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Chapter 1

Basic Concepts of Graphs

§ 1.5 Walks, Paths and Connection (2)
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1.5 Walks, Paths and Connection

• Def: Let G be a loopless graph, x  V(G) and e  E(G):

– If (G  x) > (G), then x is called a cut-vertex.

– If (G  e) > (G), then e is called a cut-edge.

– A connected graph is called a block if it contains no cut-vertex.

• Note:  If |(G)|  3, G contains a cut-edge  G contains a cut-vertex.

 Every graph can be expressed as the union of several blocks.

• ex: Fig 1.17     

(a) x2, x4: cute-vertices

x1x2: cut-edge

(b) the blocks of (a)
x1

x2

x3

x4

x5 x7

x6

x1

x2

x3

x4x2 x4

x5 x7

x6
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1.5 Walks, Paths and Connection

• Example 1.5.3: G: graph with (G)  2,

 2 vertices that are not cut-vertices in G.

Proof.

Let P = x0e1x1e2x2…xk1ekxk be a longest path in G.

Then k  1. (If G is empty, then all vertices are not cut vertices)

Suppose x0 is a cut-vertex. (G  x0) > (G).

Let G0, G1 be two connected components of G  x0, where 

G1 contains x1. (i.e. x1, x2, …, xk all in G1.)

Choose y  NG(x0)  V(G0), i.e.  e  E(G) with end-vertices x0, y.

∵ y  V(G0), ∴ y  xi,  1  i  k

∴ Q = yex0e1x1e2x2…xk1ekxk is a path in G

and length(P) < length(Q) 

∴ x0 is not a cut-vertex of G.

Similarly, xk is not a cut-vertex of G, too.

Def: length(P)  the length of P
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1.5 Walks, Paths and Connection

• Def: Let G be a digraph,

– x, y  V(G) are said to be strongly connected if   (x, y)-path and 

(y, x)-path in G.

– “to be strongly connected” is an equivalence relation on V(G).

– The subgraph induced by an equivalence class is called a strongly connected

component of G.

– G is called to be strongly connected if it has one strongly connected component 

 x, y  V(G), x, y are strongly connected.

• Note:  For undirected graph, the definition are the same.

 For a digraph G, G is strongly connected  G is connected.

 For a digraph G, G is strongly connected 

both (S, S)   and (S, S)  ,  S    V(G).
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1.5 Walks, Paths and Connection

• Example 1.5.4: A simple digraph G with  > (  1)2 is strongly connected.

Proof. 

If not, i.e. G is not strongly connected.

By note,  S    V(G) s.t. (S, S) = .

Let |S| = k.  ∵|(S, S)|  k(  k)

∴   2(k 
2) + 2(k 

2) + k(  k)

= k(k  1) + (  k)(  k  1) + k(  k)

= k(k  1) + (  k)(  1)

= k(k  1) + [  1  (k  1)](  1)

= k(k  1) + (  1)2  (  1)(k  1)

= (  1)2  (k  1)(  k 1)  (  1)2 

∴ G is strongly connected.
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1.5 Walks, Paths and Connection

• Def: A digraph G is called be unilateral connected if  either (x, y)-path 

or (y, x)-path for any x, y  V(G).

• Example 1.5.5: G is unilateral connected 

G contain a directed walk going through all vertices of G. 

Proof. 

() trivial   (By Ex 1.5.1 (a) + (b))

() Construct a simple digraph G where

V(G ) = V(G)

E(G ) = {(x, y):  (x, y)-path Pxy in G}

By hypothesis, G contains a tournament as its spanning subgraph.

By Thm 1.2, G contains a Hamilton directed path P.

 let W = replacing an edge (x, y) in P with Pxy in G.

Then W is a directed walk going through all vertices of G.

Thm 1.2: Every tournament contains Hamilton directed path.
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1.5 Walks, Paths and Connection

• Exercises: 1.5.11 (a)

• 加: 1.5.1(b), 1.5.8
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Chapter 1

Basic Concepts of Graphs

§ 1.6 Distances and Diameter
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1.6 Distances and Diameter

• Def:  x, y  V(G)

 dG(x, y)  min{length(P): P is a (x, y) path in G} = the distance from x to y.

 P is a shortest (x, y)-path if length(P) = dG(x, y) for (x, y)-path P.

• Note:  In undirected graph G, dG(x, y) = dG(y, x)

 is not always true for digraph.

