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Chapter 1

Basic Concepts of Graphs

§ 1.2 Graph Isomorphic
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1.2 Graph Isomorphic

• Def: 

– A graph G = (V(G), E(G), G) is isomorphic to a graph H = (V(H), E(H), H) 

if  2 bijective mappings : V(G)  V(H) and : E(G)  E(H) 

s.t.  e  E(G),     

G(e) = (x, y) H((e)) = ((x), (y))  E(H). (☆)

– (, ): isomorphic mapping from G to H.

– G and H are isomorphic, write G  H (or G = H)

– (, ): an isomorphism between G and H.



(c) Fall 2019, Justie Su-Tzu Juan 3

1.2 Graph Isomorphic

• ex: In example 1.1.1 and 1.1.2, D  H.

Let : V(D)  V(H) and : E(D)  E(H) be

(xi) = yi,  i = 1, 2, …, 5,

(aj) = bj,  j = 1, 2, …, 9.
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1.2 Graph Isomorphic

• Def: For simple graphs G, H, G and H are isomorphic 

  a bijection : V(G)  V(H) s.t.

(x, y)  E(G)  ((x), (y))  E(H).

((☆) is called the adjacency-preserving condition)

• Note: 

– G  H  (G) = (H), (G) = (H).    (反之不成立!!)

“to be isomorphic” is an equivalence relation. 

(反身, 對稱, 遞移) 

∴ divide all graph into equivalence classes. 

G(e) = (x, y) H((e)) = ((x), (y))  E(H). (☆)
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1.2 Graph Isomorphic

• Def:

– Petersen graph

– complete graph, K. ex:

– tournament

ex:

• Note: (K) =    (  1),         if K is directed,

(1/2)(  1), if K is undirected.

K3 K4 K5



(c) Fall 2019, Justie Su-Tzu Juan 6

1.2 Graph Isomorphic

• Def:

– bipartite graph: vertex-set can be partitioned into X and Y, 

so that each edge has one end-vertex in both.

– {X, Y} is called a bipartition of the graph.

– If  a bipartition {X, Y} where |X| = |Y|, then called equally bipartite.

– G(X  Y, E)

– k-partite graph

– equally k-partite graph

– complete bipartite graph, Km,n

– star  K1,n

– Kn(2) = Kn,n

– Complete k-partite graph

– Kn(k)

ex:                      K3,3
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1.2 Graph Isomorphic

• Note: 1. (Km,n) = mn

2. (Kn(k)) = (1/2)k(k  1)n2

3. For any bipartite simple graph G of order n,

(G)  (1/4)n2,           if n is even;

(1/4)(n2  1),  if n is odd.
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1.2 Graph Isomorphic

• Def: G is called an associated bipartite graph with the digraph D, where 

if V(D) = {x1, x2, …, x} and E(D) = {a1, a2, …, a}, 

then G = (X  Y, E(G), G) with X = (x1, x2, …, x}, Y = {x1, x2, …, x}

E(G) = {e1, e2, …, e}, where G(el) = xixj

  al  E(D) s.t. D(al) = (xi, xj), l = 1, 2, …, .

• ex: Fig 1.7: D G:

• Note: If G is an associated bipartite graph of D, (G) = 2(D) and (G) = (D).
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1.2 Graph Isomorphic

• Def: n-cube (or hypercube), Qn = (V(Qn), E(Qn)) is defined as:

V(Qn) = {x1x2…xn: xi  {0, 1}, i = 1, 2, …, n}.

E(Qn)  = {xy: x = x1x2…xn, y = y1y2…yn  V(Qn),                       }

• ex:
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1.2 Graph Isomorphic

• Example 1.2.1: Qn is an equally bipartite simple graph. 

Sol. (1/2)

 Qn is simple by definition with (Qn) = 2n

 Let X = {x1x2…xn: x1 + x2 + … + xn  0 (mod 2)}

Y = {x1x2…xn: x1 + x2 + … + xn  1 (mod 2)}

By definition, X  Y = V(Qn), X  Y = .

