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Chapter 1

Basic Concepts of Graphs
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):) 1.4 Subgraphs and Operations

*  Det:

— G, H are two graphs such that V(H) c V(G), E(H) < E(G), and w = w5l
then — H is called a subgraph of G, denoted by H < G.

— G s called a supergraph of H.
— spanning subgraph: if V(H) = V(G)

SO - V(G)1
® The induced subgraph by S. (or subgraph induced by S), G[S]:
V(GIS]) =S

E(GIS]) ={e e E(G) | X,y € S,s.t. y(e) = (X, ¥)}
@G-S=G[V\S]
@IfS={v},G-v=G—{v}
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):) 1.4 Subgraphs and Operations

Def:
- Bc E(G),
@ The edge-induced subgraph by B (or subgraph induced by B) G[B]:
{V(G[B]) ={xeV(G)|deeBst yg(e) =(x,y) or yg(e) = (v, X)}
E(G[B]) =B. (ws = Wals)
@ G-B: {V(G - B) = V(G)
E(G-B)=E(G)\B. (g = ¥lecs))
®@IfB={e},G-e=G-{e}
— F: extra edge set,
®G+F: {V(G +F) = V(G).
E(G+F)=E(G) UF.
@IfF={e},G+e=G+{e}

<4 )

(c) Spring 2019, Justie Su-Tzu Juan 3



|

G
X e
5 68 X2
€4
X4
G — {Xy, X3}

4 e3

G[{e,, €5, €5, eg}]
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)) 1.4 Subgraphs and Operations

- Def: G, G,cG,
@ say G,, G, are:
 disjointif V(G) NnV(G,) = ¢.
 edge-disjoint if E(G;) " E(G,) = ¢
@ The union G, U G, of G, and G.,: {V =V(G,)) U V(G,)
E = E(G,) UE(G,)
« when G, and G, are disjoint; write G, + G,
« when G, and G, are edge-disjoint; write G, @ G,
® If V(G N V(G,) # ¢, define the intersection G, N G, of G; and G,:
{v =V(G,) N V(Gy)
E = E(G,) N E(G,)
@ If G,zH foreachi=1,2,...,n, thenwritenH=G, + G, + ...+ G,
® An edge e of G is said to be contracted
= G - e = delete e and identity its end-vertices.
(c) Spring 2019, Justie Su-Tzu Juan



X, X3 X2 X3 X5 X3
X X
1 1 X4
X
Xs 2 Xs X,
X3 X4 X3 X4 X4 X,
Gs G, G, ® G,
X1
X2
X, X4
G G-e
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) 1.4 Subgraphs and Operations

Theorem 1.1: For any digraph D, &D) = 2 dp*(x) = 2 dp(x).

Example 1.4.1: Let G be a balanced digraph. Then d;*(X) = dg=(X) V X < V(G).
Proof.
Let H = G[X].
"." G is balanced.
dg*(X) =d5(x), VXx e V(G) —

By Thm 1.1, Z dyt(x) = Z dy-(X) —
=d'(X)= 3, (de(x) - d +(x»by‘—D % (6609 — d'(X)

=S de ()= 3 dy' ()

Y28 40 - Y di(x)

= X;( (dg=(x) —dy=(x)) = dg=(X)
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) 1.4 Subgraphs and Operations

| Corollary 1.1: For any undirected graph G, @ 2¢G) = ZdG(x)
@ the number of odd vertices is even.

« Example 1.4.2: Let G be an undirected graph without loops. Then G contains
a bipartite spanning subgraph H s.t. d;(x) < 2d,(x), V x € V(G).
Hence, &G) < 2&H).

Proof.

Let H be a bipartite spanning subgraph of with edges as many as
possible, and let {X, Y} be a bipartition.
@ If 3 x € V(G) s.t. dg(x) > 2d,(x), W.L.O.G., say x € X, then

let d = dg(x) — diy(X) > d(X).

Let X' =X\{x}, YY=Yu{x}and H' c G s.t.

V(H') =V(H) = V(G),
{ E(H) =E(H)\{xy: xy e E(H)} U {xy € E(G): xy ¢ E(H)}
Then, gH) 2 gH') = gH) —d,(X) + d > g(H) >«
". dg(x) £ 2d,4(x), V x € V(G).

@ By Corollary 1.1: &G) = (1/2) D] ds(X) < (1/2) D 2d,(X) = 2&H).

xeV (G) xeV (H)
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)) 1.4 Subgraphs and Operations

« Def: The cartesian product G, x G, of two simple graphs G,, G:
V(G x G,) = V(Gy) x V(Gy)

E(G; x Gy) = {(XX,, Y1¥2): X; =y, and (X, ¥,) € E(Gy),
or X, =y, and (X, y;) € E(Gy)}

* BXIQ =Ky xK, Q3 =Ky xQ, Qs =Ky x Qg
Qn:KZXQn—l

« Note: The cartesian product satisfies commutative and associative labs,
DG, xG,=G,x G, , V G4, G,: simple graphs
@ (G, xG,) xG; =G, x (G, xGy), V Gy, G,, G;: simple graphs.
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):) 1.4 Subgraphs and Operations

« Def: Ingeneral, let G, = (V,, E,) beagraph Vi=1,2,...,n. Write
G, x G, x ... x G, for the cartesian product of G,, G, ..., G,,, where
{V(Glx G,X...xG) =V, xV,x...xV,
E(G; x G, X vvo X Gp) = {(X X900 Xy Y1YoeeYn): X Xoee o X, @NA Y,Y5.. Y,
differ exactly in ith coordinate, and (Xx;, y;) € E;}.

