Chapter 1 Basic Concepts of Graphs

§ 1.4 Subgraphs and Operations

Def:

- *G*, *H* are two graphs such that $V(H) \subseteq V(G)$, $E(H) \subseteq E(G)$, and $\psi_H = \psi_G|_{E(H)}$, then *H* is called a subgraph of *G*, denoted by $H \subseteq G$.
 - G is called a supergraph of H.
- spanning subgraph: if V(H) = V(G)
- $S \subseteq V(G),$

① The induced subgraph by *S*. (or subgraph induced by *S*), *G*[*S*]: *V*(*G*[*S*]) = *S E*(*G*[*S*]) = {*e* ∈ *E*(*G*) | ∃ *x*, *y* ∈ *S*, s.t. *ψ_G*(*e*) = (*x*, *y*)}

② *G* − *S* ≡ *G*[*V* \ *S*]
③ If *S* = {*v*}, *G* − *v* ≡ *G* − {*v*}

Def:

 $- B \subseteq E(G),$

① The edge-induced subgraph by *B* (or subgraph induced by *B*) *G*[*B*]: $\begin{cases}
V(G[B]) = \{x \in V(G) \mid \exists e \in B \text{ s.t. } \psi_G(e) = (x, y) \text{ or } \psi_G(e) = (y, x)\} \\
E(G[B]) = B. \quad (\psi_{G[B]} = \psi_G|_B)
\end{cases}$ **②** *G* - *B*: $\begin{cases}
V(G - B) = V(G) \\
E(G - B) = E(G) \setminus B. \quad (\psi_{G-B} = \psi_G|_{E(G-B)})
\end{cases}$ **③** If *B* = {e}, *G* - e = G - {e}

- F: extra edge set,

 $\underline{\operatorname{Def}}: G_1, G_2 \subseteq G,$

① say G_1, G_2 are:

- **disjoint** if $V(G_1) \cap V(G_2) = \phi$.
- **edge-disjoint** if $E(G_1) \cap E(G_2) = \phi$
- **②** The union $G_1 \cup G_2$ of G_1 and G_2 : $\begin{cases} V = V(G_1) \cup V(G_2) \\ E = E(G_1) \cup E(G_2) \end{cases}$
 - when G_1 and G_2 are disjoint; write $G_1 + G_2$
 - when G_1 and G_2 are edge-disjoint; write $G_1 \oplus G_2$

③ If $V(G_1) \cap V(G_2) \neq \phi$, define the intersection $G_1 \cap G_2$ of G_1 and G_2 : $\begin{cases}
V = V(G_1) \cap V(G_2) \\
E = E(G_1) \cap E(G_2)
\end{cases}$

④ If G_i ≅ H for each i = 1, 2, ..., n, then write nH ≡ G₁ + G₂ + ...+ G_n
⑤ An edge e of G is said to be contracted

 $\equiv \mathbf{G} \cdot \mathbf{e} \equiv$ delete \mathbf{e} and identity its end-vertices.

(c) Spring 2019, Justie Su-Tzu Juan

<u>Theorem 1.1</u>: For any digraph D, $\varepsilon(D) = \sum_{x \in X} d_D^+(x) = \sum_{x \in X} d_D^-(x)$.

Example 1.4.1: Let G be a balanced digraph. Then $d_G^+(X) = d_G^-(X) \forall X \subset V(G)$. Proof.

> Let H = G[X]. \therefore G is balanced. \therefore $d_G^+(x) = d_G^-(x), \forall x \in V(G) - \textcircled{O}$ By Thm 1.1, $\sum_{x \in X} d_H^+(x) = \sum_{x \in X} d_H^-(x) - \textcircled{O}$ $\Rightarrow d_G^+(X) = \sum_{x \in X} (d_G^+(x) - d_H^+(x))^{by} \stackrel{\textcircled{O}}{=} \sum_{x \in X} (d_G^-(x) - d_H^+(x))$ $= \sum_{x \in X} d_G^-(x) - \sum_{x \in X} d_H^+(x)$ $by \stackrel{\textcircled{O}}{=} \sum_{x \in X} d_G^-(x) - \sum_{x \in X} d_H^-(x)$ $= \sum_{x \in X} (d_G^-(x) - d_H^-(x)) = d_G^-(X)$

<u>Corollary 1.1</u>: For any undirected graph G, $\oplus 2\varepsilon(G) = \sum_{x \in V} d_G(x)$ **②** the number of odd vertices is even.

