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Chapter 1

Basic Concepts of Graphs

§ 1.4 Subgraphs and Operations
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1.4 Subgraphs and Operations

• Def:

– G, H are two graphs such that V(H)  V(G), E(H)  E(G), and H = G|E(H), 

then － H is called a subgraph of G, denoted by H  G.

－ G is called a supergraph of H.

– spanning subgraph: if V(H) = V(G)

– S  V(G), 

 The induced subgraph by S. (or subgraph induced by S), G[S]:

V(G[S]) = S

E(G[S]) = {e  E(G) |  x, y  S, s.t. G(e) = (x, y)}

 G − S  G[V \ S]

 If S = {v}, G − v  G − {v}
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1.4 Subgraphs and Operations

• Def:

– B  E(G), 

 The edge-induced subgraph by B (or subgraph induced by B) G[B]:

V(G[B]) = {x  V(G) |  e  B s.t. G(e) = (x, y) or G(e) = (y, x)}

E(G[B]) = B.   (G[B] = G|B)

 G − B:   V(G − B) = V(G)

E(G − B) = E(G)\B.  (G−B = G|E(G−B) )

 If B = {e}, G − e  G − {e}

– F: extra edge set, 

 G + F:   V(G + F) = V(G). 

E(G + F) = E(G)  F. 

 If F = {e}, G + e  G + {e}
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1.4 Subgraphs and Operations

• ex: Fig 1.10: 
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1.4 Subgraphs and Operations

• Def: G1, G2  G, 

 say G1, G2 are:

• disjoint if V(G1)  V(G2) = .

• edge-disjoint if E(G1)  E(G2) = 

 The union G1  G2 of G1 and G2:   V = V(G1)  V(G2)

E = E(G1)  E(G2)

• when G1 and G2 are disjoint; write G1 + G2

• when G1 and G2 are edge-disjoint; write G1  G2

 If V(G1)  V(G2)  , define the intersection G1  G2 of G1 and G2: 

V = V(G1)  V(G2)

E = E(G1)  E(G2)

 If Gi  H for each i = 1, 2, …, n, then write nH  G1 + G2 + …+ Gn

An edge e of G is said to be contracted

 G  e  delete e and identity its end-vertices.
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1.4 Subgraphs and Operations

• ex: 
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1.4 Subgraphs and Operations

• Example 1.4.1: Let G be a balanced digraph. Then dG
+(X) = dG

−(X)  X  V(G).

Proof. 

Let H = G[X].

∵ G is balanced. 

∴ dG
+(x) = dG

−(x),  x  V(G)  －

By Thm 1.1,       dH
+(x) =      dH

−(x)  －

 dG
+(X) =      (dG

+(x) − dH
+(x))   =       (dG

−(x) − dH
+(x))

=       dG
−(x) − dH

+(x)

=       dG
−(x) − dH

−(x)

=       (dG
−(x) − dH

−(x)) = dG
−(X)
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1.4 Subgraphs and Operations

• Example 1.4.2: Let G be an undirected graph without loops. Then G contains 

a bipartite spanning subgraph H s.t. dG(x)  2dH(x),  x  V(G).

Hence, (G)  2(H).

Proof.

Let H be a bipartite spanning subgraph of with edges as many as 

possible, and let {X, Y} be a bipartition.

 If  x  V(G) s.t. dG(x) > 2dH(x), W.L.O.G., say x  X, then 

let d = dG(x) − dH(x) > dH(x).

Let X = X\{x}, Y = Y  {x} and H  G s.t.

V(H) = V(H) = V(G),

E(H) = E(H)\{xy: xy  E(H)}  {xy  E(G): xy  E(H)}

Then, (H)  (H) = (H) − dH(x) + d > (H)  →

∴ dG(x)  2dH(x),  x  V(G).

 By Corollary 1.1: (G) = (1/2)      dG(x)  (1/2)      2dH(x) = 2(H).
 )(GVx


 )( HVx

Corollary 1.1: For any undirected graph G,  2(G) =     dG(x)

 the number of odd vertices is even.


Vx
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1.4 Subgraphs and Operations

• Def: The cartesian product G1  G2 of two simple graphs G1, G2:

V(G1  G2) = V(G1)  V(G2)

E(G1  G2) = {(x1x2, y1y2): x1 = y1 and (x2, y2)  E(G2),

or x2 = y2 and (x1, y1)  E(G1)}

• ex: Q2 = K2  K2 Q3 = K2  Q2 Q4 = K2  Q3

Qn = K2  Qn−1

• Note: The cartesian product satisfies commutative and associative labs,

 G1  G2 = G2  G1 ,  G1, G2: simple graphs

 (G1  G2)  G3 = G1  (G2  G3),  G1, G2, G3: simple graphs.
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1.4 Subgraphs and Operations

• Def: In general, let Gi = (Vi, Ei) be a graph  i = 1, 2, …, n. Write 

G1  G2  …  Gn for the cartesian product of G1, G2, …, Gn, where 

V(G1  G2  …  Gn) = V1  V2  …  Vn

E(G1  G2  …  Gn) = {(x1x2…xn, y1y2…yn): x1x2…xn and y1y2…yn

differ exactly in ith coordinate, and (xi, yi)  Ei}.

