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.) Introduction
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1. Basic Concepts of Graphs

2. Trees and Graphic Spaces

3. Plans Graphs and Planar Graphs
4. Flows and Connectivity

5. Matchings and Independent Sets
6. Coloring Theory
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Chapter 1
Basic Concepts of Graphs
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" 1.1 Graph and Graphical Presentation

g

« Def:
— Agraph G is an ordered triple (V, E, y), where
V, E: disjoint sets; . E > V x V: a mapping.
— V:vertex-set; X € V: vertex
E: edge-set; e e E: edge
w. incidence function; if y(e) = (X, y): X, y are end-vertices of e.

« Example1.1.1:
D = (V(D), E(D), w) is a digraph, where
V(D) = {X1, X3, X3, X4, Xs},
E(D) ={ay, &, a3, a4, as, &, ay, g, &g}
and yy, Is defined by yp(a,) = (X1, Xo), Wp(@g) = (X3, X2), Wp(@s) = (X X3),
Wo(ay) = (X4, X3), ¥p(@s) = (Xay X5), Wp(@g) = (X4 X5),

Wo(@7) = (X5, X5), Wp(@g) = (Xa, Xs5), Wp(@g) = (X3, Xs).
(c) Fall 2019, Justie Su-Tzu Juan 13




1.1 Graph and Graphical Presentation

)

« Example 1.1.2:
H=(V(H), E(H), w) is a digraph, where
V(H) = Y1, Y21 Y3 Yar Ysb
E(H) = {by, by, bs, by, bs, bg, b7, bg, b}
and y, is defined by wy,(by) = (Y1, Y2), wu(02) = (V3 Y2), w(D3) = (¥3, Va),
Wia(bg) = (Y4, ¥3), W(Ds) = (Vas Y2)s wi(be) = (Vs Vo),
wia(bs) = (Vs ¥V2), W(Dg) = (V2r Ys), wi(bg) = (Y3, ¥s).

o Def:
— IfV x Vs aset of ordered pair (X, y)’s, then
@ G is called directed graph (digraph).
@ e € E; directed edge (arc).
@ if y(e) = (X, y): x is called the tail of e; y is called the head of e;
e is called an out-going edge of Xx; in-coming edge of y.
(c) Fall 2019, Justie Su-Tzu Juan 14
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" 1.1 Graph and Graphical Presentation

o Def:
— IfV x Vs aset of unordered pair {X, y}’s, then
® G is called an undirected graph.
@ Use xy or yx instead of {x, y}.
® e € E: undirected edges.

« Example1.1.3:
G = (V(G), E(G), ) is an undirected graph, where
V(G) ={z,, 2,, 75, 24, Z5, Zg},
E(G) = {e1, &, €5, &4, €5, €, €7, €, €}
and y; Is defined by yi(ey) = 2,25, wis(e,) = 2424, Ws(€3) = 747,
Wo(84) = ZpZ3, Ws(€5) = 2324, Wi(8) = Z3Z,
Wo(87) = Z,Zs, Ws(€g) = 2425, Wi(8) = Z5Zg.
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)/) 1.1 Graph and Graphical Presentation

Def:

— loop: ex: y(e) = (X, X).

— parallel edges (multi-edges): ex: y(e;) = (X, Y) = w(e,)

— Eclx y) ={e € E(G): yle) = (x, y)}

— M, Y) =|Eg(X, y)|

— u(G) = max{ys(X,y): V X,y € V(G)} : the multiplicity of G.

ex: in Example 1.1.1:
D = (V(D), E(D), w) is a digraph, where
V(D) = {X1, X5, X3, X4, X5},
E(D) ={ay, a,, a3, ay, as, &, a, g, 8y}
and yy, Is defined by yp(a,) = (Xq, %), ¥p(@,) = (X3, X2), ¥p(@g) = (X5, X3),
Wo(as) = (X4 X3), ¥Wb(@s) = (Xgs %), Wo(@s) = (X4y X3),
Wb(@7) = (X5, %), Wp(@g) = (Xp Xs), (@) = (X3, Xs).
a:z, 8, are parallel edges,
a,, ag are not.

a; Is a loop.

