Computer Science and Information Engineering National Chi Nan University

# Combinatorial Mathematics 

Dr. Justie Su-Tzu Juan
Chapter 10 Recurrence Relations
§ 10.2 The Second-Order Linear
Homogeneous Recurrence Relation with
Constant Coefficients (2)
Slides for a Course Based on the Text
Discrete \& Combinatorial Mathematics (5 ${ }^{\text {th }}$ Edition) by Ralph P. Grimaldi
(c) Spring 2024, Justie Su-Tzu Juan

## § 10.2 The Second-Order Linear Homogeneous Recurrence Relation with Constant Coefficients

Ex 10.10: $\left\{\begin{array}{l}F_{n+2}=F_{n+1}+F_{n}, \forall n \geq 0, \\ F_{0}=0, F_{1}=1 .\end{array}\right.$
(Fibonacci relation)

Sol. Let $\boldsymbol{F}_{\boldsymbol{n}}=c r^{n}, r, c \neq 0, \forall n \geq \mathbf{0}$
$\Rightarrow c r^{n+2}=c r^{n+1}+c r^{n}$
$\Rightarrow$ the characteristic equation: $r^{2}-r-1=0$
$\Rightarrow$ the characteristic roots are $r=(1 \pm \sqrt{5}) / 2$
$\therefore$ Let the general solution: $F_{n}=c_{1}[(1+\sqrt{5}) / 2]^{n}+c_{2}[(1-\sqrt{5}) / 2]^{n}$

$$
\begin{aligned}
& \qquad\left\{\begin{array}{l}
F_{0}=0=c_{1}+c_{2} \\
F_{1}=1=c_{1}[(1+\sqrt{5}) / 2]+c_{2}[(1-\sqrt{5}) / 2]
\end{array}\right. \\
& \Rightarrow c_{1}=1 / \sqrt{5}=\sqrt{5} / 5, \\
& c_{2}=(-1) / \sqrt{5}=(-\sqrt{5}) / 5 \\
& \therefore \text { the general solution } F_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right], \forall n \geq 0
\end{aligned}
$$

## § 10.2 The Second-Order Linear Homogeneous Recurrence Relation with Constant Coefficients

## Ex 10.11: For $n \geq 0$, let $S=\{1,2, \ldots, n\},(n=0, S=\phi)$

let $a_{n}=\#$ of subsets of $S$ that contain no consecutive integers.
Find and solve a recurrence relation for $a_{n}$.
Sol. (1/2)

$$
\begin{aligned}
& a_{0}=1:\{\phi\} \\
& a_{1}=2:\{\phi,\{1\}\} \\
& a_{2}=3:\{\phi,\{1\},\{2\}\} \quad(3 \notin A) \quad(3 \in A) \\
& a_{3}=5:\{\phi,\{1\},\{2\},\{3\},\{1,3\}\}=\{\phi,\{1\},\{2\}\} \cup\{\{3\},\{1,3\}\}
\end{aligned}
$$

If $A \subseteq S$ and $A$ is to be counted in $a_{n}$ :
(a) $n \in A: n-1 \notin A \Rightarrow \#$ of $(A-\{n\})=a_{n-2}$.
(b) $n \notin A$ : \# of $A=a_{n-1}$.

## § 10.2 The Second-Order Linear Homogeneous

 Recurrence Relation with Constant Coefficients
## Ex 10.11: For $n \geq 0$, let $S=\{1,2, \ldots, n\},(n=0, S=\phi)$

let $a_{n}=\#$ of subsets of $S$ that contain no consecutive integers.
Find and solve a recurrence relation for $a_{n}$.
Sol. (2/2)

$$
\begin{aligned}
& \text { Let } P=\{A \mid A \subseteq S, A \text { contain no consecutive integers }\} \\
& \quad \text { then } P=B \cup C, \text { where } B=\{A \in P \mid n \in A\} \\
& \Rightarrow|B|=a_{n-2},|C|=a_{n-1} \quad C=\{A \in P \mid n \notin A\} \\
& \Rightarrow|P|=a_{n}=|B|+|C|=a_{n-2}+a_{n-1} \\
& \therefore\left\{\begin{array}{l}
a_{n}=a_{n-2}+a_{n-1}, \forall n \geq 2
\end{array}\right. \\
& \begin{array}{l}
a_{0}=1 ; a_{1}=2
\end{array} \\
& \Rightarrow a_{n}=F_{n+2}, n \geq 0 \\
& \therefore a_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n+2}-\left(\frac{1-\sqrt{5}}{2}\right)^{n+2}\right], \forall n \geq 0
\end{aligned}
$$

## § 10.2 The Second-Order Linear Homogeneous Recurrence Relation with Constant Coefficients

## Ex 10.12:



Sol. Let $b_{n}=$ the number of ways we can cover a $2 \times n$ chessboard using $2 \times 1$ and $1 \times 2$ dominoes.

$$
\begin{aligned}
& b_{1}=1: \text { one } 2 \times 1, \\
& b_{2}=2: \text { two } 2 \times 1 \text { or two } 1 \times 2 .
\end{aligned}
$$

