Computer Science and Information Engineering National Chi Nan University

Combinatorial Mathematics

Dr. Justie Su-Tzu Juan
Chapter 12 Trees
§ 12.1 Definition, Properties, and Examples
Slides for a Course Based on the Text Discrete \& Combinatorial Mathematics (5 ${ }^{\text {th }}$ Edition) by Ralph P. Grimaldi

§ 12.1 Definitions, Properties, and Examples

Outline:

1. Definitions

2. Theorems

§ 12.1 Definitions, Properties, and Examples

Def 11.1:

(1) $G=(V, E)$ is a directed graph (or digraph) \equiv
$V(G)=V$: finite nonempty set: vertex set: a set of vertices (or nodes)
$E(G)=E \subseteq V \times V$: edge set: a set of edges (or arcs)
(2) If \boldsymbol{E} is a set of unordered pairs of $V: G$ is called an undirected graph (or graph).

(1) (b, c) is incident with b, c
(2) b is adjacent to \boldsymbol{c}
(3) c is adjacent from b
(4) b is the origin (or source) of (b, c) c is the terminus (or terminating vertex) of (b, c)
(5) (a, a) is a loop
(6) e is an isolated vertex

§ 12.1 Definitions, Properties, and Examples

Def: A graph contains no loop is called loop-free
Def 11.2: (1) $x-y$ walk in an graph G is a loop-free finite alternating sequence:

$$
\begin{aligned}
& \quad x=x_{0}, e_{1}, x_{1}, e_{2}, x_{2}, \ldots, e_{n-1}, x_{n-1}, e_{n}, x_{n}=y \\
& \text { where } x_{i} \in V, e_{j} \in E, \forall i=0,1,2, \ldots, n, j=1,2, \ldots, n \\
& \text { and } e_{i}=\left\{x_{i-1}, x_{i}\right\}, \forall 1 \leq i \leq n \text {. } \\
& \text { (2) the length of } x-y \text { walk is the number of edges in it (n) } \\
& \text { (3) if } n=0 \text {, the walk is called trivial } \\
& \text { (4) if } x=y \text { : the walk is called a closed walk, } \\
& \text { otherwise it is called open walk }
\end{aligned}
$$

Def 11.3: (1) $x-y$ trail \equiv an $x-y$ walk with no edge is repeated
(2) $x-y$ path \equiv an $x-y$ walk with no vertex is repeated
(3) circuit \equiv a closed trail
(4) cycle \equiv a closed $x-y$ walk with no vertex is repeated except $x=y$.

§ 12.1 Definitions, Properties, and Examples

ex:

(1) $x_{1} e_{1} x_{2} e_{5} x_{5} e_{5} x_{2} e_{2} x_{3}$: a walk
(2) $x_{1} e_{1} x_{2} e_{2} x_{3} e_{6} x_{5} e_{5} x_{2} e_{1} x_{1}$: a close walk
(3) $x_{2} e_{2} x_{3} e_{6} x_{5} e_{8} x_{6} e_{7} x_{3} e_{3} x_{4}$: a trail
(4) $x_{2} e_{2} x_{3} e_{6} x_{5} e_{8} x_{6}$: path
(5) $x_{2} e_{2} x_{3} e_{6} x_{5} e_{5} x_{2}$: cycle

Def 11.4:

(1) $G=(V, E)$ be a graph, G is connected $\equiv \forall x, y \in V, \exists x-y$ path in G
(2) otherwise, \boldsymbol{G} is called disconnected

Def 12.1: (1) $G=(V, E)$ be a loop-free undirected graph, is called a tree if G is connected and contains no cycle
(2) forest: contains no cycle

§ 12.1 Definitions, Properties, and Examples

Def: $G=(V, E)$ is a graph (or digraph), then
(Def 11.7) (1) Graph $G_{1}=\left(V_{1}, E_{1}\right)$ is called a subgraph of $G\left(G_{1} \subseteq G\right)$, if $\phi \neq V_{1} \subseteq V$ and $E_{1} \subseteq E$.
(Def 11.8) (2) If $V_{1}=V, G_{1}$ is called a spanning subgraph of G.
(Def 11.9) (3) If $E_{1}=\left\{\{x, y\} \in E: \forall x \in V_{1}, y \in V_{1}\right\}, G_{1}$ is called the induced subgraph (or subgraph of G induced by V_{1}).

