Computer Science and Information Engineering National Chi Nan University

Combinatorial Mathematics

Dr. Justie Su-Tzu Juan

Chapter 12 Trees § 12.1 Definition, Properties, and Examples

Slides for a Course Based on the Text Discrete & Combinatorial Mathematics (5th Edition) by Ralph P. Grimaldi

(c) Spring 2024, Justie Su-Tzu Juan

Outline:

- 1. Definitions
- 2. Theorems

<u>Def 11.1</u>:

- ① G = (V, E) is a directed graph (or digraph) =
 - V(G) = V: finite nonempty set: vertex set: a set of vertices (or nodes)

 $E(G) = E \subseteq V \times V$: edge set: a set of edges (or arcs)

② If E is a set of unordered pairs of V: G is called an undirected graph (or graph).

- **(**b, c**) is incident** with b, c
- ^② *b* is adjacent to *c*
- ③ c is adjacent from b
- (4) b is the origin (or source) of (b, c)

c is the terminus (or terminating vertex) of (b, c)

- (a, a) is a loop
- 6 e is an isolated vertex

<u>Def</u>: A graph contains no loop is called loop-free

Def 11.2: (D) *x*-*y* **walk** in an graph *G* is a loop-free finite alternating sequence:

 $x = x_0, e_1, x_1, e_2, x_2, ..., e_{n-1}, x_{n-1}, e_n, x_n = y$ where $x_i \in V, e_j \in E, \forall i = 0, 1, 2, ..., n, j = 1, 2, ..., n$ and $e_i = \{x_{i-1}, x_i\}, \forall 1 \le i \le n$.

- ⁽²⁾ the length of *x*-*y* walk is the number of edges in it (*n*)
- **③** if n = 0, the walk is called trivial
- ④ if x = y: the walk is called a closed walk, otherwise it is called open walk

Def 11.3: ① *x-y* **trail** = an *x-y* walk with no edge is repeated

- **(2)** x-y path = an x-y walk with no vertex is repeated
- **③** circuit \equiv a closed trail

(4) cycle = a closed x-y walk with no vertex is repeated except x = y.

 $x_1e_1x_2e_5x_5e_5x_2e_2x_3$: a walk $x_1e_1x_2e_2x_3e_6x_5e_5x_2e_1x_1$: a close walk $x_2e_2x_3e_6x_5e_8x_6e_7x_3e_3x_4$: a trail $x_2e_2x_3e_6x_5e_8x_6$: path $x_2e_2x_3e_6x_5e_5x_2$: cycle

Def 11.4:

① G = (V, E) be a graph, G is connected $\equiv \forall x, y \in V, \exists x-y$ path in G ② otherwise, G is called disconnected

<u>Def 12.1</u>: ① G = (V, E) be a loop-free undirected graph, is called a tree if G is connected and contains no cycle
 ② forest: contains no cycle

<u>Def</u>: G = (V, E) is a graph (or digraph), then (<u>Def 11.7</u>) ⁽¹⁾ Graph $G_1 = (V_1, E_1)$ is called a subgraph of $G (G_1 \subseteq G)$, if $\phi \neq V_1 \subseteq V$ and $E_1 \subseteq E$. (<u>Def 11.8</u>) ⁽²⁾ If $V_1 = V$, G_1 is called a spanning subgraph of G. (<u>Def 11.9</u>) ⁽³⁾ If $E_1 = \{\{x, y\} \in E: \forall x \in V_1, y \in V_1\}, G_1$ is called the induced subgraph (or subgraph of G induced by V_1).

- <u>Def</u>: **①** spanning tree for a connected graph is a spanning subgraph that is also a tree.
 - **②** spanning forest for a connected graph is a spanning subgraph that is also a forest.

(c) Spring 2024, Justie Su-Tzu Juan

Thm 12.1: T = (V, E): tree, $\forall a \neq b \in V, \exists ! a-b$ path in T. Proof.

: *T* is connected and no cycle.