• Def: 

– The diameter of G  d(G)  max{dG(x, y):  x, y  V(G)}

– A graph G is called path, denoted by Pn if G is a path of n vertices.
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1.6 Distances and Diameter

• ex: 

 d(Pn) =   n  1,    if Pn is undirected;

,         if Pn is directed.

 d(Kn) = 1

 d(Km,n) = 2    if max{m, n} > 1

 For Petersen graph G, d(G) = 2

 d(Qn) = n

• Note:  d(G) = 1  K  G.

 d(G) is well-defined if G is   connected undirected graph or 

a strongly connected digraph.
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1.6 Distances and Diameter

• Example 1.6.1: G: a connected undirected graph with K2
C  G

 x, y  V(G) s.t. dG(x, y) = 2

Proof.

Let x, z be two nonadjacent vertices in G.

∵ G is connected. 

∴  a shortest xz-path P = xe1x1e2x2e3…xk1ekz, where k  2.

Let y = x2, then 

∵ xe1x1e2x2 is a xy-path.

∴dG(x, y)  2.

If dG(x, y) = 1, then  e  E(G) s.t. G(e) = xy  (shortest)

∴ dG(x, y) = 2
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1.6 Distances and Diameter

• Example 1.6.2: G: a connected simple undirected graph of order , 

and (G) =  , then d(G)  3 / ( + 1).

Proof.

Let x, y be two vertices of G, s.t. dG(x, y) = d(G) = d and 

P = (x0, x1, …, xd1, xd) be a shortest xy-path in G.

∵ NG(x3i)  NG(x3j) = ,  0  i < j  d/3.

(o.w. P is not shortest. ∵ (x0, x1, …, x3i, y, x3j, …, xd) is shorten then P,  

where y  N(x3i)  N(x3j).)

∴   (d/3 + 1) + (d/3 + 1)    (d/3) + d/3 = (d/3)(+1)

 d(G) = d  3/( + 1)
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1.6 Distances and Diameter

• Example 1.6.3: G: a strongly connected digraph of order  and (G) = , 

then d(G)    =   1                              , for  = 1;

 log((  1) + 1)  1, for   2.

Proof. 

∵ G is a strongly connected digraph. ∴ G is well-defined.

Let d(G) = k, and x  V(G).

Let Ri = {y| dG(x, y) = i}, then |Ri|  
i, 1  i  k.

∴   1+  + 2 + … + k1 + k =    k + 1                   , for  = 1

(k+1  1)/(  1), for   2.

Case 1: for  = 1:   k + 1  k    1

but k = d(G)    1. ∴ k = d(G) =   1

Case 2: for   2: (  1)  k+1  1

(  1) + 1  k+ 1

∵   2, ∴ d(G) = k  log{(  1) + 1}  1 (∵ k  N)

(1.6)
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1.6 Distances and Diameter

• Def:

– The upper bounds in (1.6) is called (, k)-Moore bounds for digraphs of 

maximum degree  and diameter k.

– The digraphs whose order = Moore bounds is called a (, k)-Moore digraph.

• Note: 

– A directed cycle of length k + 1 is the unique (1, k)-Moore digraph.

– No (, k)-Moore digraph for   2 and k  2.  (Example 1.10.1)

• The Moore-bounds for undirected graph are given in Exercise 1.6.5.

  1+  + 2 + … + k1 + k =    k + 1                   ,      for  = 1

(k+1  1)/(  1),      for   2.
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1.6 Distances and Diameter

• Def: 

– If P = (x1, v1, v2, …, vm, y1) is an (x1, y1)-path in G1, then  b  V(G2), say

Pb = (x1b, y1b)-path = (x1b, v1b, v2b, …, vmb, y1b) in G1  G2.

– If W = (x2, u1, u2, …, ul, y2) is an (x2, y2)-path in G2, then  a  V(G1), say 

aW = (ax2, ay2)-path in G1  G2 = (ax2, au1, au2, …, aul, ay2).

• Note: Let Q = Px2  y1W is an (x1x2, y1y2)-path in G1  G2 with length (P) + (W).



(c) Spring 2019, Justie Su-Tzu Juan 16

1.6 Distances and Diameter

• Theorem 1.3:  d(G1  G2  …  Gn) = d(G1) + d(G2) + … + d(Gn)

 d(Qn) = n, where Qn is an n-cube.

Proof. (1/3) 

 By associative law and the induction on n  2, we need to only prove 

d(G1  G2) = d(G1) + d(G2).