When $n \geq 3$,

$$
\begin{aligned}
& \text { i) } \underbrace{2 \times(n-1)}: b_{n-1} \quad \therefore \begin{array}{l}
b_{n}=b_{n-2}+b_{n-1}, \forall n \geq 3 \\
b_{1}=1 ; b_{2}=2
\end{array} \\
& \text { ii) } \quad \Rightarrow b_{n}=F_{n+1}, n \geq 0
\end{aligned}
$$

## § 10.2 The Second-Order Linear Homogeneous Recurrence Relation with Constant Coefficients

## Ex 10.13: (Lamé's Theorem) 略

Let $a, b \in Z^{+}$with $a \geq b \geq 2$. Then the number of divisions needs, on the Euclidean algorithm, to determine $\operatorname{gcd}(a, b)$ is at most 5 times the number of decimal digits in $b$.
Proof.
Use $F_{n}$ and $F_{n}>[(1+\sqrt{5}) / 2]^{n-2}$
Note: The number of divisions needed, in the Euclidean algorithm, to determine $\operatorname{gcd}(a, b)$, for $a, b \in Z^{+}$with $a \geq b \geq 2$, is $\mathcal{O}\left(\log _{10} b\right)$ - that is, on the order of the number of decimal digits in $b$.

## § 10.2 The Second-Order Linear Homogeneous Recurrence Relation with Constant Coefficients

## Ex 10.14: (Comparable relation)

$a_{n}=\#$ of "legal arithmetic expression without parentheses," that are made up of $n$ symbols ( $+, *, /, 0,1,2, \ldots, 9) . a_{n}=$ ?
Sol. (1/2)
operation symbols digits

$$
\begin{aligned}
& a_{1}=10:(0,1, \ldots, 9) \\
& a_{2}=100:(00,01, \ldots, 99)
\end{aligned}
$$

when $n \geq 3$; $a_{n}$ :

$\therefore\left\{\begin{array}{l}a_{n}=10 a_{n-1}+29 a_{n-2}, \text { where } n \geq 3 \\ a_{1}=10 ; a_{2}=100\end{array}\right.$
$\Rightarrow r^{2}-10 r-29=0 \Rightarrow r=5 \pm 3 \sqrt{6}$
$\Rightarrow a_{n}=\left(\frac{5}{3 \sqrt{6}}\right)\left[(5+3 \sqrt{6})^{n}-(5-3 \sqrt{6})^{n}\right], n \geq 1$

## § 10.2 The Second-Order Linear Homogeneous Recurrence Relation with Constant Coefficients

## Ex 10.14: (Comparable relation)

$a_{n}=\#$ of "legal arithmetic expression without parentheses," that are made up of $n$ symbols ( $+, *, /, 0,1,2, \ldots, 9) . a_{n}=$ ?
Sol. (2/2)
operation symbols digits

$$
\therefore\left\{\begin{array}{l}
a_{n}=10 a_{n-1}+29 a_{n-2}, \text { where } n \geq 3 \\
a_{1}=10 ; a_{2}=100
\end{array}\right.
$$

<another>: $a_{2}=10 a_{1}+29 a_{0} \Rightarrow 100=10 \cdot 10+29 \cdot a_{0} \Rightarrow a_{0}=0$

$$
\begin{aligned}
& \left\{\begin{array}{l}
a_{n}=10 a_{n-1}+29 a_{n-2} \\
a_{0}=0 ; a_{1}=10
\end{array}\right. \\
& \Rightarrow a_{n}=\left(\frac{5}{3 \sqrt{6}}\right)\left[(5+3 \sqrt{6})^{n}-(5-3 \sqrt{6})^{n}\right], n \geq 0
\end{aligned}
$$

## § 10.2 The Second-Order Linear Homogeneous Recurrence Relation with Constant Coefficients

## Ex 10.15: palindromes of 3, 4, 5 and 6:

| $(1)$ | 3 | $\left(1^{\prime}\right)$ | 5 | $(1)$ | 4 | $\left.1^{\prime}\right)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $(2) 1+1+1$ | $\left(2^{\prime}\right)$ | $2+1+2$ | $(2)$ | $1+2+1$ | $\left.2^{\prime}\right)$ | $2+2+2$ |
|  | $\left(1^{\prime \prime}\right)$ | $1+3+1$ | $(3)$ | $2+2$ | $\left.3^{\prime}\right)$ | $3+3$ |
|  | $\left(2^{\prime \prime}\right)$ | $1+1+1+1+1$ | $(4)$ | $1+1+1+1$ | $\left.4^{\prime}\right)$ | $2+1+1+2$ |
|  |  |  |  | $\left.1^{\prime \prime}\right)$ | $1+4+1$ |  |
|  |  |  |  | $\left.2^{\prime \prime}\right)$ | $1+1+2+1+1$ |  |
|  |  |  |  | $\left.3^{\prime \prime}\right)$ | $1+2+2+1$ |  |
|  |  |  |  | $\left.4^{\prime \prime}\right)$ | $1+1+1+1+1+1$ |  |

Sol. i) Add 1 to the first and last summands.
ii) Append " $1+$ " and " +1 " to the end.