Example 1.4.2: Let G be an undirected graph without loops. Then G contains a bipartite spanning subgraph *H* s.t. $d_G(x) \le 2d_H(x), \forall x \in V(G)$. Hence, $\varepsilon(G) \leq 2\varepsilon(H)$.

Proof.

Let *H* be a bipartite spanning subgraph of with edges as many as possible, and let $\{X, Y\}$ be a bipartition. ① If $\exists x \in V(G)$ s.t. $d_G(x) > 2d_H(x)$, W.L.O.G., say $x \in X$, then let $d = d_G(x) - d_H(x) > d_H(x)$. Let $X' = X \setminus \{x\}, Y' = Y \cup \{x\}$ and $H' \subseteq G$ s.t. $\begin{cases} V(H') = V(H) = V(G), \\ E(H') = E(H) \setminus \{xy : xy \in E(H)\} \cup \{xy \in E(G) : xy \notin E(H)\} \end{cases}$ Then, $\varepsilon(H) \ge \varepsilon(H') = \varepsilon(H) - d_H(x) + d > \varepsilon(H) \rightarrow \leftarrow$ $\therefore d_G(x) \le 2d_H(x), \forall x \in V(G).$ $\textcircled{O} \text{ By } \underline{\text{Corollary 1.1}}: \varepsilon(G) = (1/2) \sum_{x \in V(G)} d_G(x) \leq (1/2) \sum_{x \in V(H)} 2d_H(x) = 2\varepsilon(H).$

<u>Def</u>: The cartesian product $G_1 \times G_2$ of two simple graphs G_1, G_2 : $V(G_1 \times G_2) = V(G_1) \times V(G_2)$ $E(G_1 \times G_2) = \{(x_1x_2, y_1y_2): x_1 = y_1 \text{ and } (x_2, y_2) \in E(G_2),$ or $x_2 = y_2$ and $(x_1, y_1) \in E(G_1)\}$

- ex: $Q_2 = K_2 \times K_2$ $Q_3 = K_2 \times Q_2$ $Q_4 = K_2 \times Q_3$ $Q_n = K_2 \times Q_{n-1}$
- Note: The cartesian product satisfies commutative and associative labs,
 ① G₁ × G₂ = G₂ × G₁, , ∀ G₁, G₂: simple graphs
 ② (G₁ × G₂) × G₃ = G₁ × (G₂ × G₃), ∀ G₁, G₂, G₃: simple graphs.

<u>Def</u>: In general, let $G_i = (V_i, E_i)$ be a graph $\forall i = 1, 2, ..., n$. Write

 $G_1 \times G_2 \times \ldots \times G_n \text{ for the cartesian product of } G_1, G_2, \ldots, G_n, \text{ where} \\ \begin{cases} V(G_1 \times G_2 \times \ldots \times G_n) = V_1 \times V_2 \times \ldots \times V_n \\ E(G_1 \times G_2 \times \ldots \times G_n) = \{(x_1 x_2 \dots x_n, y_1 y_2 \dots y_n) \colon x_1 x_2 \dots x_n \text{ and } y_1 y_2 \dots y_n \\ \text{ differ exactly in$ *i* $th coordinate, and } (x_i, y_i) \in E_i \}. \end{cases}$

Example 1.4.3: $Q_n = \underbrace{K_2 \times K_2 \times \ldots \times K_2}_{n \text{ terms}}$

Def:

- The line graph of G, denoted by L(G), is a graph that $\int V(L(G)) = E(G)$
 - $L(G)) = \{(a, b) \colon \exists x, y, z \in V(G), \text{ s.t. } \Psi_G(a) = (x, y), \Psi_G(b) = (y, z) \}$
- If L(G) is non-empty and has no isolated vertices, then L(L(G)) exists. - $\int L^0(G) \equiv G$

$$\left\{ \frac{L^1(G)}{L^1(G)} \equiv L(G) \right\}$$

 $L^{n}(G) \equiv L(L^{n-1}(G))$, called the *n*th iterated line graph of *G*.

