Chapter 1 Basic Concepts of Graphs

§ 1.2 Graph Isomorphic

Def:

A graph G = (V(G), E(G), ψ_G) is isomorphic to a graph H = (V(H), E(H), ψ_H) if ∃ 2 bijective mappings θ: V(G) → V(H) and φ: E(G) → E(H) s.t. ∀ e ∈ E(G),

$$\psi_G(e) = (x, y) \Leftrightarrow \psi_H(\phi(e)) = (\theta(x), \theta(y)) \in E(H). (\bigstar)$$

- (θ, ϕ) : isomorphic mapping from G to H.
- G and H are isomorphic, write $G \cong H$ (or G = H)
- (θ, ϕ) : an isomorphism between G and H.

 $\psi_G(e) = (x, y) \Leftrightarrow \psi_H(\phi(e)) = (\theta(x), \theta(y)) \in E(H). (\bigstar)$

<u>Def</u>: For simple graphs G, H, G and H are isomorphic $\Leftrightarrow \exists$ a bijection θ : $V(G) \rightarrow V(H)$ s.t. $(x, y) \in E(G) \Leftrightarrow (\theta(x), \theta(y)) \in E(H)$. $((\bigstar)$ is called the adjacency-preserving condition)

Note:

- G ≅ H ⇒
$$\nu(G) = \nu(H), \epsilon(G) = \epsilon(H).$$
 (反之不成立!!)

"to be isomorphic" is an equivalence relation.

(反身,對稱,遞移)

... divide all graph into equivalence classes.

• Note:
$$\varepsilon(K_{\nu}) = \begin{cases} \nu(\nu - 1), & \text{if } K_{\nu} \text{ is directed,} \\ (1/2)\nu(\nu - 1), & \text{if } K_{\nu} \text{ is undirected.} \end{cases}$$

(c) Fall 2019, Justie Su-Tzu Juan

Def:

- **bipartite graph:** vertex-set can be partitioned into *X* and *Y*,

so that each edge has one end-vertex in both.

- {*X*, *Y*} is called a bipartition of the graph.
- If ∃ a bipartition {X, Y} where |X| = |Y|, then called equally bipartite.
 G(X ∪ Y, E)
- k-partite graph
- equally k-partite graph
- complete bipartite graph, $K_{m,n}$
- $\quad \operatorname{star} \equiv K_{1,n}$
- $K_n(2) = K_{n,n}$
- Complete *k*-partite graph
- $-K_n(k)$

Note: 1. $\varepsilon(K_{m,n}) = mn$ 2. $\varepsilon(K_n(k)) = (1/2)k(k-1)n^2$ 3. For any bipartite simple graph G of order n, $\varepsilon(G) \leq \begin{cases} (1/4)n^2, & \text{if } n \text{ is even;} \\ (1/4)(n^2-1), & \text{if } n \text{ is odd.} \end{cases}$

<u>Def</u>: *G* is called an associated bipartite graph with the digraph *D*, where if $V(D) = \{x_1, x_2, ..., x_{\nu}\}$ and $E(D) = \{a_1, a_2, ..., a_{\varepsilon}\}$, then $G = (X \cup Y, E(G), \psi_G)$ with $X = (x_1', x_2', ..., x_{\nu'})$, $Y = \{x_1'', x_2'', ..., x_{\nu''}\}$ $E(G) = \{e_1, e_2, ..., e_{\varepsilon}\}$, where $\psi_G(e_l) = x_i' x_j''$ $\Leftrightarrow \exists a_l \in E(D)$ s.t. $\psi_D(a_l) = (x_i, x_j), l = 1, 2, ..., \varepsilon$.

• <u>Note</u>: If G is an associated bipartite graph of D, v(G) = 2v(D) and $\varepsilon(G) = \varepsilon(D)$.