- Example 1.4.3: Q, =K, x K, x ... x K,
n terms

_—
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’ 1.4 Subgraphs and Operations

Def:
— The line graph of G, denoted by L(G), Is a graph that
{V(L(G)) = E(G)
E(L(G)) ={(a, b): I x,y, z € V(G), s.t. ¥;(a) = (X, y), ¥5(D) = (v, 2)}
— If L(G) is non-empty and has no isolated vertices, then L(L(G)) exists.
~[LYG)=G
LYG) =L(G)
|L"(G) = L(L"1(G)), called the nth iterated line graph of G.

. S
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’ 1.4 Subgraphs and Operations

« Example 1.4.4:
® The n-dimensional d-ary Kautz digraph, K(d, n) = L"Y(K,,,) (8 1.8).
@ K, =a complete digraph K, adding one loop at each vertex. (d > 2)
® The de Bruijn digraphs, B(d, n) = L™(K,*).

01
B(2,110) = K,*
B(2, 2) = L(B(2, 1))
001 »Oll
o D wx] >
100 110

B(2, 3) = L(B(2, 2))
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1.4 Subgraphs and Operations

« EXxercise: 1.4.5

e 4v:142,14.7
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Det:

Let X, ye V(G). An xy-walk of length k in G is a sequence
W = X8,X,€,...8, X\, Where X, = X, X, =Y, where X; are vertices,
e; are edges, and x;_j, x; are end-vertices of g; V 0 <1<k, 1 <j<k.
If G is simple, then write W = (X, Xy, ..., X,_;, Y) for short.
x and y are called the origin and the terminus of W, other vertices
are internal vertices of W.
If edges are distinct, W is called a trail.
If vertices are distinct, W is called a path.
Itisclosed ifx =y.
A closed trail is called a circuit.
A circuit is called a cycle if its vertices are distinct except x = .
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Def: In digraph G,
— xy-walk is called directed xy-walk, (x, y)-walk if V ¢; € E(W),

s(e1) = (Xi_g, X))

— directed trail, directed path, directed circuit, directed cycle

X Xg-Walk W = X;8,Xs8,X:8,5X,85X:85X,87X3

X Xg-trail T = X;a,Xs8,Xsa5X,87X3

X Xz-path P = X;8,Xza5X,8,X;

(X1, X3)-Walk W’= X,8,X58,X585X38,X,85Xs8:X3
(Xq, Xg)-trail T’/= X;8,X:8,Xs8X3

directed circuit C = X;8,X58,Xs85X387X,89X;
directed cycle C' = X,8,Xs8,X38,X,8gX;
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) 1.5 Walks, Paths and Connection

o Def:
— Alongest path = it has the maximum length over all paths
— A path is called a Hamilton path = it contains all vertices

* A % Def:

— Let Sc V(G), G: undirected graph.
[S,S]={xy e E(G):xeS,yeS,orxeS,yeS}
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| ‘ 1.5 Walks, Paths and Connection

« Example 1.5.1: Every simple graph G must contain a path of length > 6= &G).
Proof.
W.L.O.G,, say G is undirected graph.
Let P = (X, Xy --.5 X,) D€ @ longest path in G.
"." P is a longest path.
o NG(Xg) < {X Xps vees X} 1.6 [Ng(X0)| £ k
" dg(%o) = HG)
k2 [Ng(Xp)| = dg(Xp) 2 6
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1.5 Walks, Paths and Connection

« Thm 1.2: Every tournament contains Hamilton directed path.
Proof.

@ Itis true for v<2.

® When v 3. Suppose to the contrary that T is a tournament and
let P = (Xq, X, ..., X,,) D€ @ longest dipath in Gand n < v,
J.3Ax e V(T)W(P) s.t. (X, X)), (Xq, X) € E(T).
= 3 X; be the first vertices from x, to x,, where (x;_;, X), (X, X;) € E(T).
o (Xgh Xy eees Xigy X, Xiygs +000 X)) 1S @ dipath that length > |P| 5>«
.. 3 a Hamilton directed path in T.
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)) 1.5 Walks, Paths and Connection

o Def:
— X,y € V(G), X, y are said to be connected if 3 xy-path in G.
— “to be connected” is an equivalence relation of V(G).
— Let{V,, V,, ...,V } be the equivalence partition of V(G), then G[V,]
Is called a connected component of G.
— o= w(G) is called the number of connected components of G.
— If =1, then G is a connected graph, otherwise disconnected graph.

