Chapter 1 Basic Concepts of Graphs

§ 1.4 Subgraphs and Operations

1.4 Subgraphs and Operations

- Def:
- $\boldsymbol{G}, \boldsymbol{H}$ are two graphs such that $V(H) \subseteq V(G), E(H) \subseteq E(G)$, and $\psi_{H}=\left.\psi_{G}\right|_{E(H)}$, then $-H$ is called a subgraph of G, denoted by $H \subseteq G$.
$-G$ is called a supergraph of \boldsymbol{H}.
- spanning subgraph: if $\boldsymbol{V}(\boldsymbol{H})=\boldsymbol{V}(\boldsymbol{G})$
$-S \subseteq V(G)$,
(1) The induced subgraph by S. (or subgraph induced by S), $G[S]$:

$$
\left\{\begin{array}{l}
V(G[S])=S \\
E(G[S])=\left\{e \in E(G) \mid \exists x, y \in S, \text { s.t. } \psi_{G}(e)=(x, y)\right\}
\end{array}\right.
$$

(2) $G-S \equiv G[V \backslash S]$
(3) If $S=\{v\}, G-v \equiv G-\{v\}$

1.4 Subgraphs and Operations

- Def:
$-B \subseteq E(G)$,
(1) The edge-induced subgraph by B (or subgraph induced by B) $G[B]$:

$$
\left\{\begin{array}{l}
V(G[B])=\left\{x \in V(G) \mid \exists e \in B \text { s.t. } \psi_{G}(e)=(x, y) \text { or } \psi_{G}(e)=(y, x)\right\} \\
E(G[B])=B . \quad\left(\psi_{G[B]}=\left.\psi_{G}\right|_{B}\right)
\end{array}\right.
$$

(2) $G-B:\left\{\begin{array}{l}V(G-B)=V(G) \\ \boldsymbol{E}(\boldsymbol{G}-B)=\boldsymbol{E}(\boldsymbol{G}) \backslash B\end{array}\right.$
$\left(\psi_{G-B}=\left.\psi_{G}\right|_{E(G-B)}\right)$
(3) If $B=\{e\}, G-e \equiv G-\{e\}$

- F : extra edge set,

$$
\text { (1) } G+F:\left\{\begin{array}{l}
V(G+F)=V(G) . \\
E(G+F)=E(G) \cup F .
\end{array}\right.
$$

(2) If $F=\{e\}, G+e \equiv G+\{e\}$

1.4 Subgraphs and Operations

- ex: Fig 1.10:

G

$G-\left\{x_{1}, x_{3}\right\}$

A spanning subgraph of \boldsymbol{G}

$G\left[\left\{e_{1}, e_{3}, e_{5}, e_{8}\right\}\right]$
(c) Spring 2019, Justie Su-Tzu Juan

$G\left[\left\{x_{1}, x_{2}, x_{4}\right\}\right]$

- x_{1}

$$
G-\left\{e_{1}, e_{5}\right\}
$$

1.4 Subgraphs and Operations

- Def: $G_{1}, G_{2} \subseteq G$,
(1) say G_{1}, G_{2} are:
- disjoint if $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\phi$.
- edge-disjoint if $E\left(G_{1}\right) \cap E\left(G_{2}\right)=\phi$
(2) The union $G_{1} \cup G_{2}$ of G_{1} and $G_{2}:\left\{\begin{array}{l}V=V\left(G_{1}\right) \cup V\left(G_{2}\right) \\ E=E\left(G_{1}\right) \cup E\left(G_{2}\right)\end{array}\right.$
- when G_{1} and G_{2} are disjoint; write $G_{1}+G_{2}$
- when G_{1} and G_{2} are edge-disjoint; write $G_{1} \oplus G_{2}$
(3) If $V\left(G_{1}\right) \cap V\left(G_{2}\right) \neq \phi$, define the intersection $G_{1} \cap G_{2}$ of G_{1} and G_{2} :

$$
\left\{\begin{array}{l}
V=V\left(G_{1}\right) \cap V\left(G_{2}\right) \\
E=E\left(G_{1}\right) \cap E\left(G_{2}\right)
\end{array}\right.
$$