Example 1.4.4:

① The *n*-dimensional *d*-ary Kautz digraph, $K(d, n) \equiv L^{n-1}(K_{d+1})$ (§ 1.8). ② $K_d^+ \equiv$ a complete digraph K_d adding one loop at each vertex. (*d* ≥ 2)

③ The de Bruijn digraphs, $B(d, n) \equiv L^{n-1}(K_d^+)$.

Exercise: 1.4.5

加: 1.4.2, 1.4.7

Chapter 1 Basic Concepts of Graphs

§ 1.5 Walks, Paths and Connection

Def:

- Let $x, y \in V(G)$. An *xy*-walk of length *k* in *G* is a sequence

 $W = x_0 e_1 x_1 e_2 \dots e_k x_k$, where $x_0 = x$, $x_k = y$, where x_i are vertices,

 e_j are edges, and x_{j-1}, x_j are end-vertices of $e_j \forall 0 \le i \le k, 1 \le j \le k$.

- If *G* is simple, then write $W = (x, x_1, ..., x_{k-1}, y)$ for short.
- x and y are called the origin and the terminus of W, other vertices are internal vertices of W.
- If edges are distinct, *W* is called a trail.
- If vertices are distinct, *W* is called a path.
- It is closed if x = y.
- A closed trail is called a circuit.
- A circuit is called a cycle if its vertices are distinct except x = y.

- **<u>Def</u>: In digraph G**,
 - *xy*-walk is called directed *xy*-walk, (x, y)-walk if $\forall e_i \in E(W)$,
 - $\Psi_G(e_i) = (x_{i-1}, x_i).$
 - directed trail, directed path, directed circuit, directed cycle

 $x_{1}x_{3}\text{-walk } W = x_{1}a_{1}x_{5}a_{2}x_{5}a_{3}x_{4}a_{3}x_{5}a_{8}x_{2}a_{7}x_{3}$ $x_{1}x_{3}\text{-trail } T = x_{1}a_{1}x_{5}a_{2}x_{5}a_{8}x_{2}a_{7}x_{3}$ $x_{1}x_{3}\text{-path } P = x_{1}a_{1}x_{5}a_{8}x_{2}a_{7}x_{3}$ $(x_{1}, x_{3})\text{-walk } W' = x_{1}a_{1}x_{5}a_{2}x_{5}a_{6}x_{3}a_{4}x_{4}a_{3}x_{5}a_{6}x_{3}$ $(x_{1}, x_{3})\text{-trail } T' = x_{1}a_{1}x_{5}a_{2}x_{5}a_{6}x_{3}$ directed circuit $C = x_{1}a_{1}x_{5}a_{2}x_{5}a_{6}x_{3}a_{7}x_{2}a_{9}x_{1}$ directed cycle $C' = x_{1}a_{1}x_{5}a_{6}x_{3}a_{7}x_{2}a_{9}x_{1}$

Def:

- A longest path = it has the maximum length over all paths
- A path is called a **Hamilton path** \equiv it contains all vertices

補充: <u>Def</u>:

- Let $S \subseteq V(G)$, G: undirected graph.
 - $[S,\overline{S}] \equiv \{xy \in E(G) \colon x \in S, y \in \overline{S}, \text{ or } x \in \overline{S}, y \in S\}.$