 $\therefore \exists a-b \text{ path } P_1$

If $\exists a-b \text{ path } P_2 \neq P_1$

then some edges of $P_1 \cup P_2$ would form a cycle. $\rightarrow \leftarrow$

 \therefore there is a unique path that connects *a* and *b*.

Def 11.10: G: an undirected graph G = (V, E)① $v \in V(G), G - v \equiv$ the subgraph of G induced by $V - \{v\}$ ② $e \in E(G), G - e \equiv V(G - e) = V(G); E(G - e) = E(G) - \{e\}$

<u>Note</u>: \forall simple graph *G*, \exists *u*-*v* walk \Rightarrow \exists *u*-*v* path

(c) Spring 2024, Justie Su-Tzu Juan

<u>Thm 12.2</u>: G = (V, E) is an undirected graph:

G is connected \Leftrightarrow G has a spanning tree.

Proof. (1/2)

- (\Leftarrow) *G* has a spanning tree *T*.
 - $\therefore \forall a, b \in V(T) = V(G), \exists a-b \text{ path in } T \subseteq G.$

 \Rightarrow *G* is connected.

 (\Rightarrow) If G is connected and G is not a tree:

Let G' be a connected spanning subgraph of G with minimal edge E'. If G' is not a tree, then \exists cycle C_1 in G'.

take $e = uv \in C_1$ and let G'' = G' - e

 $\forall x, y \in V(G) = V(G') = V(G''), \because G' \text{ is connected } \therefore \exists x-y \text{ path } P$

① if $e \notin P$, then P in G''

② if $e \in P$, then *x*-...-*u*-($C_1 - e$)-*v*-...-*y* is an *x*-*y* walk in *G*ⁿ

 $\therefore \exists x - y \text{ path in } G''$

Thm 12.2: G = (V, E) is an undirected graph: G is connected \Leftrightarrow G has a spanning tree. **Proof.** (2/2) $(\Rightarrow) \forall x, y \in V(G) = V(G') = V(G''), \because G' \text{ is connected } \exists x-y \text{ path } P$ ① if $e \notin P$, then $P \in G''$ ② if $e \in P$, then *x*-...-*u*-($C_1 - e$)-*v*-...-*y* is a *x*-*y* walk in *G*" $\therefore \exists x - y \text{ path in } G''$ then V(G'') = V(G') = V(G), and G'' is connected with $E(G'') = E(G') - 1 \le E(G') \longrightarrow \longleftarrow$ \therefore G' is a tree. i.e. G has a spanning tree

<u>Thm 12.3</u>: \forall tree T = (V, E), |V| = |E| + 1

Proof.

Prove by induction on |E|

① If |E| = 0, T = a single isolated vertex Hence |V| = 1 = |E| + 1

② Assume the theorem is true for every tree *T*, with *E*(*T*) ≤ *k*, where k ≥ 0.
Now, consider a tree *T* = (V, *E*), with |*E*| = k + 1.

let $e \in E(T)$

 $T - e = T_1 \cup T_2$, where $T_1 = (V_1, E_1), T_2 = (V_2, E_2)$

(T_1 and T_2 both are tree, O.W. T is not a tree)

and $|V| = |V_1| + |V_2|, |E| = |E_1| + |E_2| + 1$

 $:: 0 \le |E_1| \le k, 0 \le |E_2| \le k, \therefore \text{ By I.H.:}$

 $|V| = |V_1| + |V_2| = |E_1| + 1 + |E_2| + 1 = |E| + 1$, it's true. \therefore By induction and (1), (2): \forall tree *T*, |V(T)| = |E(T)| + 1

<u>Def:</u> A graph G is called a simple graph if

1. ≇ loop.
 2. ≇ parallel edges.