∴ {X, Y} is a bipartition of V(Qn).

Suppose  x = x1x2…xn, x = x1x2…xn  X s.t. xx  E(Qn).

 |xi  xi| = 1

 |(x1 + x2 + … + xn)  (x1 + x2 + … + xn)| = 1

 (∵ x, x  X. ∴ x1 + x2 + … + xn  0 (mod 2),

x1 + x2 + … + xn  0 (mod 2).)

∴ There is no edge between any two vertices in X.

Similarly, there is no edge between any two vertices in Y.




n
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1.2 Graph Isomorphic

• Example 1.2.1: Qn is an equally bipartite simple graph. 

Sol. (2/2)

  x  X, let N(x) = {y  Y: xy  E(Qn)}    

∴|N(x)| = n by definition.

Similarly, |N(y)| = n.

Let EX  the set of edges incident with vertices in X.

EY  the set of edges incident with vertices in Y.

 n|X| = |EX| = (Qn) = |EY| = n|Y|

 |X| = |Y| = (1/2)(Qn) = 2n1

(Qn) = n  2n1.
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1.2 Graph Isomorphic

• Def: Tk,  complete k-partite graph of order  in which each part has 

either m = /k or n = /k vertices.

• Example: (a) (T3,13) = ?

13 = 3  4 + 1, m = 4, n = 5 = m + 1. 

(T3,13) = (4(4 + 5) + 4(4 + 5) + 5(4 + 4)) / 2 = 56

(m 
2) + (k  1)(m+1 

2) = (13 – 4
2) + (3 – 1)(4 + 1

2) 

= (9
2) + 2(5

2)

= 36 + 20 = 56

(b) (G)  56 for any complete 3-partite graph G with order 13?

and (G) = 56 iff G  T3,13?
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1.2 Graph Isomorphic

• Example 1.2.2: (a) (Tk,) = (m 
2) + (k  1)(m+1 

2);

(b) (G)  (Tk,) for any complete k-partite graph G with order 

and the equality holds iff G  Tk,.

Proof. (1/2) (略)

(a) Let  = km + r, 0  r < k.   Then r =    km.

(Tk,) = (2)  r(m+1
2)  (k  r)(m

2)

= (1/2){(  1)  r m(m + 1)  (k  r)m(m  1)}

= (1/2){(  1)  2m(  km)  km(m  1)}

= (1/2){ (2   – 2 m + m2 + m) + km(m + 1)  m(m + 1)}

= (1/2)(  m)(  m  1) + (1/2)(k  1)m(m + 1)

= (m
2) + (k  1)(m+1

2)

∵(r(m2 + m) + r(m2  m))=0
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1.2 Graph Isomorphic

• Example 1.2.2: (a) (Tk,) = (m 
2) + (k  1)(m+1 

2);

(b) (G)  (Tk,) for any complete k-partite graph G with order 

and the equality holds iff G  Tk,.

Proof. (2/2) (略)

(b) Suppose G = Kn1,n2,…,nk
is a complete k-partite graph with order  and the

largest number of edges where n1  n2  … nk. Then

(G) = (2)  (nl
2)

If G  Tk,, then  1  i < j  k s.t. ni  nj > 1

Let G be a complete k-partite graph, that the number of vertices in its 

k-partition are: n1, n2, …, ni1, (ni  1), ni+1, …, nj1, (nj + 1), nj+1, …, nk.                                                                        

Then (G) = ( 2)  (nl 2)  (ni1 
2)  (nj+1

2)

= ( 2)  (nl 2) + (ni  1)  nj

= ( 2)  (nl 2) + (ni  nj  1) > ( 2)  (nl 2) = (G). 

∴ G  Tk,
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1.2 Graph Isomorphic

• Exercises: 1.2.6

• 加: Construct a self-complementary undirected graph of order nine.