(c) Fall 2019, Justie Su-Tzu Juan 16
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1.1 Graph and Graphical Presentation

)7

Def: graphical presentation

ex: in Example 1.1.1:

D = (V(D), E(D), w,) is a digraph, where
V(D) = {Xy, Xp, X3, X4y Xs},
E(D) ={ay, &, a3, a4, as, &, ay, g, ag}
and yy, Is defined by yp(a,) = (X1, Xo), Wp(@g) = (X3, X2), ¥p(@s) = (X, X3),
Wo(@s) = (X4 X3), Wo(@s) = (Xgy Xp), Wp(@s) = (X4 X2),
w(27) = (Xs, X2), ¥Wp(@g) = (Xz Xs), Wp(@g) = (X3, Xs)-

Figure 1.1,

4
(c) Fall 2019, Justie Su-Tzu Juan 17



)) 1.1 Graph and Graphical Presentation

e ex:in Example 1.1.3:

G = (V(G), E(G), ) Is an undirected graph, where
V(G) ={z,, 2,, 73, 24, Z5, Z5},
E(G) = {e., &, €5, &4, €s, €5, €7, €3, €0}
and y Is defined by yis(ey) = 212,, ws(82) = 2324, Ws(€3) = 2426,
We(84) = ZpZ3, Wi(€s) = 2324, Wi(86) = Z3Z,
We(87) = ZyZs, Wi(Bg) = 24Zs, Wi(89) = ZsZe.

 Figurel1.2

(c) Fall 2019, Justie Su-Tzu Juan 18



1.1 Graph and Graphical Presentation

/i

. Def:
— incident: vertex < edge.
— adjacent: vertex <> vertex; edge < edge.
— loopless
— simple: a graph contains neither loops nor parallel edges.
« wisinjective (1-1)
e useV x Vinstead of E. i.e. write (V, E) for (V, E, v)

« ex: In Examplel.1.3, write as : G = (V(G), E(G)), where
E(G) = {212y, 2124 2426, 2523, 1324, 226, ZyZs, 1425, Z5Zg}-

(c) Fall 2019, Justie Su-Tzu Juan 19



1.1 Graph and Graphical Presentation

/i

o Def:
— An undirected graph can be thought of as a symmetric digraph, in which

there are two symmetric edges, one in each direction, corresponding to each
undirected edge.

— digraph is more general !!

— Gis the underlying graph of D =D is an oriented graph of G.

(c) Fall 2019, Justie Su-Tzu Juan 20



1.1 Graph and Graphical Presentation

« ex: Figure 1.3 (a) an undirected graph,
(b) (a)’s symmetric digraph,

(¢) (a)’s an oriented graph.

(c) Fall 2019, Justie Su-Tzu Juan 21



/i

Def: Let G = (V, E, y) be a graph,

— v=|V|(=n(G)), is called order of G. (% } EF 3v)

£ = |E| (= m(G)), is called size of G.
A graph isempty if £=0.

A empty graph s trivial if v= 1.
non-trivial = not trivial.

A graph is finite if both v, gare finite. (# & ¥ 34 finite graph)

[rlLrl (")
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" 1.1 Graph and Graphical Presentation

T

« Example 1.1.4: In any group of six people, there must be three people who get to
either know each other or not.

Proof.
Let points A, B, C, D, E, F on the plane to denote these 6 people.
Draw red line joining two points if they have known each other,
joining two points if not.
Now, consider F, there exist three lines of the same color which are
incident with F.

(Without loss of generality) W.L.O.G.,

suppose they are three red lines FA, FB, FC.
Consider AABC, if it has no red line, then 3 blue AABC,

else it has a red line, say AB, then 3 red AABF.
That means, either 3 three people (ABF) know each other,
or 3 three people (ABC) don’t know each other.
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1.1 Graph and Graphical Presentation

Exercise: 1.1.1, (§] ™ ¢33 > 5 4L P )
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