<u>Def</u>: G = (V, E) is a simple graph,

① degree of vertex $v \equiv \deg_G(v)$ (or $d_G(v)$) (or d(v))

 $= |\{uv \in E(G): \forall u \in V(G)\}|$

② vertex of degree k = some vertex in $\{v: \deg_G(v) = k\}$

<u>Thm 11.2</u>: \forall graph $G = (V, E), 2|E| = \sum_{v \in V} deg(v)$ **Proof.**

Prove by induction on |*E*|

$$(1) |E| = 0 \Rightarrow \deg(v) = 0 \forall v \in V, \therefore \sum_{v \in V} \deg(v) = 0 = |E|$$

② Assume $2|E| = \sum_{v \in V} \deg(v)$, ∀ tree with $|E| \le k$, where $k \ge 0$. Now consider a graph G = (V, E) with $|E| = k + 1 \ge 1$ let $e = \{x, y\} \in E$, G - e = G'(V', E')

$$V' = V, |E'| = |E| - 1 \le k$$

and $\deg_{G'}(v) = \begin{cases} \deg_G(v), & \text{if } v \in V \setminus \{x, y\} \\ \deg_G(v) - 1, & \text{if } v = x \text{ or } v = y \end{cases}$

: by I.H.: 2|E| = 2(|E| - 1) + 2

$$=\sum_{v\in V} \deg_{G'}(v) + 2$$
$$=\sum_{v\in V} \deg_{G}(v)$$

(c) Spring 2024, Justie Su-Tzu Juan

<u>Thm 12.4</u>: \forall tree T = (V, E), if $|V| \ge 2$, then T has at least two pendant vertices, (i.e. vertices of degree 1)

Proof.

Let
$$|V| = n \ge 2$$
, By Thm 12.3, $|V| = |E| + 1$, $|E| = n - 1$
 \therefore by Thm 11.2: $2(n - 1) = 2|E| = \sum_{v \in V} deg(v)$
 \therefore *G* is connected. \therefore $deg(v) \ge 1$, $\forall v \in V(T)$
if $\forall v \in V$, $deg(v) \ge 2$ or \exists only one v^* s.t. $deg(v^*) = 1$
 $\Rightarrow \sum_{v \in V} deg(v) \ge 2(|V| - 1) + 1 = 2n - 1 \quad \rightarrow \leftarrow$
 $\therefore \exists$ at least 2 pendant vertices.

§ 12.1 Definitions, Properties, and Examples Ex 12.1: C_4H_{10} : 14 vertices; 13 edges.

vertices labeled C has degree 4; labeled H has degree 1

§ 12.1 Definitions, Properties, and Examples 飽和烴;飽和碳氫化合物
Ex 12.2: In a saturated hydrocarbon (no cycle, single-bond hydrocarbon – called an alkane) has *n* carbon atoms, show it has 2*n* + 2 hydrogen atoms. Sol.

Consider the saturated hydrocarbon as a tree T = (V, E). $k = |\{v \in V | \deg(v) = 1\}| =$ the number of hydrogen atoms $\Rightarrow |V| = n + k$, and $\because \deg(v) = 4$, $\forall v$ is a carbon atoms $\therefore 4n + k = \sum_{v \in V} \deg(v) = 2|E| = 2(|V| - 1) = 2(n + k - 1)$ $\Rightarrow 4n + k = 2n + 2k - 2$ $\Rightarrow 2n + 2 = k$

<u>Thm 12.5</u>: \forall loop-free undirected graph G = (V, E)

The following statement are equivalent. (T. F. S. E.)

- (a) G is a tree.
- (b) G is connected, but $\forall e \in E, G e$ is disconnected and G e is two subgraph that are tree (subtree).
- (c) G contains no cycles, and |V| = |E| + 1.
- (d) G is connected, and |V| = |E| + 1.
- (e) G contains no cycle, and if $a, b \in V$ with $\{a, b\} \notin E$, then $G + \{a, b\} = V(G + \{a, b\}) = V(G)$ $E(G + \{a, b\}) = E(G) \cup \{a, b\}$ has one cycle.

Proof. (1/4)

(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d) \Rightarrow (e) \Rightarrow (a) leave for reader

<u>Thm 12.5</u>: \forall loop-free undirected graph G = (V, E)

The following statement are equivalent. (T. F. S. E.)