• Def: 

– Complement, Gc, of G  V(Gc) = V(G)

E(Gc) = {(x, y): (x, y)  E(G), x, y  V(G)}

– self-complementary: G  Gc.
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Chapter 1

Basic Concepts of Graphs

§ 1.3 Vertex Degrees
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1.3 Vertex Degrees 

• Def: In an undirected graph G, x  V(G).

– The degree of x, dG(x)  the # of edges incident to x, loop counting as 2 edges.

– d-degree vertex

ex:

dG(x1) = dG(x3) = 4

dG(x2) = dG(x4) = 3

x1 is a 4-degree vertex

– The open neighbors of x, N(x) = NG(x)  { y | xy  E(G)}.

– The close neighbors of x, N[x] = NG[x]  N(x)  x.

– isolated vertex  0-degree vertex

– odd (even) vertex: degree is odd (even).
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1.3 Vertex Degrees 

• Def: In an undirected graph G, x  V(G).

– A graph is k-regular   x  V, dG(x) = k.

– A graph is regular   k, s.t. G is k-regular.

– k is called the regularity of G.

– maximum degree of G, (G)  max {dG(x): x  V(G)}.

– minimum degree of G, (G)  min {dG(x): x  V(G)}.

ex: Kn is (n  1)-regular,

Kn,n is n-regular.

Petersen graph is 3-regular

Qn is n-regular.

• Note: If G is k-regular, then (G) = (G) = k.
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1.3 Vertex Degrees 

• Def: In digraph D, y  V(D).

– ED
+(y) (ED

(y)): a set of out-going (in-coming) edges of y.

– out-degree of y, dD
+(y)  |ED

+(y)|

in-degree of y, dD
(y)  |ED

(y)|

ex: D

dD
+(y1) = 2, dD

+(y2) = 1, dD
+(y3) = 1, dD

+(y4) = 3

dD
(y1) = 2, dD

(y2) = 2, dD
(y3) = 3, dD

(y4) = 0

– The out-neighbors of x, N+(x) = ND
+(x)  { y | (x, y)  E(D)}.

– The in-neighbors of x, N(x) = ND
(x)  { y | (y, x)  E(D)}.

– y is balanced if dD
+(y) = dD

(y).                   ex: y1

D is balanced if each of its vertices is balanced.
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1.3 Vertex Degrees 

• Def: In digraph D, y  V(D).

–  +(D) = max {dD
+(y): y  V(D)}. maximum out-degree

 (D) = max {dD
(y): y  V(D)}. maximum in-degree

–  +(D) = min{dD
+(y): y  V(D)}. minimum out-degree

 (D) = min{dD
(y): y  V(D)}. minimum in-degree

– maximum degree, (D) = max { +(D),  (D)}

minimum degree, (D) = min { +(D),  (D)}

– A digraph D is k-regular if (D) = (D) = k.

• Note: Let G = (X  Y, E) be a bipartite undirected graph,

 dG(x) = (G) = dG(y)

 2(G) =       dG(x)


Xx


Yy


 )(GVx
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1.3 Vertex Degrees 

• Theorem 1.1: For any digraph D, (D) = dD
+(x) =     dD

(x).

Proof. 

Let G be the associated bipartite graph with D of bipartition {X, Y}.

∴ dG(x) = dD
+(x), dG(x) = dD

(x),  x  V(D).

 dD
+(x) =      dG(x) = (G) =     dG(x) =     dD

(x)

• ex: Fig 1.7: D G:
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1.3 Vertex Degrees 

• Corollary 1.1: For any undirected graph G,  2(G) =     dG(x)

 the number of odd vertices is even.

Proof.

 Let D be the symmetric digraph of G.

 (D) = 2(G).

Note that dG(x) = dD
+(x) = dD

(x),  x  V.

∴ By Theorem 1.1,     dG(x) =     dD
+(x) =     dD

(x) = (D) = 2(G).

 Let Vo be the set of odd vertices, let Ve be the set of even vertices.

 dG(x) +    dG(x) =     dG(x) = 2(G)

∵ dG(x),     dG(x) both are even,

∴ dG(x) is also even.