- **Example 1.5.1**: Every simple graph G must contain a path of length $\geq \delta = \delta(G)$. Proof.
 - W.L.O.G., say G is undirected graph.
 - Let $P = (x_0, x_1, ..., x_k)$ be a longest path in *G*.
 - ∵ *P* is a longest path.
 - : $N_G(x_0) \subseteq \{x_1, x_2, ..., x_k\}$. i.e. $|N_G(x_0)| \le k$
 - $\therefore d_G(x_0) \ge \delta(G)$
 - $\therefore k \ge |N_G(x_0)| = d_G(x_0) \ge \delta$

- Thm 1.2: Every tournament contains Hamilton directed path. Proof.
 - **(1)** It is true for $v \le 2$.
 - ② When $\nu \ge 3$. Suppose to the contrary that *T* is a tournament and
 - let $P = (x_1, x_2, ..., x_n)$ be a longest dipath in *G* and n < v,
 - $\therefore \exists x \in V(T) \setminus V(P) \text{ s.t. } (x, x_n), (x_1, x) \in E(T).$
 - $\Rightarrow \exists x_i \text{ be the first vertices from } x_2 \text{ to } x_n \text{ where } (x_{i-1}, x), (x, x_i) \in E(T).$
 - \therefore $(x_1, x_2, ..., x_{i-1}, x, x_{i+1}, ..., x_n)$ is a dipath that length $> |P| \rightarrow \leftarrow$

 \therefore \exists a Hamilton directed path in *T*.

(c) Spring 2019, Justie Su-Tzu Juan

Def:

- $-x, y \in V(G), x, y$ are said to be connected if $\exists xy$ -path in G.
- "to be connected" is an equivalence relation of V(G).
- Let $\{V_1, V_2, ..., V_{\omega}\}$ be the equivalence partition of V(G), then $G[V_i]$ is called a connected component of G.
- $\omega = \omega(G)$ is called the number of connected components of G.
- If $\omega = 1$, then G is a connected graph, otherwise disconnected graph.

• <u>Note</u>: A graph is connected $\Leftrightarrow [S, \overline{S}] \neq \phi, \forall S (\neq \phi) \subseteq V(G)$.

(c) Spring 2019, Justie Su-Tzu Juan

Example 1.5.2: Let G be a simple undirected graph with $V = \{x_1, x_2, ..., x_{\nu}\}$ satisfying $d_G(x_1) \le d_G(x_2) \le ... \le d_G(x_{\nu})$. If $d_G(x_k) \ge k \forall 1 \le k \le \nu - d_G(x_{\nu}) - 1$, then G is connected.

Proof.

Suppose to the contrary that *G* is disconnected. $\Rightarrow \exists S \neq \phi \subseteq V(G) \text{ s.t. } [S, \overline{S}] = \phi$ W.L.O.G. let $x_v \in \overline{S}$, then $|\overline{S}| \ge d_G(x_v) + 1$. ($\because G$ is simple) Let |S| = k, then $k = |S| = v - |\overline{S}| \le v - d_G(x_v) - 1$ $\therefore d_G(x_k) \ge k$ by the hypothesis. $\Rightarrow d_G(x_i) \ge k, \forall i = k, k + 1, ..., v$ $\therefore d_G(x_i) \in \overline{S}, \forall i = k, k + 1, ..., v$. i.e. $|\overline{S}| \ge v - k + 1$. $\Rightarrow k = |S| = v - |\overline{S}| \le v - (v - k + 1) = k - 1 \rightarrow \leftarrow$ $\therefore G$ is connected.

- **<u>Def</u>**: Let *G* be a loopless graph, $x \in V(G)$ and $e \in E(G)$:
 - If $\omega(G x) > \omega(G)$, then x is called a cut-vertex.
 - If $\omega(G e) > \omega(G)$, then *e* is called a cut-edge.
 - A connected graph is called a **block** if it contains no cut-vertex.

<u>Note</u>: ① If |v(G)| ≥ 3, G contains a cut-edge ⇒ G contains a cut-vertex.
 ② Every graph can be expressed as the union of several blocks.

Example 1.5.3: *G*: graph with $\nu(G) \ge 2$,

```
\exists 2 vertices that are not cut-vertices in G.
```

Proof.