• Example 1.4.3: Qn = K2  K2  …  K2

n terms
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1.4 Subgraphs and Operations

• Def: 

– The line graph of G, denoted by L(G), is a graph that 

V(L(G)) = E(G)

E(L(G)) = {(a, b):  x, y, z  V(G), s.t. G(a) = (x, y), G(b) = (y, z)}

– If L(G) is non-empty and has no isolated vertices, then L(L(G)) exists.

– L0(G)  G

L1(G)  L(G)

Ln(G)  L(Ln−1(G)), called the nth iterated line graph of G.
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1.4 Subgraphs and Operations

• Example 1.4.4:

 The n-dimensional d-ary Kautz digraph, K(d, n)  Ln−1(Kd+1) (§ 1.8).

 Kd
+  a complete digraph Kd adding one loop at each vertex. (d  2)

 The de Bruijn digraphs, B(d, n)  Ln−1(Kd
+).

• ex: 
01

00

10

0 1 11

B(2, 1) = K2
+

101

B(2, 2) = L(B(2, 1))

010

011

110100

001

000

01

11 111

10

00

101

B(2, 3) = L(B(2, 2))

010

011

110100

001

000 111



(c) Spring 2019, Justie Su-Tzu Juan 13

1.4 Subgraphs and Operations

• Exercise: 1.4.5

• 加: 1.4.2, 1.4.7
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Chapter 1

Basic Concepts of Graphs

§ 1.5 Walks, Paths and Connection
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1.5 Walks, Paths and Connection

• Def:

– Let x, y V(G). An xy-walk of length k in G is a sequence 

W = x0e1x1e2…ekxk, where x0 = x, xk = y, where xi are vertices, 

ej are edges, and xj−1, xj are end-vertices of ej  0  i  k, 1  j  k.

– If G is simple, then write W = (x, x1, …, xk−1, y) for short.

– x and y are called the origin and the terminus of W, other vertices 

are internal vertices of W.

– If edges are distinct, W is called a trail.

– If vertices are distinct, W is called a path.

– It is closed if x = y.

– A closed trail is called a circuit.

– A circuit is called a cycle if its vertices are distinct except x = y.
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1.5 Walks, Paths and Connection

• Def: In digraph G,

– xy-walk is called directed xy-walk, (x, y)-walk if  ei  E(W), 

G(ei) = (xi−1, xi).

– directed trail, directed path, directed circuit, directed cycle

• ex:  

x1x3-walk W = x1a1x5a2x5a3x4a3x5a8x2a7x3

x1x3-trail T = x1a1x5a2x5a8x2a7x3

x1x3-path P = x1a1x5a8x2a7x3

(x1, x3)-walk W = x1a1x5a2x5a6x3a4x4a3x5a6x3

(x1, x3)-trail T = x1a1x5a2x5a6x3

directed circuit C = x1a1x5a2x5a6x3a7x2a9x1

directed cycle C = x1a1x5a6x3a7x2a9x1

x1
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1.5 Walks, Paths and Connection

• Def:

– A longest path  it has the maximum length over all paths

– A path is called a Hamilton path  it contains all vertices

• 補充: Def:

– Let S  V(G), G: undirected graph.

[S, S]  {xy  E(G): x  S, y  S, or x  S, y  S}.
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1.5 Walks, Paths and Connection

• Example 1.5.1: Every simple graph G must contain a path of length   = (G).

Proof. 

W.L.O.G., say G is undirected graph.

Let P = (x0, x1, …, xk) be a longest path in G. 

∵ P is a longest path.

∴ NG(x0)  {x1, x2, …, xk}. i.e. |NG(x0)|  k

∵ dG(x0)  (G)

∴ k  |NG(x0)| = dG(x0)  
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1.5 Walks, Paths and Connection

• Thm 1.2: Every tournament contains Hamilton directed path.

Proof.

 It is true for    2.

When   3. Suppose to the contrary that T is a tournament and 

let P = (x1, x2, …, xn) be a longest dipath in G and n < ,

∴  x  V(T)\V(P) s.t. (x, xn), (x1, x)  E(T).

  xi be the first vertices from x2 to xn where (xi−1, x), (x, xi)  E(T).

∴ (x1, x2, …, xi−1, x, xi+1, …, xn) is a dipath that length > |P| →

∴  a Hamilton directed path in T.

x

x1 x2 xi−1 xi xn−1 xn
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1.5 Walks, Paths and Connection

• Def: 

– x, y  V(G), x, y are said to be connected if  xy-path in G.

– “to be connected” is an equivalence relation of V(G).

– Let {V1, V2, …, V} be the equivalence partition of V(G), then G[Vi] 

is called a connected component of G.

–  = (G) is called the number of connected components of G.

– If  = 1, then G is a connected graph, otherwise disconnected graph.