(4) If $G_{i} \cong H$ for each $i=1,2, \ldots, n$, then write $n H \equiv G_{1}+G_{2}+\ldots+G_{n}$
(5) An edge \boldsymbol{e} of \boldsymbol{G} is said to be contracted
$\equiv G \cdot e \equiv$ delete e and identity its end-vertices.
(c) Spring 2019, Justie Su-Tzu Juan

1.4 Subgraphs and Operations

- ex: (1)

(2)

(3)

$G \cdot e$
(c) Spring 2019, Justie Su-Tzu Juan

1.4 Subgraphs and Operations

$$
\text { Theorem 1.1: For any digraph } D, \varepsilon(D)=\sum_{x \in X} d_{D}{ }^{+}(x)=\sum_{x \in X} d_{D}{ }^{-}(x) \text {. }
$$

- Example 1.4.1: Let G be a balanced digraph. Then $d_{G}{ }^{+}(X)=d_{G}{ }^{-}(X) \forall X \subset V(G)$. Proof.

Let $H=G[X]$.
$\because G$ is balanced.

$$
\begin{aligned}
& \therefore d_{G}{ }^{+}(x)=d_{G}{ }^{-}(x), \forall x \in V(G)-(1) \\
& \text { By Thm 1.1, } \sum_{x \in X} d_{H}{ }^{+}(x)=\sum_{x \in X} d_{H}^{-}(x) \text {-(2) } \\
& \Rightarrow d_{G}{ }^{+}(X)=\sum_{x \in X}\left(d_{G}{ }^{+}(x)-d_{H}{ }^{+}(x)\right) \stackrel{\text { by }}{ }(\mathbb{Q}) \sum_{x \in X}\left(d_{G}-(x)-d_{H}{ }^{+}(x)\right) \\
& \begin{array}{r}
=\sum_{x \in X} d_{G}^{-(x)}-\sum_{x \in X} d_{H}{ }^{+}(x) \\
\stackrel{x}{x}=\sum_{x \in X} d_{G}^{-}(x)-\sum_{x \in X} d_{H}^{-(x)}
\end{array} \\
& =\sum_{x \in X}^{x \in X}\left(d_{G}-(x)-d_{H}-(x)\right)=d_{G}^{-}(X)
\end{aligned}
$$

1.4 Subgraphs and Operations

Corollary 1.1: For any undirected graph G, (1) $2 \varepsilon(G)=\sum_{x \in v} d_{G}(x)$
(2) the number of odd vertices is even.

- Example 1.4.2: Let G be an undirected graph without loops. Then G contains a bipartite spanning subgraph H s.t. $d_{G}(x) \leq 2 d_{H}(x), \forall x \in V(G)$. Hence, $\varepsilon(G) \leq 2 \varepsilon(H)$.
Proof.
Let \boldsymbol{H} be a bipartite spanning subgraph of with edges as many as possible, and let $\{X, Y\}$ be a bipartition.
(1) If $\exists x \in V(G)$ s.t. $d_{G}(x)>2 d_{H}(x)$, W.L.O.G., say $x \in X$, then
let $d=d_{G}(x)-d_{H}(x)>d_{H}(x)$.
Let $X^{\prime}=X \backslash\{x\}, Y^{\prime}=Y \cup\{x\}$ and $H^{\prime} \subseteq G$ s.t.

$$
\left\{\begin{array}{l}
V\left(H^{\prime}\right)=V(H)=V(G), \\
E\left(H^{\prime}\right)=E(H) \backslash\{x y: x y \in E(H)\} \cup\{x y \in E(G): x y \notin E(H)\}
\end{array}\right.
$$

Then, $\varepsilon(H) \geq \varepsilon\left(H^{\prime}\right)=\varepsilon(H)-d_{H}(x)+d>\varepsilon(H) \rightarrow \leftarrow$
$\therefore d_{G}(x) \leq 2 d_{H}(x), \forall x \in V(G)$.
(2) By Corollary 1.1: $\varepsilon(G)=(1 / 2) \sum_{x \in V(G)} d_{G}(x) \leq(1 / 2) \sum_{x \in V(H)} 2 d_{H}(x)=2 \varepsilon(H)$.
(c) Spring 2019, Justie Su-Tzu Juan