<u>Def</u>: *n*-cube (or hypercube), $Q_n = (V(Q_n), E(Q_n))$ is defined as: $V(Q_n) = \{x_1 x_2 \dots x_n \colon x_i \in \{0, 1\}, i = 1, 2, \dots, n\}.$ $E(Q_n) = \{xy: x = x_1x_2...x_n, y = y_1y_2...y_n \in V(Q_n), \sum_{i=1}^{n} |x_i - y_i| = 1\}$ ex: Q_1 Q_2 Q_3 .0111 **MM**1 Q_4 (c) Fall 2019, Justie Su-Tzu Juan

Example 1.2.1: Q_n is an equally bipartite simple graph. **Sol.** (1/2)**(1)** Q_n is simple by definition with $\nu(Q_n) = 2^n$ **2** Let $X = \{x_1x_2...x_n: x_1 + x_2 + ... + x_n \equiv 0 \pmod{2}\}$ $Y = \{x_1 x_2 \dots x_n \colon x_1 + x_2 + \dots + x_n \equiv 1 \pmod{2}\}$ By definition, $X \cup Y = V(Q_n), X \cap Y = \phi$. \therefore {X, Y} is a bipartition of $V(Q_n)$. Suppose $\exists x = x_1x_2...x_n, x' = x_1'x_2'...x_n' \in X$ s.t. $xx' \in E(Q_n)$. $\Rightarrow \sum |x_i - x_i'| = 1$ $\Rightarrow |(x_1 + x_2 + ... + x_n) - (x_1' + x_2' + ... + x_n')| = 1$ $\Rightarrow \rightarrow \leftarrow (\therefore x, x' \in X. \therefore x_1 + x_2 + \ldots + x_n \equiv 0 \pmod{2}),$ $x_1' + x_2' + \ldots + x_n' \equiv 0 \pmod{2}$.)

... There is no edge between any two vertices in *X*. Similarly, there is no edge between any two vertices in *Y*.

(c) Fall 2019, Justie Su-Tzu Juan

Example 1.2.1: Q_n is an equally bipartite simple graph. Sol. (2/2) (3) $\forall x \in X$, let $N(x) = \{y \in Y : xy \in E(Q_n)\}$ $\therefore |N(x)| = n$ by definition. Similarly, |N(y)| = n. Let $E_X \equiv$ the set of edges incident with vertices in X. $E_Y \equiv$ the set of edges incident with vertices in Y. $\Rightarrow n|X| = |E_X| = \varepsilon(Q_n) = |E_Y| = n|Y|$ $\Rightarrow \begin{cases} |X| = |Y| = (1/2) \nu(Q_n) = 2^{n-1} \\ \varepsilon(Q_n) = n \cdot 2^{n-1}. \end{cases}$

<u>Def</u>: $T_{k,v} \equiv$ complete *k*-partite graph of order v in which each part has either $m = \lfloor v/k \rfloor$ or $n = \lceil v/k \rceil$ vertices.

Example: (a)
$$\varepsilon(T_{3,13}) = ?$$

 $13 = 3 \times 4 + 1, m = 4, n = 5 = m + 1.$
 $\varepsilon(T_{3,13}) = (4(4+5) + 4(4+5) + 5(4+4)) / 2 = 56$
 $(\nu - m_2) + (k - 1)(m + 1_2) = (13 - 4_2) + (3 - 1)(4 + 1_2)$
 $= (9^2_2) + 2(5^2_2)$
 $= 36 + 20 = 56$

(b) $\varepsilon(G) \le 56$ for any complete 3-partite graph *G* with order 13? and $\varepsilon(G) = 56$ iff $G \cong T_{3,13}$?

Example 1.2.2: (a) $\mathcal{E}(T_{k,\nu}) = (\nu - m_2) + (k - 1)(m + 1_2);$ (b) $\varepsilon(G) \leq \varepsilon(T_{k,\nu})$ for any complete *k*-partite graph *G* with order ν and the equality holds iff $G \cong T_{k,v}$ Proof. (1/2)(略) (a) Let v = km + r, $0 \le r < k$. Then r = v - km. $(-r(m^2 + m) + r(m^2 - m)) = 0$ $\mathcal{E}(T_{k,\nu}) = {\binom{\nu}{2}} - r{\binom{m+1}{2}} - (k-r){\binom{m}{2}}$ $= (1/2)\{v(v-1) - r m(m+1) - (k-r)m(m-1)\}$ $= (1/2)\{v(v-1) - 2m(v-km) - km(m-1)\}$ $= (1/2)\{ (v^2 - v - 2vm + m^2 + m) + km(m+1) - m(m+1) \}$ $= (1/2)(\nu - m)(\nu - m - 1) + (1/2)(k - 1)m(m + 1)$ $= (v - m_{2}) + (k - 1)(m + 1_{2})$