For Let $n \in \mathbb{Z}^{+}$, let $p_{\boldsymbol{n}}=$ the number of palindromes of $\boldsymbol{n}$.
Then $\left\{\begin{array}{l}p_{n}=2 p_{n-2}, \forall n \geq 3 \\ p_{1}=1 ; p_{2}=2\end{array}\right.$
$\Rightarrow \boldsymbol{p}_{\boldsymbol{n}}=\left\{\begin{array}{l}\left(\frac{1}{2}+\frac{1}{2 \sqrt{2}}\right) 2^{k}+\left(\frac{1}{2}-\frac{1}{2 \sqrt{2}}\right) 2^{k}=2^{k}=2^{n / 2}, \text { if } n \text { is even; , for } n \geq 0 \\ 2^{(n-1) / 2} \\ \\ \text { (c) Spring 2024, Justie Su-Tzu Juan }\end{array}\right.$

## § 10.2 The Second-Order Linear Homogeneous Recurrence Relation with Constant Coefficients

## Ex 10.16: auxiliary variables:

Find a recurrence relation for the \# of binary sequences of length $n$ that have no consecutive 0 's.
Sol. (1/4)
(a) For $n \geq 1$, let $a_{n}=\left|P_{n}\right|=\mid\{x \mid x$ is a binary sequence of length $n$ that have no consecutive 0 's $\} \mid$

$$
\begin{align*}
a_{n}^{(1)}=\mid\left\{x \in P_{n} \mid x \text { end in } 1\right\}\left|=\left|P_{n}^{(1)}\right|\right. \\
a_{n}^{(0)}=\mid\left\{x \in P_{n} \mid x \text { end in } 0\right\}\left|=\left|P_{n}^{(0)}\right|\right. \\
\Rightarrow a_{n}=a_{n}{ }^{(1)}+a_{n}{ }^{(0)} \quad\left(P_{n}=P_{n}^{(1)} \cup P_{n}^{(0)}\right) \tag{1}
\end{align*}
$$

## § 10.2 The Second-Order Linear Homogeneous Recurrence Relation with Constant Coefficients

## Ex 10.16: auxiliary variables:

Find a recurrence relation for the \# of binary sequences of length $n$ that have no consecutive 0 's.
Sol. (2/4)

$$
\begin{aligned}
& \text { (1) } a_{1}=2: 0,1 \\
& \text { (2) } \forall n \geq 2, a_{n}: \underbrace{\text { case } 1:}_{n-1} \underbrace{x \in P_{n-1}^{(0)}}_{n-1} \mathbf{0}: a_{n-1}{ }^{(0)}
\end{aligned}
$$

$$
\begin{align*}
& \Rightarrow a_{n}=a_{n-1}{ }^{(0)}+2 a_{n-1}{ }^{(1)}  \tag{2}\\
& \text { and, } \forall y \in P_{n-2} \Rightarrow \quad y \quad 11 \in P_{n-1}{ }^{(1)} \\
& \forall \quad z \quad \mathbf{Z} \in P_{n-1}{ }^{(1)} \Rightarrow z \in P_{n-2} \\
& \therefore a_{n-2}=a_{n-1}{ }^{(1)}
\end{align*}
$$

## § 10.2 The Second-Order $\left[a_{n}=a_{n}{ }^{(1)}+a_{n}{ }^{(0)}\right.$ Recurrence Relatio $a_{n}=a_{n-1}{ }^{(0)}+2 a_{n-1}{ }^{(1)}$ <br> Ex 10.16: auxiliary variables: $\quad a_{n-2}=a_{n-1}{ }^{(1)}$ <br> (2) ients

Find a recurrence relation for the \# of binary sequences of length $n$ that have no consecutive 0 's.
Sol. (3/4)

$$
\left.\begin{array}{l}
\text { (2) } \Rightarrow a_{n}=\underline{a_{n-1}(0)+a_{n-1} 1^{(1)}}+a_{n-1}{ }^{(1)} \\
\therefore \therefore a_{n}=a_{n-1}+a_{n-2}
\end{array} \text { by (1) and (3) }\right)
$$

## § 10.2 The Second-Order Linear Homogeneous Recurrence Relation with Constant Coefficients

## Ex 10.16: auxiliary variables:

Find a recurrence relation for the \# of binary sequences of length $n$ that have no consecutive 0 's.
Sol. (4/4)
(b) For $n \geq 1$, let $a_{n}=$ the number of binary sequence of length $n$ that have no consecutive 0's.
(1) $a_{1}=2 ; a_{2}=3$
(2) $\forall n \geq 3, a_{n}$ :

$\left\{\begin{array}{l}a_{n}=a_{n-1}+a_{n-2}, n \geq 3 \\ a_{1}=2 ; a_{2}=3 \Rightarrow a_{0}=1\end{array}\right.$
$\Rightarrow\left\{\begin{array}{l}a_{n}=a_{n-1}+a_{n-2} \\ a_{0}=1 ; a_{1}=2\end{array}\right.$
$\left(a_{n}=F_{n+2}, n \geq 0\right)$ 同 Ex 10.11