. ex: Fig 116;@ (b) @

connected graph disconnected graph
« Note: Agraphis connected < [S,S]# ¢, V S (# ¢) < V(G).
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? 1.5 Walks, Paths and Connection

« Example 1.5.2: Let G be a simple undirected graph with V = {X;, X5, «.., X, }
satisfying d5(Xx,) < dg(x,) < ... <dg(x). Ifdg(X,) 2k V 1<k < v-dg(x,) -1,
then G is connected.

Proof.

Suppose to the contrary that G is disconnected.
=3S#¢d<=V(G)s.t.[S,S]=¢
W.L.O.G. letx, € S, then |S| > dg(x,) + 1. (". G is simple)
Let |S| =k, thenk =S| = v—|S|< v—dg(x,)—1
.. dg(X,) = k by the hypothesis.
=>ds(x) 2k, Vi=k k+1,...,v
Sods(x) eSS, Vi=k k+1,...,vie |5 >v-k+1.
=k=|S|=v=[S|<v-(v=k+1)=k-1 5«
.". G Is connected.
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« Def: Let G be a loopless graph, x € V(G) and e € E(G):
— If o(G - x) > &(G), then x is called a cut-vertex.
— If (G —¢) > o(G), then e is called a cut-edge.
— Aconnected graph is called a block if it contains no cut-vertex.

« Note: @ If [(G)| = 3, G contains a cut-edge = G contains a cut-vertex.
@ Every graph can be expressed as the union of several blocks.

« ex:Figl.1l7 .
X3 (a) X,, X4: cute-vertices ig’
X,X,: cut-edge X, X2 X4 X,
o (b) the blocks of (a)
X4 X1 X X
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| ? 1.5 Walks, Paths and Connection

« Example 1.5.3: G: graph with VG) = 2,
3 2 vertices that are not cut-vertices in G.

Proof.
Let P = X,8,X,€,X,...X,_18 X, be a longest path in G.
Then k> 1. (If G is empty, then all vertices are not cut vertices)
Suppose X, Is a cut-vertex. = a(G — X;) > o(G).
Let G,, G, be two connected components of G — x,, where
G, contains X;. (1.e. Xy, X5y «..y X all in Gy.)
Choose y € Ng(%,) N V(Gy), 1.e. T e € E(G) with end-vertices X,, V.
yeV(Gy), L y#EX, V1ILKi<Kk
U Q = yeX e X185Xs. Xy 8 X IS a path In G

and length(P) < length(Q) —« Def: length(P) = the length of P

.. Xg Is not a cut-vertex of G.

Similarly, x, is not a cut-vertex of G, too.
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« Def: Let G be adigraph,

X,y € V(G) are said to be strongly connected if 3 (X, y)-path and
(y, X)-path in G.

“to be strongly connected” is an equivalence relation on V(G).

The subgraph induced by an equivalence class is called a strongly connected
component of G.

G is called to be strongly connected if it has one strongly connected component
< VX Yy e V(G), X, y are strongly connected.

« Note: @ For undirected graph, the definition are the same.

®@ For a digraph G, G is strongly connected = G is connected.
® For a digraph G, G is strongly connected <
both (S,S) = gand (S,S)# ¢, V S # g V(G).

(c) Spring 2019, Justie Su-Tzu Juan 24



£ ) 1.5 Walks, Paths and Connection

Example 1.5.4: Asimple digraph G with &> (v— 1)? is strongly connected.

Proof.
If not, i.e. G is not strongly connected.
By note, 3S# ¢ V(G) s.t. (S, S) = ¢.
Let|S|=k. ".°|(S, S)| < k(v=K)
Coe<2(%,) +2(mK,) + k(v=k)
=k(k-1) + (v—-k)(v—-k—- 1) + k(v-K)
k(k-1)+ (v—=Kk)(v-1)
k(k—=1)+[v-1-(k-1](v-1)
=k(k-1)+(v=-1)?-(v=-1)(k-1)
=(v=-1) -(k=-1)(v-k-1) L (v=-1) 5«
.. G is strongly connected.
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) 1.5 Walks, Paths and Connection

Thm 1.2: Every tournament contains Hamilton directed path.

« Def: Adigraph G is called be unilateral connected if 3 either (X, y)-path
or (y, X)-path for any x, y € V(G).

« Example 1.5.5: G is unilateral connected <
G contain a directed walk going through all vertices of G.

Proof.
(<) trivial (By Ex 1.5.1 (a) + (b))
(=) Construct a simple digraph G“where
V(G’) =V(G)
E(G”) ={(x,y): 3 (x, y)-path P, in G}
By hypothesis, G’contains a tournament as its spanning subgraph.
By Thm 1.2, G’contains a Hamilton directed path P”.
= let W = replacing an edge (x, y) in P’with P, in G.
Then W is a directed walk going through all vertices of G.
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1.5 Walks, Paths and Connection

Exercises: 1.5.1 (a), 1.5.11 (a)

2r2-1:5/8, 1.5.10
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