Chapter 1
 Basic Concepts of Graphs

§ 1.2 Graph Isomorphic

1.2 Graph Isomorphic

- Def:
- A graph $\boldsymbol{G}=\left(\boldsymbol{V}(\boldsymbol{G}), \boldsymbol{E}(\boldsymbol{G}), \psi_{G}\right)$ is isomorphic to a graph $\boldsymbol{H}=\left(\boldsymbol{V}(\boldsymbol{H}), \boldsymbol{E}(\boldsymbol{H}), \psi_{H}\right)$ if $\exists 2$ bijective mappings $\theta: V(G) \rightarrow V(H)$ and $\phi: E(G) \rightarrow E(H)$
s.t. $\forall e \in E(G)$,

$$
\psi_{G}(e)=(x, y) \Leftrightarrow \psi_{H}(\phi(e))=(\theta(x), \theta(y)) \in E(H) .\left(\frac{H}{\psi}\right)
$$

$-(\theta, \phi)$: isomorphic mapping from G to H.

- G and H are isomorphic, write $G \cong H($ or $G=H)$
$-(\theta, \phi)$: an isomorphism between \boldsymbol{G} and \boldsymbol{H}.

1.2 Graph Isomorphic

- ex: In example 1.1.1 and 1.1.2, $D \cong H$.

Let $\theta: V(D) \rightarrow V(H)$ and $\phi: E(D) \rightarrow E(H)$ be

$$
\begin{aligned}
& \theta\left(x_{i}\right)=y_{i}, \forall i=1,2, \ldots, 5 \\
& \phi\left(a_{j}\right)=b_{j}, \forall j=1,2, \ldots, 9 .
\end{aligned}
$$

D

H

1．2 Graph Isomorphic

$$
\psi_{G}(e)=(x, y) \Leftrightarrow \psi_{H}(\phi(e))=(\theta(x), \theta(y)) \in E(H) .(\dot{*})
$$

－Def：For simple graphs $\boldsymbol{G}, \boldsymbol{H}, \boldsymbol{G}$ and \boldsymbol{H} are isomorphic
$\Leftrightarrow \exists$ a bijection $\theta: V(G) \rightarrow V(H)$ s．t．
$(x, y) \in E(G) \Leftrightarrow(\theta(x), \theta(y)) \in E(H)$.
$((\hbar)$ is called the adjacency－preserving condition）
－Note：
$-G \cong H \Rightarrow v(G)=v(H), \varepsilon(G)=\varepsilon(H)$. （反之不成立！！）
＂to be isomorphic＂is an equivalence relation． （反身，對稱，遞移）
\therefore divide all graph into equivalence classes．

1.2 Graph Isomorphic

- Def:
- Petersen graph

- complete graph, K_{v} ex:

- tournament ex:

0

- Note: $\varepsilon\left(K_{v}\right)= \begin{cases}v(v-1), & \text { if } K_{v} \text { is directed, } \\ (1 / 2) v(v-1), & \text { if } K_{v} \text { is undirected. }\end{cases}$
(c) Fall 2019, Justie Su-Tzu Juan

1.2 Graph Isomorphic

- Def:
- bipartite graph: vertex-set can be partitioned into X and Y, so that each edge has one end-vertex in both.
$-\{X, Y\}$ is called a bipartition of the graph.
- If \exists a bipartition $\{X, Y\}$ where $|X|=|Y|$, then called equally bipartite.
- $G(X \cup Y, E)$
- k-partite graph
- equally k-partite graph
- complete bipartite graph, $\boldsymbol{K}_{m, n}$

$-\mathrm{star} \equiv \boldsymbol{K}_{1, n}$
$-K_{n}(2)=K_{n, n}$
- Complete k-partite graph
$-K_{n}(k)$

1.2 Graph Isomorphic

- Note: 1. $\varepsilon\left(K_{m, n}\right)=m n$

2. $\varepsilon\left(K_{n}(k)\right)=(1 / 2) k(k-1) n^{2}$
3. For any bipartite simple graph G of order n,

$$
\varepsilon(G) \leq \begin{cases}(1 / 4) n^{2}, & \text { if } n \text { is even } \\ (1 / 4)\left(n^{2}-1\right), & \text { if } n \text { is odd }\end{cases}
$$