Let $P = x_0 e_1 x_1 e_2 x_2 \dots x_{k-1} e_k x_k$ be a longest path in *G*. Then $k \ge 1$. (If *G* is empty, then all vertices are not cut vertices) Suppose x_0 is a cut-vertex. $\Rightarrow \omega(G - x_0) > \omega(G)$. Let G_0 , G_1 be two connected components of $G - x_0$, where G_1 contains x_1 . (i.e. $x_1, x_2, ..., x_k$ all in G_1 .) Choose $y \in N_G(x_0) \cap V(G_0)$, i.e. $\exists e \in E(G)$ with end-vertices x_0, y . $\therefore y \in V(G_0), \therefore y \neq x_i, \forall 1 \le i \le k$ $\therefore Q = yex_0e_1x_1e_2x_2\dots x_{k-1}e_kx_k$ is a path in G and length(P) < length(Q) $\rightarrow \leftarrow$ **Def:** length(P) = the length of P $\therefore x_0$ is not a cut-vertex of G. Similarly, x_k is not a cut-vertex of G, too.

(c) Spring 2019, Justie Su-Tzu Juan

- **<u>Def</u>:** Let G be a digraph,
 - $x, y \in V(G)$ are said to be strongly connected if ∃ (x, y)-path and (y, x)-path in *G*.
 - "to be strongly connected" is an equivalence relation on V(G).
 - The subgraph induced by an equivalence class is called a strongly connected component of G.
 - *G* is called to be strongly connected if it has one strongly connected component ⇔ $\forall x, y \in V(G), x, y$ are strongly connected.
- **<u>Note</u>: ①** For undirected graph, the definition are the same.
 - **②** For a digraph *G*, *G* is strongly connected \Rightarrow *G* is connected.
 - **③** For a digraph *G*, *G* is strongly connected \Leftrightarrow

both $(S, \overline{S}) \neq \phi$ and $(\overline{S}, S) \neq \phi, \forall S \neq \phi \subseteq V(G)$.

Example 1.5.4: A simple digraph G with $\varepsilon > (\nu - 1)^2$ is strongly connected. Proof.

> If not, i.e. *G* is not strongly connected. By note, $\exists S \neq \phi \subseteq V(G)$ s.t. $(S, \overline{S}) = \phi$. Let |S| = k. $\therefore |(\overline{S}, S)| \le k(v-k)$ $\therefore \varepsilon \le 2(^{k}_{2}) + 2(^{v-k}_{2}) + k(v-k)$ = k(k-1) + (v-k)(v-k-1) + k(v-k) = k(k-1) + (v-k)(v-1) = k(k-1) + [v-1-(k-1)](v-1) $= k(k-1) + (v-1)^{2} - (v-1)(k-1)$ $= (v-1)^{2} - (k-1)(v-k-1) \le (v-1)^{2} \rightarrow \leftarrow$

... *G* is strongly connected.

<u>Thm 1.2</u>: Every tournament contains Hamilton directed path.

<u>Def</u>: A digraph *G* is called be unilateral connected if \exists either (x, y)-path or (y, x)-path for any $x, y \in V(G)$.

Example 1.5.5: *G* is unilateral connected \Leftrightarrow

G contain a directed walk going through all vertices of G.

Proof.

(\Leftarrow) trivial (By Ex 1.5.1 (a) + (b)) (\Rightarrow) Construct a simple digraph *G'* where $\begin{cases} V(G') = V(G) \\ E(G') = \{(x, y): \exists (x, y)\text{-path } P_{xy} \text{ in } G\} \end{cases}$ By hypothesis, *G'* contains a tournament as its spanning subgraph. By <u>Thm 1.2</u>, *G'* contains a Hamilton directed path *P'*. \Rightarrow let *W* = replacing an edge (*x*, *y*) in *P'* with *P_{xy}* in *G*. Then *W* is a directed walk going through all vertices of *G*. (c) Spring 2019, Justie Su-Tzu Juan 26

Exercises: 1.5.1 (a), **1.5.11** (a)

加: 1.5.8, 1.5.10