Example 1.2.2: (a) $\mathcal{E}(T_{k,\nu}) = (\nu - m_2) + (k - 1)(m + 1_2);$ (b) $\varepsilon(G) \leq \varepsilon(T_{k,\nu})$ for any complete *k*-partite graph *G* with order ν and the equality holds iff $G \cong T_{k,v}$ Proof. (2/2)(略) (b) Suppose $G = K_{n_1, n_2, \dots, n_k}$ is a complete *k*-partite graph with order *v* and the largest number of edges where $n_1 \ge n_2 \ge ... \ge n_k$. Then $\boldsymbol{\varepsilon}(\boldsymbol{G}) = \binom{\boldsymbol{v}}{2} - \sum_{n=1}^{\infty} \binom{\boldsymbol{n}}{2}$ If $G \not\cong T_{k,v}$, then $\exists 1 \leq i < j \leq k$ s.t. $n_i - n_j > 1$ Let G' be a complete k-partite graph, that the number of vertices in its *k*-partition are: $n_1, n_2, ..., n_{i-1}, (n_i - 1), n_{i+1}, ..., n_{j-1}, (n_j + 1), n_{j+1}, ..., n_k$. Then $\mathcal{E}(G') = {\binom{v}{2}} - \sum_{l=1 \neq i, i}^{n} {\binom{n_l}{2}} - {\binom{n_l-1}{2}} - {\binom{n_l+1}{2}} - {\binom{n_l+1}{2}}$ $= (v_2) - \sum_{l=1} (n_{l_2}) + (n_i - 1) - n_j$ $= (v_2) - \sum_{k=1}^{k} (n_{l_2}) + (n_i - n_j - 1) > (v_2) - \sum_{k=1}^{k} (n_{l_2}) = \mathcal{E}(G). \rightarrow \leftarrow$ $\therefore G \cong T_{k,\nu}$ (c) Fall 2019, Justie Su-Tzu Juan 14

- Exercises: 1.2.6
 - 加: Construct a self-complementary undirected graph of order nine.
 - Def:

- Complement,
$$G^c$$
, of $G \equiv \begin{cases} V(G^c) = V(G) \\ E(G^c) = \{(x, y) \colon (x, y) \notin E(G), x, y \in V(G) \end{cases}$

- self-complementary: $G \cong G^c$.

Chapter 1 Basic Concepts of Graphs

§ 1.3 Vertex Degrees

<u>Def</u>: In an undirected graph $G, x \in V(G)$.

The degree of x, $d_G(x)$ = the # of edges incident to x, loop counting as 2 edges.
 d-degree vertex

 $d_G(x_1) = d_G(x_3) = 4$ $d_G(x_2) = d_G(x_4) = 3$ x_1 is a 4-degree vertex

- The open neighbors of x, $N(x) = N_G(x) \equiv \{ y \mid xy \in E(G) \}$.
- The close neighbors of x, $N[x] = N_G[x] \equiv N(x) \cup x$.
- **isolated vertex** \equiv **0-degree vertex**
- odd (even) vertex: degree is odd (even).

- **<u>Def</u>**: In an undirected graph $G, x \in V(G)$.
 - A graph is *k*-regular $\equiv \forall x \in V, d_G(x) = k$.
 - A graph is regular = $\exists k$, s.t. G is k-regular.
 - -k is called the **regularity** of G.
 - maximum degree of *G*, $\Delta(G)$ = max {*d_G*(*x*): *x* ∈ *V*(*G*)}.

- minimum degree of G, $\delta(G) \equiv \min \{ d_G(x) : x \in V(G) \}$.

ex: K_n is (n-1)-regular,

 $K_{n,n}$ is *n*-regular. Petersen graph is 3-regular Q_n is *n*-regular.

<u>Note</u>: If G is k-regular, then $\Delta(G) = \delta(G) = k$.

<u>Def</u>: In digraph $D, y \in V(D)$.

- $E_D^+(y)$ ($E_D^-(y)$): a set of out-going (in-coming) edges of y.
- $-\begin{cases} \text{out-degree of } y, d_D^+(y) \equiv |E_D^+(y)| \\ \text{in-degree of } y, d_D^-(y) \equiv |E_D^-(y)| \end{cases}$

$$d_D^+(y_1) = 2, d_D^+(y_2) = 1, d_D^+(y_3) = 1, d_D^+(y_4) = 3$$

 $d_D^-(y_1) = 2, d_D^-(y_2) = 2, d_D^-(y_3) = 3, d_D^-(y_4) = 0$

- The out-neighbors of x, $N^+(x) = N_D^+(x) \equiv \{ y \mid (x, y) \in E(D) \}$.
- The in-neighbors of x, $N^{-}(x) = N_{D}^{-}(x) \equiv \{ y \mid (y, x) \in E(D) \}$.
- y is balanced if $d_D^+(y) = d_D^-(y)$. ex: y₁

D is **balanced** if each of its vertices is balanced.