1.2 Graph Isomorphic

- Def: G is called an associated bipartite graph with the digraph D, where
if $V(D)=\left\{x_{1}, x_{2}, \ldots, x_{v}\right\}$ and $E(D)=\left\{a_{1}, a_{2}, \ldots, a_{\varepsilon}\right\}$, then $G=\left(X \cup Y, E(G), \psi_{G}\right)$ with $X=\left(x_{1}{ }^{\prime}, x_{2}{ }^{\prime}, \ldots, x_{v}\right\}, Y=\left\{x_{1}{ }^{\prime \prime}, x_{2}{ }^{\prime \prime}, \ldots, x_{v}{ }^{\prime \prime}\right\}$

$$
\begin{aligned}
E(G) & =\left\{e_{1}, e_{2}, \ldots, e_{\varepsilon}\right\}, \text { where } \psi_{G}\left(e_{l}\right)=x_{i}{ }^{\prime} x_{j}^{\prime \prime} \\
& \Leftrightarrow \exists a_{l} \in E(D) \text { s.t. } \psi_{D}\left(a_{l}\right)=\left(x_{i}, x_{j}\right), l=1,2, \ldots, \varepsilon .
\end{aligned}
$$

- ex: Fig 1.7: D

G:

- Note: If G is an associated bipartite graph of $D, v(G)=2 v(D)$ and $\varepsilon(G)=\varepsilon(D)$.

1.2 Graph Isomorphic

- Def: n-cube (or hypercube), $Q_{n}=\left(V\left(Q_{n}\right), E\left(Q_{n}\right)\right)$ is defined as:

$$
\begin{aligned}
& V\left(Q_{n}\right)=\left\{x_{1} x_{2} \ldots x_{n}: x_{i} \in\{0,1\}, i=1,2, \ldots, n\right\} . \\
& E\left(Q_{n}\right)=\left\{x y: x=x_{1} x_{2} \ldots x_{n}, y=y_{1} y_{2} \ldots y_{n} \in V\left(Q_{n}\right), \sum_{i=1}^{n}\left|x_{i}-y_{i}\right|=1\right\}
\end{aligned}
$$

- ex:

Q_{3}
(c) Fall 2019, Justie Su-Tzu Juan

1.2 Graph Isomorphic

- Example 1.2.1: Q_{n} is an equally bipartite simple graph.

Sol. (1/2)
(1) Q_{n} is simple by definition with $v\left(Q_{n}\right)=2^{n}$
(2) Let $X=\left\{x_{1} x_{2} \ldots x_{n}: x_{1}+x_{2}+\ldots+x_{n} \equiv 0(\bmod 2)\right\}$

$$
Y=\left\{x_{1} x_{2} \ldots x_{n}: x_{1}+x_{2}+\ldots+x_{n} \equiv 1(\bmod 2)\right\}
$$

By definition, $X \cup Y=V\left(Q_{n}\right), X \cap Y=\phi$.
$\therefore\{X, Y\}$ is a bipartition of $V\left(Q_{n}\right)$.
Suppose $\exists x=x_{1} x_{2} \ldots x_{n}, x^{\prime}=x_{1}{ }^{\prime} x_{2}{ }^{\prime} \ldots x_{n}{ }^{\prime} \in X$ s.t. $x x^{\prime} \in E\left(Q_{n}\right)$.
$\Rightarrow \sum_{i=1}^{n}\left|x_{i}-x_{i}{ }^{\prime}\right|=1$
$\Rightarrow\left|\left(x_{1}+x_{2}+\ldots+x_{n}\right)-\left(x_{1}{ }^{\prime}+x_{2}{ }^{\prime}+\ldots+x_{n}{ }^{\prime}\right)\right|=1$
$\Rightarrow \rightarrow \leftarrow\left(\because x, x^{\prime} \in X . \therefore x_{1}+x_{2}+\ldots+x_{n} \equiv 0(\bmod 2)\right.$,

$$
\left.x_{1}{ }^{\prime}+x_{2}{ }^{\prime}+\ldots+x_{n}{ }^{\prime} \equiv 0(\bmod 2) .\right)
$$

\therefore There is no edge between any two vertices in X.
Similarly, there is no edge between any two vertices in Y.
(c) Fall 2019, Justie Su-Tzu Juan

1.2 Graph Isomorphic

- Example 1.2.1: Q_{n} is an equally bipartite simple graph.