## § 10．2 The Second－Order Linear Homogeneous

 Recurrence Relation with Constant Coefficients Ex 10．17：$a_{n}=\#$ of＂arrange＂（ $n$ identical pennies）．s．t 8 and 同列相鄰$$
a_{1}=1: \bigcirc
$$

$$
a_{2}=1: 00
$$

$$
a_{3}=2: 000 \quad 8
$$

$$
\begin{aligned}
& a_{3}=3: 000080 \bigcirc 0 \\
& a_{4}=0
\end{aligned}
$$

$$
a_{5}=5: 00000 \bigcirc 000080,00888
$$

$$
\Rightarrow a_{n}=F_{n} ? \quad \Rightarrow x
$$

$$
a_{7}=12 \neq 13=F_{7}
$$

$$
a_{8}=18 \neq 21=F_{8}
$$

$$
a_{9}=26 \neq 34=F_{9}
$$

## § 10.2 The Second-Order Linear Homogeneous

 Recurrence Relation with Constant Coefficients(Extend)

$$
\left.\begin{array}{rl}
\text { Ex 10.18: } & \left\{\begin{array}{l}
2 a_{n+3}=a_{n+2}+2 a_{n+1}-a_{n}, n \geq 0 \\
a_{0}=0, a_{1}=1, a_{2}=2
\end{array}\right. \\
\Rightarrow & \text { Letting } a_{n}=c r^{n}, \text { for } c, r \neq 0, \text { and } n \geq 0
\end{array}\right\}
$$

the characteristic roots are $1 / 2,1,-1$
( $1 / 2,1,-1$ are linear independent)
$\Rightarrow$ the solution is $a_{n}=c_{1}(1)^{n}+c_{2}(-1)^{n}+c_{3}(1 / 2)^{n}$

$$
=c_{1}+c_{2}(-1)^{n}+c_{3}(1 / 2)^{n}
$$

$$
\left\{\begin{array} { l } 
{ a _ { 0 } = 0 = c _ { 1 } + c _ { 2 } + c _ { 3 } } \\
{ a _ { 1 } = 1 = c _ { 1 } - c _ { 2 } + c _ { 3 } / 2 } \\
{ a _ { 2 } = 2 = c _ { 1 } + c _ { 2 } + c _ { 3 } / 4 }
\end{array} \Rightarrow \left\{\begin{array}{l}
c_{1}=5 / 2 \\
c_{2}=1 / 6 \\
c_{3}=-8 / 3
\end{array}\right.\right.
$$

$$
\Rightarrow a_{n}=5 / 2+(1 / 6)(-1)^{n}-(8 / 3)(1 / 2)^{n}
$$

## § 10.2 The Second-Order Linear Homogeneous Recurrence Relation with Constant Coefficients

## Ex 10.19:



Sol. Let $a_{n}=$ the number of ways we can cover a $2 \times n$ chessboard using the two types of tiles shown above.

$$
\begin{aligned}
& a_{1}=1: \text { two } 1 \times 1, \quad a_{2}=5: \text { four } 1 \times 1 \text { or one of each. } \\
& a_{3}=11: \operatorname{six} 1 \times 1(1), \text { three } 1 \times 1(8), \text { no } 1 \times 1(2) .
\end{aligned}
$$

When $n \geq 3$,
i) $\underbrace{2 \times(n-1)}: a_{n-1} \quad \therefore\left\{\begin{array}{c}a_{n}=a_{n-1}+4 a_{n-2}+2 a_{n-3}, \forall n \geq 4 \\ a_{1}=1 ; a_{2}=5 ; a_{3}=11\end{array}\right.$
ii) $\begin{aligned} \underbrace{2 \times(n-2)} & : 4 a_{n-2} \\ \text { iii) } & \underbrace{2 \times(n-3)}\end{aligned} a_{n-3} \begin{gathered}\therefore a_{n}=(-1)^{n}+\frac{1}{\sqrt{3}}(1+\sqrt{3})^{n}-\frac{1}{\sqrt{3}}(1-\sqrt{3})^{n} \\ \forall n \geq 1\end{gathered}, ~$
(c) Spring 2024, Justie Su-Tzu Juan

## § 10.2 The Second-Order Linear Homogeneous

 Recurrence Relation with Constant CoefficientsCase (B): Complex Roots

$$
\text { Ex 10.21: }\left\{\begin{array}{l}
a_{n}=2\left(a_{n-1}-a_{n-2}\right), \forall n \geq 2 \\
a_{0}=1 ; a_{1}=2
\end{array}\right.
$$

Sol.

$$
\text { Letting } a_{n}=c r^{n}, \text { for } c, r \neq 0
$$

$$
\Rightarrow r^{2}-2 r+2=0 \Rightarrow r=1 \pm i
$$

the general solution $a_{n}=c_{1}(1+i)^{n}+c_{2}(1-i)^{n}$
( $c_{1}, c_{2}$ are arbitrary complex constant)