• ex: Fig 1.16: (a)                                        (b)

• Note: A graph is connected  [S, S]  ,  S ( )  V(G).

disconnected graphconnected graph
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1.5 Walks, Paths and Connection

• Example 1.5.2: Let G be a simple undirected graph with V = {x1, x2, …, x} 

satisfying dG(x1)  dG(x2)  …  dG(x). If dG(xk)  k  1  k   − dG(x) − 1,

then G is connected.

Proof. 

Suppose to the contrary that G is disconnected.

  S    V(G) s.t. [S, S] = 

W.L.O.G. let x  S, then |S|  dG(x) + 1. (∵ G is simple)

Let |S| = k, then k = |S| =  − |S|   − dG(x) − 1

∴ dG(xk)  k by the hypothesis.

 dG(xi)  k,  i = k, k + 1, …, 

∴ dG(xi)  S,  i = k, k + 1, …, . i.e. |S|   − k + 1.

 k = |S| =  − |S|   − ( − k + 1) = k − 1   →

∴ G is connected.
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1.5 Walks, Paths and Connection

• Def: Let G be a loopless graph, x  V(G) and e  E(G):

– If (G − x) > (G), then x is called a cut-vertex.

– If (G − e) > (G), then e is called a cut-edge.

– A connected graph is called a block if it contains no cut-vertex.

• Note:  If |(G)|  3, G contains a cut-edge  G contains a cut-vertex.

 Every graph can be expressed as the union of several blocks.

• ex: Fig 1.17     

(a) x2, x4: cute-vertices

x1x2: cut-edge

(b) the blocks of (a)
x1

x2

x3

x4

x5 x7

x6

x1

x2

x3

x4x2 x4

x5 x7

x6



(c) Spring 2019, Justie Su-Tzu Juan 23

1.5 Walks, Paths and Connection

• Example 1.5.3: G: graph with (G)  2,

 2 vertices that are not cut-vertices in G.

Proof.

Let P = x0e1x1e2x2…xk−1ekxk be a longest path in G.

Then k  1. (If G is empty, then all vertices are not cut vertices)

Suppose x0 is a cut-vertex. (G − x0) > (G).

Let G0, G1 be two connected components of G − x0, where 

G1 contains x1. (i.e. x1, x2, …, xk all in G1.)

Choose y  NG(x0)  V(G0), i.e.  e  E(G) with end-vertices x0, y.

∵ y  V(G0), ∴ y  xi,  1  i  k

∴ Q = yex0e1x1e2x2…xk−1ekxk is a path in G

and length(P) < length(Q) →

∴ x0 is not a cut-vertex of G.

Similarly, xk is not a cut-vertex of G, too.

Def: length(P)  the length of P
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1.5 Walks, Paths and Connection

• Def: Let G be a digraph,

– x, y  V(G) are said to be strongly connected if   (x, y)-path and 

(y, x)-path in G.

– “to be strongly connected” is an equivalence relation on V(G).

– The subgraph induced by an equivalence class is called a strongly connected

component of G.

– G is called to be strongly connected if it has one strongly connected component 

 x, y  V(G), x, y are strongly connected.

• Note:  For undirected graph, the definition are the same.

 For a digraph G, G is strongly connected  G is connected.

 For a digraph G, G is strongly connected 

both (S, S)   and (S, S)  ,  S    V(G).
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1.5 Walks, Paths and Connection

• Example 1.5.4: A simple digraph G with  > ( − 1)2 is strongly connected.

Proof. 

If not, i.e. G is not strongly connected.

By note,  S    V(G) s.t. (S, S) = .

Let |S| = k.  ∵|(S, S)|  k( − k)

∴   2(k 
2) + 2(−k 

2) + k( − k)

= k(k − 1) + ( − k)( − k − 1) + k( − k)

= k(k − 1) + ( − k)( − 1)

= k(k − 1) + [ − 1 − (k − 1)]( − 1)

= k(k − 1) + ( − 1)2 − ( − 1)(k − 1)

= ( − 1)2 − (k − 1)( − k −1)  ( − 1)2 →

∴ G is strongly connected.
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1.5 Walks, Paths and Connection

• Def: A digraph G is called be unilateral connected if  either (x, y)-path 

or (y, x)-path for any x, y  V(G).

• Example 1.5.5: G is unilateral connected 

G contain a directed walk going through all vertices of G. 

Proof. 

() trivial   (By Ex 1.5.1 (a) + (b))

() Construct a simple digraph G where

V(G ) = V(G)

E(G ) = {(x, y):  (x, y)-path Pxy in G}

By hypothesis, G contains a tournament as its spanning subgraph.

By Thm 1.2, G contains a Hamilton directed path P.

 let W = replacing an edge (x, y) in P with Pxy in G.

Then W is a directed walk going through all vertices of G.

Thm 1.2: Every tournament contains Hamilton directed path.
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1.5 Walks, Paths and Connection

• Exercises: 1.5.1 (a), 1.5.11 (a)

• 加: 1.5.8, 1.5.10