Def: (1) spanning tree for a connected graph is a spanning subgraph that is also a tree.
(2) spanning forest for a connected graph is a spanning subgraph that is also a forest.
ex:

$a \circ \longrightarrow b$

(c) Spring 2024, Justie Su-Tzu Juan

§ 12.1 Definitions, Properties, and Examples

Thm 12.1: $T=(V, E)$: tree, $\forall a \neq b \in V, \exists$! $a-b$ path in T. Proof.
$\because T$ is connected and no cycle.
$\therefore \exists a-b$ path P_{1}
If $\exists a-b$ path $P_{2} \neq P_{1}$
then some edges of $P_{1} \cup P_{2}$ would form a cycle. $\rightarrow \leftarrow$
\therefore there is a unique path that connects a and b.

Def 11.10: G : an undirected graph $G=(V, E)$
(1) $v \in V(G), G-v \equiv$ the subgraph of G induced by $V-\{v\}$
(2) $e \in E(G), G-e \equiv V(G-e)=V(G) ; E(G-e)=E(G)-\{e\}$

Note: \forall simple graph $G, \exists u-v$ walk $\Rightarrow \exists u-v$ path

§ 12.1 Definitions, Properties, and Examples

Thm 12.2: $G=(V, E)$ is an undirected graph:
\boldsymbol{G} is connected $\Leftrightarrow \boldsymbol{G}$ has a spanning tree.
Proof. (1/2)
$(\Leftarrow) G$ has a spanning tree T.
$\therefore \forall a, b \in V(T)=V(G), \exists a-b$ path in $T \subseteq G$.
$\Rightarrow G$ is connected.
(\Rightarrow) If G is connected and G is not a tree:
Let G^{\prime} be a connected spanning subgraph of G with minimal edge E^{\prime}.
If G^{\prime} is not a tree, then \exists cycle C_{1} in G^{\prime}.
take $e=u v \in C_{1}$ and let $G^{\prime \prime}=G^{\prime}-e$
$\forall x, y \in V(G)=V\left(G^{\prime}\right)=V\left(G^{\prime \prime}\right), \because G^{\prime}$ is connected $\therefore \exists x-y$ path P
(1) if $e \notin P$, then P in $G^{\prime \prime}$
(2) if $e \in P$, then $x-\ldots-u-\left(C_{1}-e\right)-v-\ldots-y$ is an $x-y$ walk in $G^{\prime \prime}$
$\therefore \exists x-y$ path in $G^{\prime \prime}$

§ 12.1 Definitions, Properties, and Examples

Thm 12.2: $G=(V, E)$ is an undirected graph:
\boldsymbol{G} is connected $\Leftrightarrow \boldsymbol{G}$ has a spanning tree.
Proof. (2/2)
$(\Rightarrow) \forall x, y \in V(G)=V\left(G^{\prime}\right)=V\left(G^{\prime \prime}\right), \because G^{\prime}$ is connected $\therefore \exists x-y$ path P
(1) if $e \notin P$, then $P \in G^{\prime \prime}$
(2) if $e \in P$, then $x-\ldots-u-\left(C_{1}-e\right)-v-\ldots-y$ is a $x-y$ walk in $G^{\prime \prime}$
$\therefore \exists x-y$ path in $G^{\prime \prime}$
then $V\left(G^{\prime \prime}\right)=V\left(G^{\prime}\right)=V(G)$, and $G^{\prime \prime}$ is connected
with $E\left(G^{\prime \prime}\right)=E\left(G^{\prime}\right)-1<E\left(G^{\prime}\right) \quad \rightarrow \leftarrow$
$\therefore G^{\prime}$ is a tree.
i.e. G has a spanning tree