## § 10．2 The Second－Order Linear Homogeneous Recurrence Relation with Constant Coefficients

Case（B）：Complex Roots

## Recall：

（1）DeMoivre＇s Theorem（棣美弗定理）：
$(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta, n \geq 0$.
（2）$z=x+i y \in C, z \neq 0$
$z=r(\cos \theta+i \sin \theta)$ where $r=\sqrt{x^{2}+y^{2}}, y / x=\tan \theta ; \quad$ for $x \neq 0$
$z=y i=y i(\sin (\pi / 2))=r(\cos (\pi / 2)+i \sin (\pi / 2)), \quad$ for $y>0$ ，for $x=0$
$z=y i=|y| i \sin (3 \pi / 2)=r(\cos (3 \pi / 2)+i \sin (3 \pi / 2))$ ，for $y<0$ ，for $x=0$
（3）$z^{n}=r^{n}(\cos n \theta+i \sin n \theta), \forall n \geq 0$ ．

## § 10.2 The Second-Order Linear Homogeneous

## Recurrence Relation with Constant Coefficients

Ex 10.20: $(1+\sqrt{3} i)^{10}=$ ?
Sol.

$$
\begin{aligned}
& 1+\sqrt{3} i=2\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)=2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right) \\
& \begin{aligned}
\therefore(1+\sqrt{3} i)^{10} & =2^{10}\left(\cos \frac{10 \pi}{3}+i \sin \frac{10 \pi}{3}\right) \\
& =2^{10}\left(\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}\right) \\
& =2^{10}\left(\frac{-1}{2}+i\left(\frac{-\sqrt{3}}{2}\right)\right) \\
& =-2^{9}(1+\sqrt{3} i)
\end{aligned}
\end{aligned}
$$

## § 10.2 The Second-Order Linear Homogeneous

 Recurrence Relation with Constant CoefficientsEx 10.21:

$$
\left\{\begin{array}{l}
a_{n}=2\left(a_{n-1}-a_{n-2}\right), \forall n \geq 2 \\
a_{0}=1 ; a_{1}=2
\end{array}\right.
$$

Sol. (1/2)
Letting $a_{n}=c r^{n}$, for $c, r \neq 0$.
$\Rightarrow r^{2}-2 r+2=0 \Rightarrow r=1 \pm i$
the general solution $a_{n}=c_{1}(1+i)^{n}+c_{2}(1-i)^{n}$

$$
\begin{aligned}
& \quad\left(c_{1}, c_{2}\right. \text { are arbitrary complex constant) } \\
& \because 1+i=\sqrt{2}(\cos (\pi / 4)+i \sin (\pi / 4)) \\
& \quad 1-i=\sqrt{2}(\cos (-\pi / 4)+i \sin (-\pi / 4))=\sqrt{2}(\cos (\pi / 4)-i \sin (\pi / 4)) \\
& \Rightarrow a_{n}=c_{1}[\sqrt{2}(\cos (\pi / 4)+i \sin (\pi / 4))]^{n}+c_{2}[\sqrt{2}(\cos (\pi / 4)-i \sin (\pi / 4))]^{n} \\
& \quad=(\sqrt{2})^{n}\left[\left(c_{1}+c_{2}\right) \cos (n \pi / 4)+\left(c_{1}-c_{2}\right) i \sin (n \pi / 4)\right] \\
& \quad=(\sqrt{2})^{n}\left[k_{1} \cos (n \pi / 4)+k_{2} \sin (n \pi / 4)\right], \text { where }\left\{\begin{array}{l}
k_{1}=c_{1}+c_{2} \\
k_{2}=\left(c_{1}-c_{2}\right) i
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \S 10.2 \text { The Se } \\
& \text { Recurrence Relation with Constant Coefficients }
\end{aligned}
$$

## Ex 10．21： <br> $$
\left\{\begin{array}{l} a_{n}=2\left(a_{n-1}-a_{n-2}\right), \forall n \geq 2 \\ a_{0}=1 ; a_{1}=2 \end{array}\right.
$$

Sol．（2／2）
$\Rightarrow\left\{\begin{array}{l}1=a_{0}=k_{1} \cos 0+k_{2} \sin 0=k_{1} \\ 2=a_{1}=\sqrt{2}\left(k_{1} \cos (\pi / 4)+k_{2} \sin (\pi / 4)=(\sqrt{2} / \sqrt{2})\left(k_{1}+k_{2}\right)\right.\end{array} \Rightarrow\left\{\begin{array}{l}k_{1}=1 \\ k_{2}=1\end{array}\right.\right.$
$\therefore a_{n}=(\sqrt{2})^{n}(\cos (n \pi / 4)+\sin (n \pi / 4)), n \geq 0$
（Note：$c_{1}+c_{2} \in \mathbb{R}, \boldsymbol{i}\left(c_{1}-c_{2}\right) \in \mathrm{R}$ ，if $c_{1}, c_{2}$ ：共軛複數）