∵ dG(x) is odd  x  Vo.

∴ |Vo| is even.
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Theorem 1.1: For any digraph D, (D) = dD
+(x) =     dD

(x).
Vx


Vx



(c) Fall 2019, Justie Su-Tzu Juan 23

1.3 Vertex Degrees 

• Def: In digraph D, let S, T  V(D).

– ED(S, T)  {(x, y)  E(D): x  S, y  T} (= (S, T))

– D(S, T)  |ED(S, T)|                                 (= (S, T))

– [S, T]  (S, T)  (T, S)

– If T = S = V(D)\S: ED
+(S)  (S, S)     ED

(S)  (S, S)

dD
+(S)  |ED

+(S)|  dD
(S)  |ED

(S)|

– out-neighbors of S in D, ND
+(S) = {y  S: (x, y)  E(D),  x  S }.

– in-neighbors of S in D, ND
(S) = {x  S: (x, y)  E(D), y  S}. 

In undirected graph G, let S  V(G).

– EG(S)  the edges incident with vertices in S in G.

– neighbors of S in G, NG(S)

– dG(S) = |EG(S)|
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1.3 Vertex Degrees 

• ex:

Let S = {y1, y2}

ED
+(S) = {a3}, dD

+(S) = 1, ND
+(S) = {y3}.

ED
(S) = {a4, a7}, dD

(S) = 2, ND
(S) = {y3, y4}.

Let S = {x1, x2}

EG(S) = {e1, e2, e3, e4, e7},

NG(S) = {x1, x2, x3, x4},

dG(S) = 5.
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1.3 Vertex Degrees 

• Example 1.3.1: If G is a simple undirected graph without triangles, 

then (G)  (1/4)2.

Proof.

 xy  E(G), ∵ G is simple and no triangle.

∴ [dG(x)  1] + [ dG(y)  1]    2,

i.e. dG(x) + dG(y)  

∴ (dG(x) + dG(y))    

 dG
2(x)    

By Cauchy’s inequality and Corollary 1.1: 

    dG
2(x)  (1/)(     dG(x))2 = (4/)2.

   (1/4)2.


 )(GExy


 )(GVx


Vx


Vx

Corollary 1.1: For any undirected graph G,  2(G) =     dG(x)

 the number of odd vertices is even.
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2)(12 + … + 12) 

(x1  1 + x2  1 +…+ xn  1)2



(c) Fall 2019, Justie Su-Tzu Juan 26

1.3 Vertex Degrees 

• Example 1.3.2: Let G is a self-complementary simple undirected graph with 

  1 (mod 4). Prove that the number of (1/2)(  1)-degree vertices in G is odd.

Proof. (1/2)

Let     Vo be the set of odd vertices,

Ve be the set of even vertices.

|Vo| is even by Corollary 1.1. 

∵   1 (mod 4) is odd,

∴ |Ve| is odd and (1/2)(  1) is even.

Let Ve be the set of vertices in Ve whose degree  (1/2)(  1).
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1.3 Vertex Degrees 

• Example 1.3.2: Let G is a self-complementary simple undirected graph with 

  1 (mod 4). Prove that the number of (1/2)(  1)-degree vertices in G is odd.

Proof. (2/2)

Let x  Ve. ∵ G  Gc.

∴  yx  V(G) s.t. dG(yx) = dGc(x).

 dG(yx) = dGc(x) = (  1)  dG(x) is even.

∴ yx  Ve.

∵ dG(x)  (1/2)(  1). ∴ dG(yx)  (1/2)(  1)  yx  x.

∴ yx  Ve.

and if x, z  Ve and x  z  yx  yz.

 the vertices in Ve occur in pairs, i.e. |Ve| is even.

 |Ve|  |Ve| is odd.

i.e. the number of (1/2)(  1)-degree vertices is odd.
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1.3 Vertex Degrees 

• Exercises: 1.3.2, 1.3.6(a) 

• 加: 1.3.5, 1.3.8