§ 12.1 Definitions, Properties, and Examples

Thm 12.3: \forall tree $T=(V, E),|V|=|E|+1$
Proof.
Prove by induction on $|E|$
(1) If $|E|=\mathbf{0}, \boldsymbol{T}=$ a single isolated vertex Hence $|V|=1=|E|+1$

(2) Assume the theorem is true for every tree T, with $E(T) \leq k$, where $k \geq 0$.
Now, consider a tree $T=(V, E)$, with $|E|=k+1$.
let $e \in E(T)$

$$
T-e=T_{1} \cup T_{2}, \text { where } T_{1}=\left(V_{1}, E_{1}\right), T_{2}=\left(V_{2}, E_{2}\right)
$$

(T_{1} and T_{2} both are tree, O.W. T is not a tree)
and $|\boldsymbol{V}|=\left|V_{1}\right|+\left|V_{2}\right|,|E|=\left|E_{1}\right|+\left|E_{2}\right|+1$
$\because 0 \leq\left|E_{1}\right| \leq k, 0 \leq\left|E_{2}\right| \leq k, \therefore$ By I.H.:

$$
|V|=\left|V_{1}\right|+\left|V_{2}\right|=\left|E_{1}\right|+1+\left|E_{2}\right|+1=|E|+1 \text {, it's true. }
$$

\therefore By induction and (1), (2): \forall tree $T,|V(T)|=|E(T)|+1$

§ 12.1 Definitions, Properties, and Examples

Def: A graph \boldsymbol{G} is called a simple graph if

1. \# loop.
2. \ddagger parallel edges.

Def: $G=(V, E)$ is a simple graph,
(1) degree of vertex $v \equiv \operatorname{deg}_{G}(v)\left(\right.$ or $\left.d_{G}(v)\right)($ or $d(v))$

$$
=|\{u v \in E(G): \forall u \in V(G)\}|
$$

(2) vertex of degree $k=$ some vertex in $\left\{v: \operatorname{deg}_{G}(v)=k\right\}$

§ 12.1 Definitions, Properties, and Examples

Thm 11.2: $\forall \operatorname{graph} G=(V, E), 2|E|=\sum_{v \in V} \operatorname{deg}(v)$ Proof.

Prove by induction on $|E|$
(1) $|E|=0 \Rightarrow \operatorname{deg}(v)=0 \forall v \in V, \therefore \sum_{v \in V} \operatorname{deg}(v)=0=|E|$

(2) Assume $2|E|=\sum_{v \in V} \operatorname{deg}(v)$, \forall tree ${ }^{v i V}$ with $|E| \leq k$, where $k \geq 0$.

Now consider a al graph $G=(V, E)$ with $|E|=k+1 \geq 1$

$$
\text { let } e=\{x, y\} \in E, G-e=G^{\prime}\left(V^{\prime}, E^{\prime}\right)
$$

$\therefore V^{\prime}=\boldsymbol{V},\left|E^{\prime}\right|=|E|-\mathbf{1} \leq \boldsymbol{k}$

$$
\text { and } \operatorname{deg}_{G^{\prime}}(v)= \begin{cases}\operatorname{deg}_{G}(v), & \text { if } v \in V \backslash\{x, y\} \\ \operatorname{deg}_{G}(v)-1, & \text { if } v=x \text { or } v=y\end{cases}
$$

\therefore by I.H.: $2|E|=2(|E|-1)+2$

$$
\begin{aligned}
& =\sum_{v \in V} \operatorname{deg}_{G^{\prime}}(v)+2 \\
& =\sum_{v \in V} \operatorname{deg}_{G}(v)
\end{aligned}
$$