1.4 Subgraphs and Operations

- Def: The cartesian product $G_{1} \times G_{2}$ of two simple graphs G_{1}, G_{2} :

$$
\begin{aligned}
& V\left(G_{1} \times G_{2}\right)=V\left(G_{1}\right) \times V\left(G_{2}\right) \\
& E\left(G_{1} \times G_{2}\right)=\left\{\left(x_{1} x_{2}, y_{1} y_{2}\right): x_{1}=y_{1} \text { and }\left(x_{2}, y_{2}\right) \in E\left(G_{2}\right),\right. \\
&\text { or } \left.x_{2}=y_{2} \text { and }\left(x_{1}, y_{1}\right) \in E\left(G_{1}\right)\right\}
\end{aligned}
$$

- ex: $Q_{2}=K_{2} \times K_{2}$

$$
Q_{3}=K_{2} \times Q_{2} \quad Q_{4}=K_{2} \times Q_{3}
$$

$$
Q_{n}=K_{2} \times Q_{n-1}
$$

- Note: The cartesian product satisfies commutative and associative labs,
(1) $G_{1} \times G_{2}=G_{2} \times G_{1} \quad, \forall G_{1}, G_{2}$: simple graphs
(2) $\left(G_{1} \times G_{2}\right) \times G_{3}=G_{1} \times\left(G_{2} \times G_{3}\right), \forall G_{1}, G_{2}, G_{3}$: simple graphs.

1.4 Subgraphs and Operations

- Def: In general, let $G_{i}=\left(V_{i}, E_{i}\right)$ be a graph $\forall i=1,2, \ldots, n$. Write $G_{1} \times G_{2} \times \ldots \times G_{n}$ for the cartesian product of $G_{1}, G_{2}, \ldots, G_{n}$, where

$$
\left\{\begin{array}{l}
V\left(G_{1} \times G_{2} \times \ldots \times G_{n}\right)=V_{1} \times V_{2} \times \ldots \times V_{n} \\
E\left(G_{1} \times G_{2} \times \ldots \times G_{n}\right)=\left\{\left(x_{1} x_{2} \ldots x_{n}, y_{1} y_{2} \ldots y_{n}\right): x_{1} x_{2} \ldots x_{n} \text { and } y_{1} y_{2} \ldots y_{n}\right.
\end{array}\right.
$$ differ exactly in i th coordinate, and $\left(x_{i}, y_{i}\right) \in E_{i}$ \}.

- Example 1.4.3: $Q_{n}=\frac{K_{2} \times K_{2} \times \ldots \times K_{2}}{n \text { terms }}$

1.4 Subgraphs and Operations

- Def:
- The line graph of G, denoted by $L(G)$, is a graph that

$$
\left\{\begin{array}{l}
V(L(G))=E(G) \\
E(L(G))=\left\{(a, b): \exists x, y, z \in V(G), \text { s.t. } \Psi_{G}(a)=(x, y), \Psi_{G}(b)=(y, z)\right\}
\end{array}\right.
$$

- If $L(G)$ is non-empty and has no isolated vertices, then $L(L(G))$ exists.

$$
-\left\{\begin{array}{l}
L^{0}(G) \equiv G \\
L^{1}(G) \equiv L(G) \\
L^{n}(G) \equiv L\left(L^{n-1}(G)\right), \text { called the } n \text {th iterated line graph of } G
\end{array}\right.
$$

1.4 Subgraphs and Operations

- Example 1.4.4:
(1) The n-dimensional d-ary Kautz digraph, $K(d, n) \equiv L^{n-1}\left(K_{d+1}\right)(\S 1.8)$.
(2) $K_{d}{ }^{+} \equiv$ a complete digraph K_{d} adding one loop at each vertex. $(d \geq 2)$
(3) The de Bruijn digraphs, $B(d, n) \equiv L^{n-1}\left(K_{d}{ }^{+}\right)$.
- ex:

$$
B(2,2)=L(B(2,1))
$$

$$
B(2,3)=L(B(2,2))
$$

(c) Spring 2019, Justie Su-Tzu Juan

1.4 Subgraphs and Operations

- Exercise: 1.4.5
- 加: 1.4.2, 1.4.7

Chapter 1 Basic Concepts of Graphs

§ 1.5 Walks, Paths and Connection

1.5 Walks, Paths and Connection

- Def:
- Let $x, y \in V(G)$. An $x y$-walk of length k in G is a sequence $W=x_{0} e_{1} x_{1} e_{2} \ldots e_{k} x_{k}$, where $x_{0}=x, x_{k}=y$, where x_{i} are vertices, e_{j} are edges, and x_{j-1}, x_{j} are end-vertices of $e_{j} \forall 0 \leq i \leq k, 1 \leq j \leq k$.
- If G is simple, then write $W=\left(x, x_{1}, \ldots, x_{k-1}, y\right)$ for short.
$-x$ and y are called the origin and the terminus of W, other vertices are internal vertices of W.
- If edges are distinct, W is called a trail.
- If vertices are distinct, W is called a path.
- It is closed if $x=y$.
- A closed trail is called a circuit.
- A circuit is called a cycle if its vertices are distinct except $x=y$.

1.5 Walks, Paths and Connection

- Def: In digraph \boldsymbol{G},
- $x y$-walk is called directed $x y$-walk, (x, y)-walk if $\forall e_{i} \in E(W)$,

$$
\Psi_{G}\left(e_{i}\right)=\left(x_{i-1}, x_{i}\right)
$$

- directed trail, directed path, directed circuit, directed cycle
- ex:

$$
\begin{aligned}
& x_{1} x_{3} \text {-walk } W=x_{1} a_{1} x_{5} a_{2} x_{5} a_{3} x_{4} a_{3} x_{5} a_{8} x_{2} a_{7} x_{3} \\
& x_{1} x_{3} \text {-trail } T=x_{1} a_{1} x_{5} a_{2} x_{5} a_{8} x_{2} a_{7} x_{3} \\
& x_{1} x_{3} \text {-path } P=x_{1} a_{1} x_{5} a_{8} x_{2} a_{7} x_{3} \\
& \left(x_{1}, x_{3}\right) \text {-walk } W^{\prime}=x_{1} a_{1} x_{5} a_{2} x_{5} a_{6} x_{3} a_{4} x_{4} a_{3} x_{5} a_{6} x_{3} \\
& \left(x_{1}, x_{3}\right) \text {-trail } T^{\prime}=x_{1} a_{1} x_{5} a_{2} x_{5} a_{6} x_{3} \\
& \text { directed circuit } C=x_{1} a_{1} x_{5} a_{2} x_{5} a_{6} x_{3} a_{7} x_{2} a_{9} x_{1} \\
& \text { directed cycle } C^{\prime}=x_{1} a_{1} x_{5} a_{6} x_{3} a_{7} x_{2} a_{9} x_{1}
\end{aligned}
$$

1.5 Walks, Paths and Connection

- Def:
- A longest path \equiv it has the maximum length over all paths
- A path is called a Hamilton path \equiv it contains all vertices
- 補充: Def:
- Let $S \subseteq V(G), G$: undirected graph. $[S, \bar{S}] \equiv\{x y \in E(G): x \in S, y \in \bar{S}$, or $x \in \bar{S}, y \in S\}$.

1.5 Walks, Paths and Connection

- Example 1.5.1: Every simple graph G must contain a path of length $\geq \delta=\delta(G)$. Proof.
W.L.O.G., say G is undirected graph.

Let $P=\left(x_{0}, x_{1}, \ldots, x_{k}\right)$ be a longest path in G.
$\because P$ is a longest path.
$\therefore N_{G}\left(x_{0}\right) \subseteq\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$. i.e. $\left|N_{G}\left(x_{0}\right)\right| \leq k$
$\because d_{G}\left(x_{0}\right) \geq \delta(G)$
$\therefore k \geq\left|N_{G}\left(x_{0}\right)\right|=d_{G}\left(x_{0}\right) \geq \delta$

1.5 Walks, Paths and Connection

- Thm 1.2: Every tournament contains Hamilton directed path.

Proof.

