Introduction

• 主要教科書：James A. Mchugh, Algorithmic Graph Theory, 開發, 1990.

• 重要參考書籍：
 2. Balakrishnan and Ranganatha, A Textbook of Graph Theory, Springer (俊傑代理), 2000
 3. Dieter Jungnickel, Networks and Algorithms, 俊傑, 1999
Introduction

• 課程內容：預計將介紹下列各項
 1. Introduction to Graph Theory
 2. Algorithmic Techniques
 3. Maximum Mathching Algorithm
 4. Shortest Paths
 5. Connectivity and Routing
 6. Graph Coloring
 7. Domination
 8. Covering
 9. NP-completeness

(c) Spring 2008, Justie Su-Tzu Juan
Introduction

• 評量方式：
 期中考30% + 期末報告40% + 平時成績30% + 加分
 大學部及格60, 研究生及格70, 最高分99

• 進度：
 5/5 期中考: Chap 1 ~ Chap 5.
 6/16, 6/23 期末報告

• 網頁: http://www.csie.ncnu.edu.tw/~jsjuan/courses.html
Chapter 1
Introduction to Graph Theory

§ 1.1 Introduction to Graph Theory
1.1 Introduction to Graph Theory

- **Def:** A graph is an ordered pair $G = (V, E)$, where V is a finite set of elements called vertices, and E is a set of un-ordered pairs of distinct vertices, called edges.

- **Ex:** $V = \{a, b, c\}$, $E = \{\{a, b\}, \{b, c\}\}$

- **Note:** 有時以 “(a, b)” 或 “ab” 表示 “[a, b]”, 習慣上：$|V| = n$, $|E| = m$.

- **Def:**
 1. x is adjacent to $y \equiv xy \in E$
 2. x is incident to $\{a, b\} \equiv x = a$ or $x = b$
 3. $\{a, b\}$ is adjacent to $\{c, d\} \equiv \{a, b\} \neq \{c, d\} \land \{a, b\} \cap \{c, d\} \neq \emptyset$
1.1 Introduction to Graph Theory

• **Def:**

 ④ $\text{Adj}(x) = \{y \mid y \text{ is adjacent to } x\}$
 ⑤ $\text{Adj}(S) = \bigcup_{x \in S} \text{Adj}(x)$, if $S \subseteq V$
 ⑥ degree of a vertex $x \equiv \text{deg}(x) = |\text{Adj}(x)|$
 ⑦ matching \equiv a set of edges in which no two distinct edges are adjacent.
 ⑧ A (v_0, v_n) walk in a graph G is an alternating sequence W:
 $v_0e_1v_1e_2v_2...e_nv_n$, where v_i’s are vertices and e_i’s are edges and e_i
 is incident to v_{i-1} and v_i.
 ⑨ A path is a walk which all vertices are distinct.
 ⑩ A trial is a walk which all edges are distinct.
 ⑪ A cycle is a closed trial in which $v_0 = v_n$ and $v_1, ..., v_n$ are all distinct.
 ⑫ circuit = a closed trail.
1.1 Introduction to Graph Theory

• **Note:** P is a path $\Rightarrow P$ is a trail.

• **Lemma:** \forall graph $G = (V, E)$, $\sum_{v \in V} \deg(v) = 2|E|$.
Chapter 1
Introduction to Graph Theory

§ 1.2 Computer Representation of Graphs
1.2 Computer Representation of Graphs

- **Ex:** \(G = (V, E) \), \(V = \{a, b, c, d\} \). \(E = \{ab, ad, bc, bd, cd\} \)

\(V = \{1, 2, 3, 4\} \)

\[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
2 & 1 & 0 & 1 \\
3 & 0 & 1 & 0 \\
4 & 1 & 1 & 0 \\
\end{array} \]

\[\begin{array}{cccc}
1 & 2 & \text{---} & 4 \\
2 & 1 & \text{---} & 3 \text{---} 4 \\
3 & 2 & \text{---} & 4 \\
4 & 1 & \text{---} & 2 \text{---} 3 \\
\end{array} \]

- **Note:** \(V \): 一般以\(\{1, 2, \ldots, n\} \)表之。

\(E : 1. \) Adjacency matrix: \(A = (a_{ij})_{n \times n} \), \(n = |V| \).

\[a_{ij} = \text{# of edges corresponding to } \{v_i, v_j\}. \]

2. incident list: (adjacent list, edge list)
1.2 Computer Representation of Graphs

• **Note:**

 3. sequential adjacent list: (Columbic's Algorithmic Graph Theory and Perfect graphs)

• **Ex:** (前例)

```
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
```

```
Adj 2 4 1 3 4 2 4 1 2 3
```

```
Beg 1 3 6 8 11
```

<table>
<thead>
<tr>
<th>In paper:</th>
<th>In algorithm:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\forall j \in \text{Adj}(i))</td>
<td>for (\text{beg}(i) \leq k < \text{beg}(i+1))</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(j = \text{Adj}(k));</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
</tr>
</tbody>
</table>

(c) Spring 2008, Justie Su-Tzu Juan
Chapter 1
Introduction to Graph Theory

§ 1.3 Time Complexity
1.3 Time Complexity

- **Def:** $f(n) = O(g(n)) \iff \exists \ n_0 > 0, \ \exists \ c > 0$
 \[\text{s.t. } f(n) \leq c \cdot g(n), \ \forall n \geq n_0. \]

- **Note:** $G = (V, E)$, **input:** $O(|V| + |E|) = O(|E|)$
 Sol.

 ① matrix: $|V|^2$
 ② adj. list: $\sum_{v \in V} \deg(v) = 2|E| = O(|E|)$

 （分析時，以最佳者代入）