<u>Def</u>: In digraph $D, y \in V(D)$.

- $\Delta^+(D)$ = max { $d_D^+(y)$: y ∈ V(D)}. maximum out-degree
 - $\Delta^{-}(D) = \max \{ d_D^{-}(y) \colon y \in V(D) \}.$ maximum in-degree
- $\delta^+(D) = \min\{d_D^+(y): y \in V(D)\}$. minimum out-degree $\delta^-(D) = \min\{d_D^-(y): y \in V(D)\}$. minimum in-degree
- maximum degree, $\Delta(D) = \max \{ \Delta^+(D), \Delta^-(D) \}$ minimum degree, $\delta(D) = \min \{ \delta^+(D), \delta^-(D) \}$
- A digraph *D* is *k*-regular if $\Delta(D) = \delta(D) = k$.
- Note: Let $G = (X \cup Y, E)$ be a bipartite undirected graph,

- <u>Theorem 1.1</u>: For any digraph D, $\varepsilon(D) = \sum_{x \in V} d_D^+(x) = \sum_{x \in V} d_D^-(x)$. Proof.
 - Let *G* be the associated bipartite graph with *D* of bipartition {*X*, *Y*}. $\therefore d_G(x') = d_D^+(x), d_G(x'') = d_D^-(x), \forall x \in V(D).$
 - $\Rightarrow \sum_{x \in V} d_D^+(x) = \sum_{x' \in X} d_G(x') = \varepsilon(G) = \sum_{x'' \in Y} d_G(x'') = \sum_{x \in V} d_D^-(x)$

<u>Theorem 1.1</u>: For any digraph D, $\varepsilon(D) = \sum_{x \in V} d_D^+(x) = \sum_{x \in V} d_D^-(x)$.

<u>Corollary 1.1</u>: For any undirected graph G, $\oplus 2\varepsilon(G) = \sum_{i=1}^{n} d_G(x)$ **②** the number of odd vertices is even.

Proof.

① Let *D* be the symmetric digraph of *G*.

 $\Rightarrow \varepsilon(D) = 2\varepsilon(G).$

Note that $d_G(x) = d_D^+(x) = d_D^-(x), \forall x \in V$.

 $\therefore \text{ By <u>Theorem 1.1</u>, } \sum_{\omega} d_G(x) = \sum_{\omega \to \omega} d_D^+(x) = \sum_{\omega \to \omega} d_D^-(x) = \varepsilon(D) = 2\varepsilon(G).$ ⁽²⁾ Let V_{ρ} be the set of odd vertices, let V_{ρ} be the set of even vertices.

$$\Rightarrow \sum_{x \in V_o} d_G(x) + \sum_{x \in V_e} d_G(x) = \sum_{x \in V} d_G(x) = 2\varepsilon(G)$$

$$\cdots \sum_{x \in V_o} d_G(x) = \sum_{x \in V_e} d_G(x) = 2\varepsilon(G)$$

- $\sum_{x \in V_{a}} a_{G}(x), \sum_{x \in V_{e}} d_{G}(x) \text{ both are even,}$ $\sum_{x \in V_{a}} d_{G}(x) \text{ is also even.}$
- $\therefore d_G(x)$ is odd $\forall x \in V_q$.
- $\therefore |V_o|$ is even.

 $\begin{array}{l} \underline{\text{Def:}} \text{ In digraph } D, \text{ let } S, T \subseteq V(D). \\ - & E_D(S, T) \equiv \{(x, y) \in E(D) \colon x \in S, y \in T\} \ (= (S, T)) \\ - & \mu_D(S, T) \equiv |E_D(S, T)| \qquad (= \mu(S, T)) \\ - & [S, T] \equiv (S, T) \cup (T, S) \\ - & \text{ If } T = \overline{S} = V(D) \backslash S \colon E_D^+(S) \equiv (S, \overline{S}) \quad \& E_D^-(S) \equiv (\overline{S}, S) \\ & d_D^+(S) \equiv |E_D^+(S)| \& d_D^-(S) \equiv |E_D^-(S)| \\ - & \text{ out-neighbors of } S \text{ in } D, N_D^+(S) = \{y \in \overline{S} \colon (x, y) \in E(D), \forall x \in S\}. \\ - & \text{ in-neighbors of } S \text{ in } D, N_D^-(S) = \{x \in \overline{S} \colon (x, y) \in E(D), \forall y \in S\}. \end{array}$

In undirected graph *G*, let $S \subseteq V(G)$.

