d(L"Y(Kyy)=1+n-1=n
d(B(d, n)) =d(L"}(K;))=1+n-1=n
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’ 1.6 Distances and Diameter

/4

+  Def:
— The radius of G=rad(G) = xreTJ/i{C];){ yrQ/a?G(){dG(x, )}
— Avertex x Is called a central of G if yrgle}é){dG(x, )} (= Xregi(rg;) {yrg/a}é) {ds(X, ¥)}})

= rad(G)

« Note: rad(G) £d(G) < 2rad(G)
Proof. exercise 1.6.6

« Example 1.6.4: Fordigraph G, rad(G)<r= VG)<1+r - A",

Proof.
Let x be a central vertex of G, and J; = {y| d5(x, y) = 1}
<
:>{ b, =<4 }:> | <A
[Jil <4+ |31

=>UG)S1+A+A+...+A<1+r.- A
(c) Spring 2019, Justie Su-Tzu Juan 24



)) 1.6 Distances and Diameter

« Def: G: connected undirected graph or strongly connected digraph with v 2.
® The mean or average distance of G =

M(G)= 51, B (el V)

yeV (G)

® o(G) = 2, ds(x, )
« Note:
@ m(G)>1
@ m(G) =1 < Gis a complete graph
® For a directed cycle C,, n >3, o(C,) = (1/2)n*(n — 1), m(C,)) = n/2
<sol>o(C)=n(1+2+...+(n=1))=n-(n(n-1))/2=(1/2)n*(n -1)
m(C,) = (1/(n(n-1))) - o(C,) =n/2
@ For an undirected cycle C,, m(C,) =( (n + 1)/4 , If nis odd;
{ n?%/(4(n— 1)), if nis even.
<sol> exercise 1.6.6
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1.6 Distances and Diameter

Exercise: 1.6.6

se:1.6.4 (b), (c)
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