Sol. (2/2)
(3) $\forall x \in X$, let $N(x)=\left\{y \in Y: x y \in E\left(Q_{n}\right)\right\}$
$\therefore|N(x)|=n$ by definition.
Similarly, $|N(y)|=n$.
Let $E_{X} \equiv$ the set of edges incident with vertices in X.
$E_{Y} \equiv$ the set of edges incident with vertices in Y.
$\Rightarrow n|X|=\left|E_{X}\right|=\varepsilon\left(Q_{n}\right)=\left|E_{Y}\right|=n|Y|$
$\Rightarrow\left\{\begin{array}{l}|X|=|Y|=(1 / 2) v\left(Q_{n}\right)=2^{n-1} \\ \varepsilon\left(Q_{n}\right)=n \cdot 2^{n-1} .\end{array}\right.$

1.2 Graph Isomorphic

- Def: $T_{k, v} \equiv$ complete k-partite graph of order v in which each part has either $m=\lfloor v / k\rfloor$ or $n=\lceil v / k\rceil$ vertices.
- Example: (a) $\varepsilon\left(T_{3,13}\right)=$?

$$
\begin{aligned}
& 13=3 \times 4+1, m=4, n=5=m+1 \text {. } \\
& \varepsilon\left(T_{3,13}\right)=(4(4+5)+4(4+5)+5(4+4)) / 2=56 \\
& \left({ }^{\circ}{ }_{2}{ }_{2}\right)+(k-1)\left({ }^{m+1}{ }_{2}\right)=\left({ }^{13-4}{ }_{2}\right)+(3-1)\left(4+{ }_{2}\right) \\
& =\left({ }_{2}{ }_{2}\right)+2\left({ }_{2}{ }_{2}\right) \\
& =36+20=56
\end{aligned}
$$

(b) $\varepsilon(G) \leq 56$ for any complete 3-partite graph G with order 13? and $\varepsilon(G)=56$ iff $G \cong T_{3,13}$?

1.2 Graph Isomorphic

- Example 1.2.2: (a) $\varepsilon\left(T_{k, v}\right)=\left({ }^{v-m}{ }_{2}\right)+(k-1)\left({ }^{m+1}{ }_{2}\right)$;
(b) $\varepsilon(G) \leq \varepsilon\left(T_{k, v}\right)$ for any complete k-partite graph G with order v and the equality holds iff $G \cong T_{k, v}$
Proof. (1/2) (略)
(a) Let $v=k m+r, 0 \leq r<k$. Then $r=v-k m$.

$$
\begin{aligned}
\varepsilon\left(T_{k, v}\right) & =\left(v_{2}\right)-r\left({ }^{m+1}{ }_{2}\right)-(k-r)\left(m_{2}\right) \\
& =(1 / 2)\{v(v-1)-r m(m+1)-(k-r) m(m-1)\} \\
& =(1 / 2)\{v(v-1)-2 m(v-k m)-k m(m-1)\} \\
& =(1 / 2)\left\{\left(v^{2}-v-2 v m+m^{2}+m\right)+k m(m+1)-m(m+1)\right\} \\
& =(1 / 2)(v-m)(v-m-1)+(1 / 2)(k-1) m(m+1) \\
& =\left(v-m{ }_{2}\right)+(k-1)\left({ }^{m+1}{ }_{2}\right)
\end{aligned}
$$