(i)  x = x1x2, y = y1y2  V(G1  G2), where x1, y1  V(G1), x2, y2  V(G2).

Let P be a shortest (x1, y1)-path in G1, 

W be a shortest (x2, y2)-path in G2.

case 1: x1= y1; x1W is a (shortest) (x, y)-path in G1  G2.

∴dG1G2
(x, y)  (x1W) = (W)  d(G2)  d(G1) + d(G2)

case2: x2 = y2: Px2 is a (shortest) (x, y)-path in G1  G2

∴ dG1G2
(x, y)  (Px2) = (P)  d(G1)  d(G1) + d(G2)

case 3: x1  y1  x2  y2: Px2  y1W is an (x, y)-path in G1  G2.

∴ dG1G2
(x, y)  (Px2) + (y1W)  d(G1) + d(G2)
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1.6 Distances and Diameter

• Theorem 1.3:  d(G1  G2  …  Gn) = d(G1) + d(G2) + … + d(Gn)

 d(Qn) = n, where Qn is an n-cube.

Proof. (2/3)

(ii) Let x1, y1  V(G1), x2, y2  V(G2) such that 

dG1
(x1, y1) = d(G1), dG2

(x2, y2) = d(G2).

Let P be a shortest (x1, y1)-path in G1 and 

W be a shortest (x2, y2)-path in G2.

If  Q is an (x1x2, y1y2)-path in G1  G2 shorter than Px2  y1W, say 

Q = ((x1x2) =)c1d1, c2d2, …, cndn (= y1y2)), 

then: let P be an (x1, y1)-walk in G1 such that P determined by distinct 

vertices in the first coordinates of vertices of Q in the original order
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1.6 Distances and Diameter

• Theorem 1.3:  d(G1  G2  …  Gn) = d(G1) + d(G2) + … + d(Gn)

 d(Qn) = n, where Qn is an n-cube.

Proof. (3/3)

let W be an (x2, y2)-walk in G2 such that W determined by distinct 

vertices in the second coordinates of vertices of Q in the original 

order.

∵ (P) + (W) =  (Q) < (Px2  y1W) = (P) + (W)

∴ either (P) < (P) or (W) < (W) 

 d(G1  G2)  d(x1x2, y1y2)  (Px2  y1W) = (P) + (W) = d(G1) + d(G2).

∴ By (i) and (ii), d(G1  G2) = d(G1) + d(G2)

∵ Qn = K2  K2  …  K2, and d(K2) = 1

∴ d(Qn) = 1 + 1 + … + 1 = n.

n

n
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1.6 Distances and Diameter

• Theorem 1.4: Let G be a strongly connected digraph with   2, and L be the 

line digraph of G. Then  d(G)  d(L)  d(G) + 1.

 d(G) = d(L)  G is a directed cycle.

 d(K(d, n)) = d(B(d, n)) = n.

Proof. (1/5) (略)

 By ex 1.6.3, L is also strongly connected, ∴ d(G), d(L) are well-defined. 

(i) Let x, y  V(G), such that dG(x, y) = d(G).

Let P = a shortest (x, y)-path in G.

∵ G is strongly connected.  ∴  a  EG
(x).

Let b  EG
(y)  E(P), and Q = a + P

 L(Q) is a shortest (a, b)-path in L.

( o.w. P is not a shortest (x, y)-path in G  )     

∴ d(L)  (L(Q)) = (P) = d(G)

1'        
2'        3'        t–1'

x 1     2      t y

b       a

P
Q

G

1 2 t

b
a

1' 2' 3'
L(Q)

t–1'
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1.6 Distances and Diameter

• Theorem 1.4: Let G be a strongly connected digraph with   2, and L be the 

line digraph of G. Then  d(G)  d(L)  d(G) + 1.

 d(G) = d(L)  G is a directed cycle. 

 d(K(d, n)) = d(B(d, n)) = n.

Proof. (2/5)



(ii) Let a, b  V(L) s.t. dL(a, b) = d(L)

  x, y, z, u  V(G) s.t. a = (z, x), b = (y, u).

 dG(x, y) = dL(a, b)  1. (o.w. dL(a, b)  d(L)  1 )

 d(G)  dG(x, y) = dL(a, b)  1 = d(L)  1

∴ By (i)(ii), d(G)  d(L)  d(G) + 1

a

1 2 3 t

bL

1' 2' t–1' 1'         2'         t–1'

1

x 

2 t b

y

G

u

a

z
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1.6 Distances and Diameter

• Theorem 1.4: Let G be a strongly connected digraph with   2, and L be the 

line digraph of G. Then  d(G)  d(L)  d(G) + 1.

 d(G) = d(L)  G is a directed cycle.

 d(K(d, n)) = d(B(d, n)) = n.