§ 12.1 Definitions, Properties, and Examples

Thm 12.4: \forall tree $T=(V, E)$, if $|V| \geq 2$, then T has at least two pendant vertices, (i.e. vertices of degree $\mathbf{1)}$
Proof.
Let $|V|=n \geq 2$, By Thm 12.3, $|V|=|E|+1,|E|=n-1$
\therefore by Thm 11.2: $2(n-1)=2|E|=\sum_{v \in V} \operatorname{deg}(v)$
$\because G$ is connected. $\therefore \operatorname{deg}(v) \geq 1, \forall v \in V(T)$
if $\forall v \in V, \operatorname{deg}(v) \geq 2$ or \exists only one v^{*} s.t. $\operatorname{deg}\left(v^{*}\right)=1$
$\Rightarrow \sum_{v \in V} \operatorname{deg}(v) \geq 2(|V|-1)+1=2 n-1 \quad \rightarrow \leftarrow$
$\therefore \exists$ at least 2 pendant vertices.

§ 12．1 Definitions，Properties，and Examples

Ex 12．1： $\mathrm{C}_{4} \mathrm{H}_{10}: 14$ vertices； 13 edges．

vertices labeled \mathbf{C} has degree 4 ；labeled H has degree 1

（a）butane
（b）2－methyl propane（isobutane） 2甲基丙烷

§ 12.1 Definitions, Properties, and Examples

Ex 12.2: In a saturated hydrocarbon (no cycle, single-bond hydrocarbon called an alkane) has n carbon atoms, show it has $2 \boldsymbol{n}+2$ hydrogen atoms. Sol.鍵烷

Consider the saturated hydrocarbon as a tree $T=(V, E)$. $k=|\{v \in V \mid \operatorname{deg}(v)=1\}|=$ the number of hydrogen atoms
$\Rightarrow|V|=n+k$, and $\because \operatorname{deg}(v)=4, \forall v$ is a carbon atoms
$\therefore 4 n+k=\sum_{v=1} \operatorname{deg}(v)=2|E|=2(|V|-1)=2(n+k-1)$
$\Rightarrow 4 n+k \stackrel{v=}{=} 2 n+2 k-2$
$\Rightarrow 2 n+2=k$

§ 12.1 Definitions, Properties, and Examples

Thm 12.5: \forall loop-free undirected graph $G=(V, E)$
The following statement are equivalent. (T. F. S. E.)
(a) G is a tree.
(b) G is connected, but $\forall e \in E, G-e$ is disconnected and $G-e$ is two subgraph that are tree (subtree).
(c) G contains no cycles, and $|V|=|E|+1$.
(d) G is connected, and $|V|=|E|+1$.
(e) G contains no cycle, and if $a, b \in V$ with $\{a, b\} \notin E$,

$$
\text { then } G+\{a, b\}\left(\begin{array}{rl}
\equiv V(G+\{a, b\}) & =V(G) \\
& E(G+\{a, b\})=E(G) \cup\{a, b\}
\end{array}\right) \quad \text { has one cycle. }
$$

Proof. (1/4)

$$
(\mathrm{a}) \Rightarrow(\mathrm{b}) \Rightarrow(\mathrm{c}) \Rightarrow(\underbrace{\mathrm{d}) \Rightarrow(\mathrm{e}) \Rightarrow(\mathrm{a})}
$$

leave for reader

§ 12.1 Definitions, Properties, and Examples

Thm 12.5: \forall loop-free undirected graph $G=(V, E)$
The following statement are equivalent. (T. F. S. E.)
(a) G is a tree.
(b) G is connected, but $\forall e \in E, G-e$ is disconnected and $G-e$ is two subgraph that are tree (subtree).
Proof. (2/4)
(1) $((\mathrm{a}) \Rightarrow(\mathrm{b})): G$ is a tree, then G is connected.
$\forall e=\{a, b\} \in E$, if $G-e$ is connected, them $\exists a-b$ path P in $G-e$
$\Rightarrow \exists$ cycle $(a-P-b-e-a)$ in $\boldsymbol{G} \quad \rightarrow \leftarrow$
$\therefore G-e$ is disconnected and $G-e$ may be partition into 2 subsets:
(1) vertex a and $\{v: \exists a-v$ path in $G-e\} \equiv G_{1}$
(2) vertex b and $\{v: \exists b-v$ path in $G-e\} \equiv G_{2}$

These two connected components are trees.
$\because G_{1}, G_{2}$ has no loop or cycle.