1.2 Graph Isomorphic

- Example 1.2.2: (a) $\varepsilon\left(T_{k, v}\right)=\left({ }^{v-m}{ }_{2}\right)+(k-1)\left({ }^{m+1}{ }_{2}\right)$;
(b) $\varepsilon(G) \leq \varepsilon\left(T_{k, v}\right)$ for any complete k-partite graph G with order v and the equality holds iff $G \cong T_{k, v}$
Proof. (2/2) (略)
(b) Suppose $G=K_{n_{1}, n_{2}, \ldots, n_{k}}$ is a complete k-partite graph with order v and the largest number of edges where $n_{1} \geq n_{2} \geq \ldots \geq n_{k}$. Then

$$
\varepsilon(G)=\left(v_{2}\right)-\sum_{l=1}^{k}\left(n_{l}\right)
$$

If $G \not \equiv T_{k, \triangleright}$ then $\exists 1 \leq i<j \leq k$ s.t. $n_{i}-n_{j}>1$
Let G^{\prime} be a complete k-partite graph, that the number of vertices in its
k-partition are: $n_{1}, n_{2}, \ldots, n_{i-1},\left(n_{i}-1\right), n_{i+1}, \ldots, n_{j-1},\left(n_{j}+1\right), n_{j+1}, \ldots, n_{k}$.
Then $\varepsilon\left(G^{\prime}\right)=\left(v_{2}\right)-\sum_{l=1 i_{k} i_{j},}^{k}\left(n_{l_{2}}\right)-\left(n_{i}-1{ }_{2}\right)-\left(n_{j}+1{ }_{2}\right)$
$=\left(v_{2}\right)-\sum_{l_{k=1}=1}\left({ }_{n_{2}}\right)+\left(n_{i}-1\right)-n_{j}$
$=\left({ }_{2}\right)-\sum_{l=1}^{l=1}\left({ }_{l}{ }_{l_{2}}\right)+\left(n_{i}-n_{j}-1\right)>\left({ }_{2}\right)-\sum_{l=1}^{k}\left({ }^{n}{ }_{l_{2}}\right)=\varepsilon(G) . \rightarrow \leftarrow$
$\therefore G \cong T_{k, v}$
(c) Fall 2019, Justie Su-Tzu Juan

1.2 Graph Isomorphic

- Exercises: 1.2.6
- 加: Construct a self-complementary undirected graph of order nine.
- Def:
- Complement, G^{c}, of $G \equiv\left\{\begin{array}{l}V\left(G^{c}\right)=V(G) \\ E\left(G^{c}\right)=\{(x, y):(x, y) \notin E(G), x, y \in V(G)\}\end{array}\right.$
- self-complementary: $\boldsymbol{G} \cong \boldsymbol{G}^{\boldsymbol{c}}$.

Chapter 1
 Basic Concepts of Graphs

§ 1.3 Vertex Degrees

1.3 Vertex Degrees

- Def: In an undirected graph $G, x \in V(G)$.
- The degree of $x, d_{G}(x) \equiv$ the $\#$ of edges incident to x, loop counting as 2 edges.
- d-degree vertex
ex:

$$
\begin{aligned}
& d_{G}\left(x_{1}\right)=d_{G}\left(x_{3}\right)=4 \\
& d_{G}\left(x_{2}\right)=d_{G}\left(x_{4}\right)=3 \\
& x_{1} \text { is a 4-degree vertex }
\end{aligned}
$$

- The open neighbors of $x, N(x)=N_{G}(x) \equiv\{y \mid x y \in E(G)\}$.
- The close neighbors of $x, N[x]=N_{G}[x] \equiv N(x) \cup x$.
- isolated vertex $\equiv 0$-degree vertex
- odd (even) vertex: degree is odd (even).

1.3 Vertex Degrees

- Def: In an undirected graph $G, x \in V(G)$.
- A graph is k-regular $\equiv \forall x \in V, d_{G}(x)=k$.
- A graph is regular $\equiv \exists k$, s.t. G is k-regular.
- k is called the regularity of G.
- maximum degree of $G, \Delta(G) \equiv \max \left\{d_{G}(x): x \in V(G)\right\}$.
- minimum degree of $G, \delta(G) \equiv \min \left\{d_{G}(x): x \in V(G)\right\}$.
ex: K_{n} is $(n-1)$-regular,
$K_{n, n}$ is n-regular.
Petersen graph is 3-regular
Q_{n} is n-regular.