Ex 10．22：省略

## § 10.2 The Second-Order Linear Homogeneous

 Recurrence Relation with Constant CoefficientsCase (C): (Repeated Real Roots)

$$
\text { ex: }\left\{\begin{array}{l}
a_{n+2}=4 a_{n+1}-4 a_{n}, \forall n \geq 0 \\
a_{0}=1, a_{1}=3
\end{array}\right.
$$

Sol. (1/2)
Letting $a_{n}=c r^{n}$, where $c, r \neq 0, n \geq 0$.
$\Rightarrow$ characteristic equation: $r^{2}-4 r+4=0$
$\therefore$ characteristic roots: $r=2$ (a root of multiplicity 2 ) try $f(n) 2^{n}$ be another independent solution:

$$
\begin{aligned}
& f(n+2) \cdot 2^{n+2}=4 f(n+1) \cdot 2^{n+1}-4 f(n) \cdot 2^{n} \\
& \Rightarrow f(n+2) \cdot \forall=4 f(n+1) \cdot 2-\forall f(n) \\
& f(n+2)=2 f(n+1)-f(n) \\
& \Rightarrow f(n)=a n+b \forall a, b, \text { and } a \neq 0 \\
& \text { choose } f(n)=n
\end{aligned}
$$

## § 10.2 The Second-Order Linear Homogeneous

 Recurrence Relation with Constant CoefficientsCase (C): (Repeated Real Roots)

$$
\text { ex: }\left\{\begin{array}{l}
a_{n+2}=4 a_{n+1}-4 a_{n}, \forall n \geq 0 \\
a_{0}=1, a_{1}=3
\end{array}\right.
$$

Sol. (2/2)
$\therefore n 2^{n}$ is a second independent solution.

$$
\left(\because \forall n \geq 0, \exists \text { s.t. } n 2^{n}=k \cdot 2^{n}\right)
$$

$\therefore$ the general solution $=a_{n}=c_{1}\left(2^{n}\right)+c_{2} n\left(2^{n}\right)$

$$
\begin{aligned}
& \quad\left\{\begin{array} { l } 
{ a _ { 0 } = 1 = c _ { 1 } + 0 } \\
{ a _ { 1 } = 3 = 2 c _ { 1 } + 2 c _ { 2 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
c_{1}=1 \\
c_{2}=1 / 2=2^{-1}
\end{array}\right.\right. \\
& \Rightarrow a_{n}=2^{n}+(1 / 2) n\left(2^{n}\right) \\
& \quad=2^{n}+n\left(2^{n-1}\right), n \geq 0 \\
& \quad\left(=(1+(1 / 2) n) 2^{n}\right)
\end{aligned}
$$

## § 10.2 The Second-Order Linear Homogeneous Recurrence Relation with Constant Coefficients

## In General:

If $c_{n} a_{n}+c_{n-1} a_{n-1}+\ldots+c_{n-k} a_{n-k}=0$ with $c_{n}(\neq 0), c_{n-1}, \ldots, c_{n-k}(\neq 0) \in \mathbb{R}$, and $r$ is a characteristic root of multiplicity $m$, where $2 \leq m \leq k$, then the part of the general solution that involves the root $\boldsymbol{r}$ has the form:

$$
\begin{aligned}
& A_{0} r^{n}+A_{1} n r^{n}+A_{2} n^{2} r^{n}+\ldots+A_{m-1} n^{m-1} r^{n} \\
= & \left(A_{0}+A_{1} n+A_{2} n^{2}+\ldots+A_{m-1} n^{m-1}\right) \cdot r^{n}
\end{aligned}
$$

where $A_{0}, A_{1}, \ldots, A_{m-1}$ are arbitrary constants.

## § 10.2 The Second-Order Linear Homogeneous

 Recurrence Relation with Constant Coefficients```
Ex 10.24: \(\left\{p_{n}=p_{n-1}-(0.25) p_{n-2}, n \geq 2\right.\)
    \(\left\{p_{0}=0, p_{1}=1\right.\)
    \(p_{k}<0.01 \quad \min . k=? \quad\left(p_{1}:\right.\) March \(1,1999, p_{n}: n\)th week \()\)
```

Sol. (1/2)
Let $p_{n}=c r^{n}, c, r \neq 0$
$\Rightarrow r^{2}-r+(1 / 4)=0=(r-(1 / 2))^{2}, r=1 / 2$
$\therefore$ general solution $=\left(c_{1}+c_{2} n\right)(1 / 2)^{n}, n \geq 0$

$$
\left\{\begin{array} { l } 
{ p _ { 0 } = 0 = c _ { 1 } } \\
{ p _ { 1 } = 1 = ( c _ { 1 } + c _ { 2 } ) ( 1 / 2 ) }
\end{array} \Rightarrow \left\{\begin{array}{l}
c_{1}=0 \\
c_{2}=2
\end{array} \Rightarrow p_{n}=n \cdot 2^{1-n}, n \geq 0\right.\right.
$$

The first integer $n_{0}$ s.t. $p_{n_{0}}<0.01$ is

$$
\begin{aligned}
& n_{0} \cdot 2^{1-n_{0}}<0.01 \\
& 200 n_{0}<2^{n_{0}} \Rightarrow 2^{n_{0}}-200 n_{0}>0
\end{aligned}
$$

## § 10.2 The Second-Order Linear Homogeneous

 Recurrence Relation with Constant Coefficients```
Ex 10.24: \(\left\{p_{n}=p_{n-1}-(0.25) p_{n-2}, n \geq 2\right.\)
    \(\left\{p_{0}=0, p_{1}=1\right.\)
    \(p_{k}<0.01 \quad \min . k=? \quad\left(p_{1} \Rightarrow\right.\) March \(1,1999 . p_{n} \Rightarrow n\)th week \()\)
```