(1) It is true for $v \leq \mathbf{2}$.
(2) When $v \geq 3$. Suppose to the contrary that T is a tournament and let $P=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a longest dipath in G and $n<v$,
$\therefore \exists x \in V(T) \backslash V(P)$ s.t. $\left(x, x_{n}\right),\left(x_{1}, x\right) \in E(T)$.
$\Rightarrow \exists x_{i}$ be the first vertices from x_{2} to x_{n} where $\left(x_{i-1}, x\right),\left(x, x_{i}\right) \in E(T)$.
$\therefore\left(x_{1}, x_{2}, \ldots, x_{i-1}, x, x_{i+1}, \ldots, x_{n}\right)$ is a dipath that length $>|P| \rightarrow \leftarrow$
$\therefore \exists$ a Hamilton directed path in T.

(c) Spring 2019, Justie Su-Tzu Juan

1.5 Walks, Paths and Connection

- Def:
$-x, y \in V(G), x, y$ are said to be connected if $\exists x y$-path in G.
- "to be connected" is an equivalence relation of $V(G)$.
- Let $\left\{V_{1}, V_{2}, \ldots, V_{\omega}\right\}$ be the equivalence partition of $V(G)$, then $G\left[V_{i}\right]$ is called a connected component of G.
- $\omega=\omega(G)$ is called the number of connected components of \boldsymbol{G}.
- If $\omega=1$, then G is a connected graph, otherwise disconnected graph.
- ex: Fig 1.16: (a)

connected graph
(b)

disconnected graph
- Note: A graph is connected $\Leftrightarrow[S, \bar{S}] \neq \phi, \forall S(\neq \phi) \subseteq V(G)$.

1.5 Walks, Paths and Connection

- Example 1.5.2: Let G be a simple undirected graph with $V=\left\{x_{1}, x_{2}, \ldots, x_{v}\right\}$ satisfying $d_{G}\left(x_{1}\right) \leq d_{G}\left(x_{2}\right) \leq \ldots \leq d_{G}\left(x_{\nu}\right)$. If $d_{G}\left(x_{k}\right) \geq k \forall 1 \leq k \leq v-d_{G}\left(x_{\nu}\right)-1$, then G is connected.
Proof.
Suppose to the contrary that G is disconnected.
$\Rightarrow \exists S \neq \phi \subseteq V(G)$ s.t. $[S, \bar{S}]=\phi$
W.L.O.G. let $x_{v} \in \bar{S}$, then $|\bar{S}| \geq d_{G}\left(x_{v}\right)+1 .(\because G$ is simple $)$

Let $|S|=k$, then $k=|S|=v-|\bar{S}| \leq v-d_{G}\left(x_{v}\right)-1$
$\therefore d_{G}\left(x_{k}\right) \geq k$ by the hypothesis.
$\Rightarrow d_{G}\left(x_{i}\right) \geq k, \forall i=k, k+1, \ldots, v$
$\therefore d_{G}\left(x_{i}\right) \in \bar{S}, \forall i=k, k+1, \ldots, v . i . e .|\bar{S}| \geq v-k+1$.
$\Rightarrow k=|S|=v-|\bar{S}| \leq v-(v-k+1)=k-1 \rightarrow \leftarrow$
$\therefore G$ is connected.

1.5 Walks, Paths and Connection

- Def: Let G be a loopless graph, $x \in V(G)$ and $e \in E(G)$:
- If $\omega(G-x)>\omega(G)$, then x is called a cut-vertex.
- If $\omega(G-e)>\omega(G)$, then e is called a cut-edge.
- A connected graph is called a block if it contains no cut-vertex.
- Note: (1) If $|\nu(G)| \geq 3, G$ contains a cut-edge $\Rightarrow G$ contains a cut-vertex.
(2) Every graph can be expressed as the union of several blocks.
- ex: Fig 1.17