§ 12.1 Definitions, Properties, and Examples

Thm 12.5: \forall loop-free undirected graph $G=(V, E)$
The following statement are equivalent. (T. F. S. E.)
(b) G is connected, but $\forall e \in E, G-e$ is disconnected and $G-e$ is two subgraph that are tree (subtree).
(c) G contains no cycles, and $|V|=|E|+1$.

Proof. (3/4)
(3) $($ (b) $\Rightarrow(c))$

If G contains a cycle C, let $e=\{a, b\} \in C$.
$\Rightarrow G-e$ is connected $\rightarrow \leftarrow$
$\therefore G$ has no cycle.
$\therefore G$ is a tree. (since G is connected) $\Rightarrow|V|=|E|+1($ Thm 12.3 $)$

§ 12.1 Definitions, Properties, and Examples

Def 11.5: (1) A (connected) component G_{i} of G is a maximal subgraph of G s.t. $\forall x, y \in V\left(G_{i}\right), \exists x-y$ path in $G\left(G_{i}\right.$ is connected) (maximal $\equiv \ddagger G_{j} \subseteq G$ s.t. $G_{i} \subseteq G_{j}$ and G_{j} is connected.)
(2) the number of components of $G \equiv \kappa(G)$

§ 12．1 Definitions，Properties，and Examples

Thm 12．5：\forall loop－free undirected graph $G=(V, E)$
The following statement are equivalent．（T．F．S．E．）
（c）G contains no cycles，and $|V|=|E|+1$ ．
（d）G is connected，and $|V|=|E|+1$ ．
Proof．（4／4）
（4）$((c) \Rightarrow(d))$
Let $\kappa(G)=r$ ，and let $G_{1}, G_{2}, \ldots, G_{r}$ be the components of G ．
$\forall 1 \leq i \leq r$ ，select $v_{i} \in G_{i}$
Let $G^{\prime}=G+\left\{v_{1}, v_{2}\right\}+\left\{v_{2}, v_{3}\right\}+\ldots+\left\{v_{r-1}, v_{r}\right\}$
$\Rightarrow \because G^{\prime}$ is no cycle and loop－free，and connected．
$\therefore G^{\prime}$ is a tree \Rightarrow

$$
|E|+\mathbf{1}=|V|=\left|V^{\prime}\right|=\left|E^{\prime}\right|+\mathbf{1}=(|E|+r-1)+\mathbf{1}=|E|+r
$$

$$
\Rightarrow r=1
$$

i．e．G is connected
習題加入20

§ 12.1 Definitions, Properties, and Examples

Checklist:

1. Definitions
\square Digraph, graph, edge, vertex, incident, adjacent, isolated, loop
\square Walk, trail, path, circuit, cycle, length, close, open
\square Connected, disconnected, tree, forest
\square Subgraph, spanning subgraph, induced subgraph, spanning tree
\square Simple, degree, pendant vertex
2. Theorems
\square Thms 12.1, 12.2, 12.3
\square Thms 11.2, 12.4, 12,5

§ 12.1 Definitions, Properties, and Examples

補充:

Def 11.11: (1) Let V be a set of \boldsymbol{n} vertices. The complete bipartite on V, denoted by K_{n}, is a loop-free undirected graph, where for all a, $b \in V, a \neq b$, there is an edge $\{a, b\}$.

Def 11.18: (1) A graph G is called bipartite if $V=V_{1} \cup V_{2}$ with $V_{1} \cap V_{2}=\phi$, and every edge of G is of the form $\{a, b\}$ with $a \in V_{1}$ and $b \in$ V_{2}.
(2) If each vertex in V_{1} is adjacent to each vertex in V_{2}, we have a complete bipartite graph.
(3) In this case, if $\left|V_{1}\right|=m,\left|V_{2}\right|=n$, the graph is denoted by $K_{m, n}$.

Let's Kahoot!