Sol. (2/2)

$$
\begin{aligned}
200 n_{0}<2^{n_{0}} & \Rightarrow 2^{n_{0}}-200 n_{0}>0 \\
n & =10 \Rightarrow 1024-2000<0 \\
n=11 & \Rightarrow 2048-2200<0 \\
n & =12 \Rightarrow 4096-2400>0 \sqrt{ } \quad \therefore n_{0}=12
\end{aligned}
$$

$$
n_{0}=12
$$

Hence, until May 17, 1999 the probability of another new case occurring was $<\mathbf{0 . 0 1}$

$$
\left(\begin{array}{ccccccccccc|}
3 / 1,3 / 8,3 / 15,3 / 22,3 / 29,4 / 5,4 / 12,4 / 19,4 / 26,5 / 3,5 / 10, & 5 / 17 \\
p_{1} & p_{2} & p_{3} & p_{4} & p_{5} & p_{6} & p_{7} & p_{8} & p_{9} & p_{10} & p_{11} \\
p_{12}
\end{array}\right.
$$

## § 10.2 The Second-Order Linear Homogeneous Recurrence Relation with Constant Coefficients

## Checklist:

## 1. Definition

2. Formula (characteristic function): $\mathbf{3}$ cases
$\square$ Fibonacci relation
$\square$ Extend
$\square$ DeMoivre's Theorem
$\square$ Repeated real root: If $c_{n} a_{n}+c_{n-1} a_{n-1}+\ldots+c_{n-k} a_{n-k}=0$ with $c_{n}(\neq$ $0), c_{n-1}, \ldots, c_{n-k}(\neq 0) \in R$, and $r$ is a characteristic root of multiplicity $\boldsymbol{m}$, where $2 \leq \boldsymbol{m} \leq \boldsymbol{k}$, then the part of the general solution that involves the root $\boldsymbol{r}$ has the form:

$$
\begin{aligned}
& A_{0} r^{n}+A_{1} n r^{n}+A_{2} n^{2} r^{n}+\ldots+A_{m-1} n^{m-1} r^{n} \\
= & \left(A_{0}+A_{1} n+A_{2} n^{2}+\ldots+A_{m-1} n^{m-1}\right) \cdot r^{n}
\end{aligned}
$$

where $A_{0}, A_{1}, \ldots, A_{m-1}$ are arbitrary constants.

## § 10.2 The Second-Order Linear Homogeneous

 Recurrence Relation with Constant CoefficientsDiscussion (10 min):
Exercise 10.2.1: Solve the following recurrence relations.
a) $a_{n}=5 a_{n-1}+6 a_{n-2}, n \geq 2, a_{0}=1, a_{1}=3$
b) $a_{n}-6 a_{n-1}+9 a_{n-2}=0, n \geq 2, a_{0}=5, a_{1}=12$
c) $a_{n}+2 a_{n-1}+2 a_{n-2}=0, n \geq 2, a_{0}=1, a_{1}=3$

Computer Science and Information Engineering National Chi Nan University

# Combinatorial Mathematics 

Dr. Justie Su-Tzu Juan

## Chapter 10 Recurrence Relation

§ 10.3 The Nonhomogeneous Recurrence Relation (1)
Slides for a Course Based on the Text
Discrete \& Combinatorial Mathematics (5 ${ }^{\text {th }}$ Edition) by Ralph P. Grimaldi

## § 10.3 The Nonhomogeneous Recurrence Relation

Oteline

1. When $\boldsymbol{c}_{n-1}=\mathbf{- 1}$ for first-order
2. Method of undetermined coefficient

## § 10.3 The Nonhomogeneous Recurrence Relation

$$
\begin{align*}
& a_{n}+c_{n-1} a_{n-1}=f(n), n \geq 1  \tag{1}\\
& a_{n}+c_{n-1} a_{n-1}+c_{n-2} a_{n-2}=f(n), n \geq 1  \tag{2}\\
& \text { where } c_{n-1} \neq 0, c_{n-2} \neq 0, f(n) \neq 0 \text {. }
\end{align*}
$$

A. Let $c_{n-1}=-1$ of (1): $a_{n}-a_{n-1}=f(n)$

$$
\begin{aligned}
a_{1} & =a_{0}+f(1) \\
a_{2} & =a_{1}+f(2)=a_{0}+f(1)+f(2) \\
a_{3} & =a_{2}+f(3)=a_{0}+f(1)+f(2)+f(3) \\
& : \\
a_{n} & =a_{0}+\sum_{i=1}^{n} f(i)
\end{aligned}
$$