- (a) G is a tree.
- (b) G is connected, but $\forall e \in E, G e$ is disconnected and G e is two subgraph that are tree (subtree).

Proof. (2/4)

((a) ⇒ (b)): G is a tree, then G is connected.
∀ e = {a, b} ∈ E, if G - e is connected, them ∃ a - b path P in G - e
⇒ ∃ cycle (a - P - b - e - a) in G → ←
∴ G - e is disconnected and G - e may be partition into 2 subsets:
(1) vertex a and {v: ∃ a-v path in G - e} ≡ G₁
(2) vertex b and {v: ∃ b-v path in G - e} ≡ G₂
These two connected components are trees.
∵ G₁, G₂ has no loop or cycle.

<u>Thm 12.5</u>: \forall loop-free undirected graph G = (V, E)

The following statement are equivalent. (T. F. S. E.)

(b) G is connected, but $\forall e \in E, G - e$ is disconnected and G - e is two

subgraph that are tree (subtree).

(c) G contains no cycles, and |V| = |E| + 1.

Proof. (3/4)

 $((b) \Rightarrow (c))$

If G contains a cycle C, let $e = \{a, b\} \in C$.

- \Rightarrow *G e* is connected $\rightarrow \leftarrow$
- ∴ G has no cycle.
- : G is a tree. (since G is connected) $\Rightarrow |V| = |E| + 1$ (Thm 12.3)

<u>Def 11.5</u>: ① A (connected) component G_i of G is a maximal subgraph of Gs.t. $\forall x, y \in V(G_i), \exists x - y \text{ path in } G (G_i \text{ is connected})$ (maximal $\equiv \nexists G_j \subseteq G$ s.t. $G_i \subseteq G_j$ and G_j is connected.) ② the number of components of $G \equiv \kappa(G)$

<u>Thm 12.5</u>: \forall loop-free undirected graph G = (V, E)

The following statement are equivalent. (T. F. S. E.)

(c) G contains no cycles, and |V| = |E| + 1.

(d) G is connected, and |V| = |E| + 1.

Proof. (4/4)

④ ((c) \Rightarrow (d)) Let $\kappa(G) = r$, and let $G_1, G_2, ..., G_r$ be the components of G. $\forall 1 \le i \le r$, select $v_i \in G_i$ Let $G' = G + \{v_1, v_2\} + \{v_2, v_3\} + ... + \{v_{r-1}, v_r\}$ $\Rightarrow \because G'$ is no cycle and loop-free, and connected. $\therefore G'$ is a tree \Rightarrow |E| + 1 = |V| = |V'| = |E'| + 1 = (|E| + r - 1) + 1 = |E| + r $\Rightarrow r = 1$ i.e. G is connected 習題加入20

Checklist:

- 1. Definitions
 - Digraph, graph, edge, vertex, incident, adjacent, isolated, loop
 - □ Walk, trail, path, circuit, cycle, length, close, open
 - **Connected**, disconnected, tree, forest
 - Subgraph, spanning subgraph, induced subgraph, spanning tree
 - □ Simple, degree, pendant vertex
- 2. Theorems
 - **D** Thms 12.1, 12.2, 12.3
 - □ Thms 11.2, 12.4, 12,5

<u>補充:</u>

- **Def 11.11:** ① Let V be a set of n vertices. The *complete bipartite* on V, denoted by K_n , is a loop-free undirected graph, where for all a, $b \in V, a \neq b$, there is an edge $\{a, b\}$.
- **Def 11.18:** ① A graph G is called *bipartite* if $V = V_1 \cup V_2$ with $V_1 \cap V_2 = \phi$, and every edge of G is of the form $\{a, b\}$ with $a \in V_1$ and $b \in V_2$.
 - ⁽²⁾ If each vertex in V_1 is adjacent to each vertex in V_2 , we have a *complete bipartite* graph.

③ In this case, if $|V_1| = m$, $|V_2| = n$, the graph is denoted by $K_{m,n}$.

Let's Kahoot!