Proof. (3/5)

 () ∵ L(Cn) = Cn.    ∴ d(G) = d(L).

() Let d(G) = d, and x, y  V(G) s.t. dG(x, y) = d.

Let P = (x, y)-path of length d in G.

∵ G is strongly connected, ∴ dG
(x)  1 and dG

+(y)  1

i.e.  x, y  V(G), s.t. a = (x, x), b = (y, y)  E(G).

(i) If a  b, then dL(a, b) = d + 1  (d(L)  dL(a, b) = d + 1 = d(G) + 1)

x

x y

y

P:

a b

G
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1.6 Distances and Diameter

• Theorem 1.4: Let G be a strongly connected digraph with   2, and L be the 

line digraph of G. Then  d(G)  d(L)  d(G) + 1.

 d(G) = d(L)  G is a directed cycle.

 d(K(d, n)) = d(B(d, n)) = n.

Proof. (4/5)

(ii) If a = b, i.e.  c = (y, x)  E(G), i.e. P  {c} is a dicycle in G.

Let P  {c} = (x0, x1, x2, …, xd, x0) = C, where x0 = x, xd = y.

If G  dicycle, then  xi  E(G) and z  V(G) s.t. (xi, z) or (z, xi)  E(G).

Choose such xi s.t. i is as large as possible. W.L.O.G., say (xi, z)  E(G). 

 dG(xi+1, xi) = d (o.w. P is not shortest)

Let a = (xi, xi+1) and b = (xi, z)  dL(a, b) = d + 1  

((z, xi)  E(G) the same)
x0 x1

x2

x3

xi

xi+1

xd z

a
b





(c) Spring 2019, Justie Su-Tzu Juan 23

1.6 Distances and Diameter

• Theorem 1.4: Let G be a strongly connected digraph with   2, and L be the 

line digraph of G. Then  d(G)  d(L)  d(G) + 1.

 d(G) = d(L)  G is a directed cycle.   

 d(K(d, n)) = d(B(d, n)) = n.

Proof. (5/5)

∵ Kd+1 and Kd
+ (d  2) not directed cycle and 

d(Kd+1) = d(Kd
+) = 1

∴ d(K(d, n)) = d(Ln1(Kd+1)) = 1 + n  1 = n

d(B(d, n)) = d(Ln1(Kd
+)) = 1 + n  1 = n
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1.6 Distances and Diameter

• Def:

– The radius of G  rad(G) =          { {dG(x, y)}}

– A vertex x is called a central of G if         {dG(x, y)} ( =          {         {dG(x, y)}} )

=  rad(G)

• Note: rad(G)  d(G)  2rad(G)

Proof. exercise 1.6.6

• Example 1.6.4: For digraph G, rad(G)  r  (G)  1 + r  r.

Proof.

Let x be a central vertex of G, and Ji = {y| dG(x, y) = i}

|J1|  

|Ji|    |Ji1| 

 (G)  1+  + 2 + … + r  1 + r  r

)(
min

GVx )(
max

GVy

)(
min

GVx)(
max

GVy )(
max

GVy

  |Ji|  
r
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1.6 Distances and Diameter

• Def: G: connected undirected graph or strongly connected digraph with   2. 

 The mean or average distance of G 

m(G)  (dG(x, y)),

 (G) =       dG(x, y)

• Note: 

 m(G)  1

 m(G) = 1  G is a complete graph

 For a directed cycle Cn, n  3, (Cn) = (1/2)n2(n  1), m(Cn) = n/2

<sol> (Cn) = n(1 + 2 + … + (n  1)) = n (n(n  1))/2 = (1/2)n2(n  1)

m(Cn) = (1/(n(n  1)))  (Cn) = n/2

 For an undirected cycle Cn, m(Cn) =   (n + 1)/4        , if n is odd;

n2/(4(n  1)), if n is even.

<sol> exercise 1.6.6


 )(,)1(

1

GVyx


 )(, GVyx
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1.6 Distances and Diameter

• Exercise: 1.6.6

• 加: 1.6.4 (b), (c) 