- Note: If G is k-regular, then $\Delta(G)=\delta(G)=k$.

1.3 Vertex Degrees

- Def: In digraph $D, y \in V(D)$.
- $E_{D}{ }^{+}(y)\left(E_{D}{ }^{-}(y)\right)$: a set of out-going (in-coming) edges of \boldsymbol{y}.
$-\left\{\begin{array}{l}\text { out-degree of } y, d_{D}{ }^{+}(y) \equiv\left|E_{D}{ }^{+}(y)\right| \\ \text { in-degree of } y, d_{D^{-}}(y) \equiv\left|E_{D^{-}}(y)\right|\end{array}\right.$
ex: D

$$
\begin{aligned}
& d_{D}^{+}\left(y_{1}\right)=2, d_{D}^{+}\left(y_{2}\right)=1, d_{D}^{+}\left(y_{3}\right)=1, d_{D}^{+}\left(y_{4}\right)=3 \\
& d_{D}^{-}\left(y_{1}\right)=2, d_{D}^{-}\left(y_{2}\right)=2, d_{D}^{-}\left(y_{3}\right)=3, d_{D}^{-}\left(y_{4}\right)=0
\end{aligned}
$$

- The out-neighbors of $x, N^{+}(x)=N_{D}{ }^{+}(x) \equiv\{y \mid(x, y) \in E(D)\}$.
- The in-neighbors of $x, N^{-}(x)=N_{D}^{-}(x) \equiv\{y \mid(y, x) \in E(D)\}$.
$-y$ is balanced if $d_{D}{ }^{+}(y)=d_{D}{ }^{-}(y) . \quad$ ex: y_{1} D is balanced if each of its vertices is balanced.

1.3 Vertex Degrees

- Def: In digraph $D, y \in V(D)$.
$-\Delta^{+}(D)=\max \left\{d_{D}{ }^{+}(y): y \in V(D)\right\}$. maximum out-degree
$\Delta^{-}(D)=\max \left\{d_{D}^{-}(y): y \in V(D)\right\}$. maximum in-degree
$-\delta^{+}(D)=\min \left\{d_{D}{ }^{+}(y): y \in V(D)\right\}$. minimum out-degree
$\delta^{-}(D)=\min \left\{d_{D}{ }^{-}(y): y \in V(D)\right\}$. minimum in-degree
$-\quad$ maximum degree, $\Delta(D)=\max \left\{\Delta^{+}(D), \Delta^{-}(D)\right\}$
minimum degree, $\delta(D)=\min \left\{\delta^{+}(D), \delta^{-}(D)\right\}$
- A digraph D is k-regular if $\Delta(D)=\delta(D)=k$.
- Note: Let $G=(X \cup Y, E)$ be a bipartite undirected graph,
(1) $\sum_{r \in X} d_{G}(x)=\varepsilon(G)=\sum_{y \in V} d_{G}(y)$
(2) $2 \varepsilon(G)=\sum_{x \in V(G)} d_{G}(x)$

1.3 Vertex Degrees

- Theorem 1.1: For any digraph $D, \varepsilon(D)=\sum_{x \in V} d_{D}{ }^{+}(x)=\sum_{x \in V} d_{D}-(x)$. Proof.

Let G be the associated bipartite graph with D of bipartition $\{X, Y\}$.

$$
\begin{aligned}
& \therefore d_{G}\left(x^{\prime}\right)=d_{D}+(x), d_{G}\left(x^{\prime \prime}\right)=d_{D}-(x), \forall x \in V(D) \\
& \Rightarrow \sum_{x \in V} d_{D}{ }^{+}(x)=\sum_{x^{\prime} \in X} d_{G}\left(x^{\prime}\right)=\varepsilon(G)=\sum_{x^{\prime \prime} \in Y} d_{G}\left(x^{\prime \prime}\right)=\sum_{x \in V} d_{D}-(x)
\end{aligned}
$$

- ex: Fig 1.7: D

G:

1.3 Vertex Degrees

Theorem 1.1: For any digraph $D, \varepsilon(D)=\sum_{x \in V} d_{D}{ }^{+}(x)=\sum_{x \in V} d_{D}{ }^{-}(x)$.