(c) Spring 2019, Justie Su-Tzu Juan

1.5 Walks, Paths and Connection

- Example 1.5.3: G : graph with $\gamma(G) \geq 2$, $\exists 2$ vertices that are not cut-vertices in G.
Proof.
Let $P=x_{0} e_{1} x_{1} e_{2} x_{2} \ldots x_{k-1} e_{k} x_{k}$ be a longest path in G.
Then $k \geq 1$. (If G is empty, then all vertices are not cut vertices)
Suppose x_{0} is a cut-vertex. $\Rightarrow \omega\left(G-x_{0}\right)>\omega(G)$.
Let G_{0}, G_{1} be two connected components of $G-x_{0}$, where
G_{1} contains x_{1}. (i.e. $x_{1}, x_{2}, \ldots, x_{k}$ all in G_{1}.)
Choose $y \in N_{G}\left(x_{0}\right) \cap V\left(G_{0}\right)$, i.e. $\exists e \in E(G)$ with end-vertices x_{0}, y.
$\because y \in V\left(G_{0}\right), \therefore y \neq x_{i}, \forall 1 \leq i \leq k$
$\therefore Q=y e x_{0} e_{1} x_{1} e_{2} x_{2} \ldots x_{k-1} e_{k} x_{k}$ is a path in G and length $(P)<$ length $(Q) \rightarrow \leftarrow$

Def: length $(P) \equiv$ the length of P
$\therefore x_{0}$ is not a cut-vertex of G.
Similarly, x_{k} is not a cut-vertex of G, too.
(c) Spring 2019, Justie Su-Tzu Juan

1.5 Walks, Paths and Connection

- Def: Let G be a digraph,
$-x, y \in V(G)$ are said to be strongly connected if $\exists(x, y)$-path and (y, x)-path in G.
- "to be strongly connected" is an equivalence relation on $V(G)$.
- The subgraph induced by an equivalence class is called a strongly connected component of \boldsymbol{G}.
- G is called to be strongly connected if it has one strongly connected component $\Leftrightarrow \forall x, y \in V(G), x, y$ are strongly connected.
- Note: (1) For undirected graph, the definition are the same.
(2) For a digraph G, G is strongly connected $\Rightarrow G$ is connected.
(3) For a digraph G, G is strongly connected \Leftrightarrow $\operatorname{both}(S, \bar{S}) \neq \phi$ and $(\bar{S}, S) \neq \phi, \forall S \neq \phi \subseteq V(G)$.

1.5 Walks, Paths and Connection

- Example 1.5.4: A simple digraph G with $\varepsilon>(v-1)^{2}$ is strongly connected. Proof.

If not, i.e. G is not strongly connected.
By note, $\exists S \neq \phi \subseteq V(G)$ s.t. $(S, \bar{S})=\phi$.
Let $|S|=k . \quad \because|(\bar{S}, S)| \leq k(v-k)$

$$
\begin{aligned}
\therefore \varepsilon & \leq 2\left({ }_{2}\right)+2(v-k, k)+k(v-k) \\
& =k(k-1)+(v-k)(v-k-1)+k(v-k) \\
& =k(k-1)+(v-k)(v-1) \\
& =k(k-1)+[v-1-(k-1)](v-1) \\
& =k(k-1)+(v-1)^{2}-(v-1)(k-1) \\
& =(v-1)^{2}-(k-1)(v-k-1) \leq(v-1)^{2} \rightarrow \leftarrow
\end{aligned}
$$

$\therefore G$ is strongly connected.

1.5 Walks, Paths and Connection

Thm 1.2: Every tournament contains Hamilton directed path.

- Def: A digraph G is called be unilateral connected if \exists either (x, y)-path or (y, x)-path for any $x, y \in V(G)$.
- Example 1.5.5: G is unilateral connected \Leftrightarrow
\boldsymbol{G} contain a directed walk going through all vertices of \boldsymbol{G}.
Proof.
(\Leftarrow) trivial (By Ex 1.5.1 (a) + (b))
(\Rightarrow) Construct a simple digraph G^{\prime} where

$$
\left\{\begin{array}{l}
V\left(G^{\prime}\right)=V(G) \\
E\left(G^{\prime}\right)=\left\{(x, y): \exists(x, y) \text {-path } P_{x y} \text { in } G\right\}
\end{array}\right.
$$

By hypothesis, G^{\prime} contains a tournament as its spanning subgraph.
By Thm 1.2, G^{\prime} contains a Hamilton directed path P^{\prime}.
\Rightarrow let $W=$ replacing an edge (x, y) in P^{\prime} with $P_{x y}$ in G.
Then W is a directed walk going through all vertices of G.
(c) Spring 2019, Justie Su-Tzu Juan

1.5 Walks, Paths and Connection

- Exercises: 1.5.1 (a), 1.5.11 (a)
- 加: 1.5.8, 1.5.10