- $E_G(S) \equiv$ the edges incident with vertices in S in G.
- neighbors of S in $G, N_G(S)$
- $\quad \boldsymbol{d}_{\boldsymbol{G}}(\boldsymbol{S}) = |\boldsymbol{E}_{\boldsymbol{G}}(\boldsymbol{S})|$

•

Let
$$S = \{y_1, y_2\}$$

 $E_D^+(S) = \{a_3\}, d_D^+(S) = 1, N_D^+(S) = \{y_3\}.$
 $E_D^-(S) = \{a_4, a_7\}, d_D^-(S) = 2, N_D^-(S) = \{y_3, y_4\}.$

Let
$$S = \{x_1, x_2\}$$

 $E_G(S) = \{e_1, e_2, e_3, e_4, e_7\},$
 $N_G(S) = \{x_1, x_2, x_3, x_4\},$
 $d_G(S) = 5.$

<u>Corollary 1.1</u>: For any undirected graph G, $\oplus 2\varepsilon(G) = \sum_{x \in V} d_G(x)$

② the number of odd vertices is even.

Example 1.3.1: If G is a simple undirected graph without triangles,

then $\varepsilon(G) \leq (1/4) v^2$.

Proof.

 $\forall xy \in E(G), \because G \text{ is simple and no triangle.}$

: $[d_G(x) - 1] + [d_G(y) - 1] \le v - 2,$

i.e. $d_G(x) + d_G(y) \le v$

 $\sum_{xy \in E(G)} (d_G(x) + d_G(y)) \le \varepsilon \cdot \nu$

$$\Rightarrow \sum_{x \in V(G)} d_G^2(x) \leq \varepsilon \cdot v$$

By Cauchy's inequality and <u>Corollary 1.1</u>:

 $\varepsilon \cdot \nu \ge \sum_{x \in V} d_G^2(x) \ge (1/\nu) (\sum_{x \in V} d_G(x))^2 = (4/\nu)\varepsilon^2.$ $\Rightarrow \varepsilon \le (1/4)\nu^2.$

$$(x_1^2 + \dots + x_n^2)(1^2 + \dots + 1^2) \ge (x_1 \cdot 1 + x_2 \cdot 1 + \dots + x_n \cdot 1)^2$$

- **Example 1.3.2:** Let G is a self-complementary simple undirected graph with $v \equiv 1 \pmod{4}$. Prove that the number of (1/2)(v-1)-degree vertices in G is odd. **Proof.** (1/2)
 - Let $\begin{cases} V_o \text{ be the set of odd vertices,} \\ V_e \text{ be the set of even vertices.} \end{cases}$
 - $|V_o|$ is even by Corollary 1.1.
 - $\therefore \nu \equiv 1 \pmod{4}$ is odd,
 - $\therefore |V_{e}|$ is odd and $(1/2)(\nu 1)$ is even.
 - Let V'_e be the set of vertices in V_e whose degree $\neq (1/2)(\nu 1)$.

Example 1.3.2: Let G is a self-complementary simple undirected graph with $v \equiv 1 \pmod{4}$. Prove that the number of (1/2)(v-1)-degree vertices in G is odd. **Proof.** (2/2)

```
Let x \in V'_e. G \cong G^c.
```

$$\therefore \exists y_x \in V(G) \text{ s.t. } d_G(y_x) = d_{G^c}(x).$$

$$\Rightarrow d_G(y_x) = d_{G^c}(x) = (\nu - 1) - d_G(x)$$
 is even.

$$\therefore y_x \in V_e$$
.

 $\therefore d_G(x) \neq (1/2)(\nu - 1). \therefore d_G(y_x) \neq (1/2)(\nu - 1) \Longrightarrow y_x \neq x.$

$$\therefore y_x \in V'_e$$
.

and if $x, z \in V'_e$ and $x \neq z \Rightarrow y_x \neq y_z$.

⇒ the vertices in V'_e occur in pairs, i.e. $|V'_e|$ is even. ⇒ $|V_e| - |V'_e|$ is odd.

i.e. the number of $(1/2)(\nu - 1)$ -degree vertices is odd.

Exercises: 1.3.2, 1.3.6(a)

加:1.3.5,1.3.8

٠