- Corollary 1.1: For any undirected graph G, (1) $2 \varepsilon(G)=\sum_{x \in V} d_{G}(x)$
(2) the number of odd vertices is even.

Proof.
(1) Let D be the symmetric digraph of G.

$$
\Rightarrow \varepsilon(D)=2 \varepsilon(G)
$$

Note that $d_{G}(x)=d_{D}{ }^{+}(x)=d_{D}{ }^{-}(x), \forall x \in V$.

(2) Let V_{o} be the set of odd vertices, let V_{e} be the set of even vertices.
$\Rightarrow \sum_{x \in V_{0}} d_{G}(x)+\sum_{x \in V_{c}} d_{G}(x)=\sum_{x \in V} d_{G}(x)=2 \varepsilon(G)$
$\because \sum_{x \in V_{0}}^{x \in V_{0}} d_{G}(x), \sum_{x \in V_{e}}^{x \in V_{e}} d_{G}(x)$ both are even,
$\therefore \sum_{x \in V_{0}}^{x \in V_{G}} d_{G}(x)$ is also even.
$\because d_{G}(x)$ is odd $\forall x \in V_{o}$.
$\therefore\left|V_{o}\right|$ is even.

1.3 Vertex Degrees

- Def: In digraph D, let $S, T \subseteq V(D)$.
$-E_{D}(S, T) \equiv\{(x, y) \in E(D): x \in S, y \in T\}(=(S, T))$
$-\mu_{D}(S, T) \equiv\left|E_{D}(S, T)\right|$
$(=\mu(S, T))$
$-[S, T] \equiv(S, T) \cup(T, S)$
- If $T=\bar{S}=V(D) \backslash S: E_{D}{ }^{+}(S) \equiv(S, \bar{S}) \quad \& E_{D}{ }^{-}(S) \equiv(\overline{S, S}$,

$$
d_{D}{ }^{+}(S) \equiv\left|E_{\mathrm{D}}{ }^{+}(S)\right| \& d_{D}^{-(}(S) \equiv\left|E_{D}{ }^{-}(S)\right|
$$

- out-neighbors of S in $D, N_{D}{ }^{+}(S)=\{y \in \bar{S}:(x, y) \in E(D), \forall x \in S\}$.
- in-neighbors of S in $D, N_{\mathrm{D}}^{-}(S)=\{x \in \overline{S:}(x, y) \in E(D), \forall y \in S\}$.

In undirected graph G, let $S \subseteq V(G)$.
$-E_{G}(S) \equiv$ the edges incident with vertices in S in G.
$-\quad$ neighbors of S in $G, N_{G}(S)$
$-d_{G}(S)=\left|E_{G}(S)\right|$

1.3 Vertex Degrees

- ex:

$$
\begin{aligned}
& \text { Let } S=\left\{y_{1}, y_{2}\right\} \\
& \qquad \begin{array}{l}
E_{D}^{+}(S)=\left\{a_{3}\right\}, d_{D}^{+}(S)=1, N_{D}^{+}(S)=\left\{y_{3}\right\} . \\
E_{D}^{-}(S)=\left\{a_{4}, a_{7}\right\}, d_{D}^{-}(S)=2, N_{D}^{-}(S)=\left\{y_{3}, y_{4}\right\} .
\end{array}
\end{aligned}
$$

Let $S=\left\{x_{1}, x_{2}\right\}$
$E_{G}(S)=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{7}\right\}$,
$N_{G}(S)=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$,
$d_{G}(S)=5$.

1.3 Vertex Degrees

(2) the number of odd vertices is even.

- Example 1.3.1: If \boldsymbol{G} is a simple undirected graph without triangles, then $\varepsilon(G) \leq(1 / 4) v^{2}$.
Proof.
$\forall x y \in E(G), \because G$ is simple and no triangle.

$$
\begin{aligned}
& \therefore\left[d_{G}(x)-1\right]+\left[d_{G}(y)-1\right] \leq v-2, \\
& \text { i.e. } d_{G}(x)+d_{G}(y) \leq v \\
& \therefore \sum_{x \in E \in(G)}\left(d_{G}(x)+d_{G}(y)\right) \leq \varepsilon \cdot v \\
& \Rightarrow \sum_{x \in V(G)} d_{G}^{2}(x) \leq \varepsilon \cdot v
\end{aligned}
$$

$$
\begin{aligned}
& \left(x_{1}^{2}+\ldots+x_{n}^{2}\right)\left(1^{2}+\ldots+1^{2}\right) \geq \\
& \quad\left(x_{1} \cdot 1+x_{2} \cdot 1+\ldots+x_{n} \cdot 1\right)^{2} \\
& \hline
\end{aligned}
$$

By Cauchy's inequality and Corollary 1.1:

$$
\begin{aligned}
& \varepsilon \cdot v \geq \sum_{x \in V} d_{G}^{2}(x) \geq(1 / v)\left(\overline{\left.\sum_{x \in V} d_{G}(x)\right)^{2}=(4 / v}\right) \varepsilon^{2} . \\
\Rightarrow & \varepsilon \leq(1 / 4) v^{2}
\end{aligned}
$$

1.3 Vertex Degrees

- Example 1.3.2: Let G is a self-complementary simple undirected graph with $v \equiv 1(\bmod 4)$. Prove that the number of $(1 / 2)(v-1)$-degree vertices in G is odd. Proof. (1/2)

Let $\left\{\begin{array}{l}V_{o} \text { be the set of odd vertices, } \\ V_{e} \text { be the set of even vertices. }\end{array}\right.$
$\left|V_{o}\right|$ is even by Corollary 1.1.
$\because v \equiv 1(\bmod 4)$ is odd,
$\therefore\left|V_{e}\right|$ is odd and $(1 / 2)(v-1)$ is even.
Let V_{e}^{\prime} be the set of vertices in V_{e} whose degree $\neq(1 / 2)(v-1)$.

1.3 Vertex Degrees

- Example 1.3.2: Let G is a self-complementary simple undirected graph with $v \equiv 1(\bmod 4)$. Prove that the number of $(1 / 2)(v-1)$-degree vertices in G is odd. Proof. (2/2)

Let $x \in V_{e}^{\prime} . \because G \cong G^{c}$.

$$
\begin{aligned}
& \therefore \exists y_{x} \in V(G) \text { s.t. } d_{G}\left(y_{x}\right)=d_{G^{c}}(x) . \\
& \\
& \Rightarrow d_{G}\left(y_{x}\right)=d_{G^{c}}(x)=(v-1)-d_{G}(x) \text { is even. } \\
& \\
& \therefore y_{x} \in V_{e^{\cdot}} \\
& \\
& \because d_{G}(x) \neq(1 / 2)(v-1) . \therefore d_{G}\left(y_{x}\right) \neq(1 / 2)(v-1) \Rightarrow y_{x} \neq x . \\
& \\
& \therefore y_{x} \in V_{e}^{\prime} \cdot \\
& \\
& \quad \text { and if } x, z \in V_{e}^{\prime} \text { and } x \neq z \Rightarrow y_{x} \neq y_{z^{*}} \\
& \Rightarrow \text { the vertices in } V_{e}^{\prime} \text { occur in pairs, i.e. }\left|V_{e}^{\prime}\right| \text { is even. }
\end{aligned}
$$

$$
\Rightarrow\left|V_{e}\right|-\left|V_{e}^{\prime}\right| \text { is odd. }
$$

i.e. the number of $(1 / 2)(v-1)$-degree vertices is odd.

1.3 Vertex Degrees

- Exercises: 1.3.2, 1.3.6(a)
- 加: 1.3.5, 1.3.8