Ex 10.25: $\left\{\begin{array}{l}a_{n}-a_{n-1}=3 n^{2}, \text { where } n \geq 1 \\ a_{0}=7\end{array}\right.$
Sol. $f(n)=3 n^{2} \quad \sum_{i=1}^{n} f(i)=\sum_{i=1}^{n} 3 i^{2}=3 \sum_{i=1}^{n} i^{2}=\$ n(n+1)(2 n+1) / \phi 2$

$$
\therefore a_{n}=7+(1 / 2) n(n+1)(2 n+1)
$$

## § 10.3 The Nonhomogeneous Recurrence Relation

B. method of undetermined coefficient: (for certain function $f(n)$ )
(1) Let $a_{n}{ }^{(h)} \equiv$ the general solution of $f(n)=0$ in (1) (or (2))
(2) Let $a_{n}{ }^{(p)}$ (particular solution) $\equiv$ a solution of (1) (or (2))
(3) $a_{n}=a_{n}{ }^{(h)}+a_{n}{ }^{(p)}$ is the general solution of (1) (or (2))

Ex 10.26: $\left\{\begin{array}{l}a_{n}-3 a_{n-1}=5\left(7^{n}\right), n \geq 1 \\ a_{0}=2\end{array}\right.$
Sol. (1) $a_{n}{ }^{(h)}-3 a_{n-1}{ }^{(h)}=0 \Rightarrow a_{n}{ }^{(h)}=c\left(3^{n}\right)$

$$
\text { (2) } \because f(n)=5\left(7^{n}\right)
$$

$$
\text { Let } a_{n}{ }^{(p)}=A\left(7^{n}\right) \Rightarrow A\left(7^{n}\right)-3 A\left(7^{n-1}\right)=5\left(7^{n}\right), n \geq 1
$$

$$
\Rightarrow 7 A-3 A=5 \cdot 7=35 \Rightarrow 4 A=35 \Rightarrow A=35 / 4
$$

$$
\therefore a_{n}{ }^{(p)}=(35 / 4) \cdot 7^{n}=(5 / 4) \cdot 7^{n+1}
$$

(3) $a_{n}=c\left(3^{n}\right)+(5 / 4) \cdot 7^{n+1}$

$$
\begin{aligned}
& \because a_{0}=2=c+(35 / 4) \Rightarrow c=-27 / 4 \\
& \therefore a_{n}=(5 / 4) \cdot 7^{n+1}-(1 / 4) \cdot 3^{n+3}, n \geq 0
\end{aligned}
$$

## § 10.3 The Nonhomogeneous Recurrence Relation

## Ex 10.27: $\left\{\begin{array}{l}a_{n}-3 a_{n-1}=5\left(3^{n}\right), n \geq 1 \\ a_{0}=2\end{array}\right.$

Sol.
(1) $a_{n}{ }^{(h)}=c\left(3^{n}\right)$
(2) $\because f(n)=5\left(3^{n}\right)$ and $a_{n}{ }^{(h)}$ are not linearly independent

$$
\therefore \text { let } a_{n}{ }^{(p)}=B \cdot n\left(3^{n}\right)
$$

$$
\Rightarrow B \cdot n\left(3^{n}\right)-3 B(n-1)\left(3^{n-1}\right)=5\left(3^{n}\right)
$$

$$
\Rightarrow B n-B(n-1)=5
$$

$$
\Rightarrow B=5
$$

$$
\therefore a_{n}{ }^{(p)}=5 n \cdot 3^{n}
$$

(3) $a_{n}=c\left(3^{n}\right)+5 n \cdot 3^{n}=(c+5 n) \cdot 3^{n}$

$$
\begin{aligned}
& a_{0}=2=c \\
& \therefore a_{n}=(2+5 n) 3^{n}, n \geq 0
\end{aligned}
$$

## § 10.3 The Nonhomogeneous Recurrence Relation

 Def:I. $a_{n}+c_{n-1} a_{n-1}=k r^{n}, n \in Z^{+}$, $a_{n}{ }^{(p)}=\left\{\begin{array}{l}A \cdot r^{n}, A \text { is a constant, if } r^{n} \text { is not a solution of } a_{n}+c_{n-1} a_{n-1}=0 ; \\ B \cdot n r^{n}, B \text { is a constant, otherwise. }\end{array}\right.$
II. $a_{n}+c_{n-1} a_{n-1}+c_{n-2} a_{n-2}=k r^{n}, k$ is a constant. $a_{n}{ }^{(p)}=\left\{\begin{array}{l}A \cdot r^{n}, A \text { is a constant, if } r^{n} \text { is not a solution of } \\ a_{n}+c_{n-1} a_{n-1}+c_{n-2} a_{n-2}=0 ;\end{array}\right.$
$B \cdot n r^{n}, B$ is a constant, if $a_{n}^{(h)}=c_{1} r^{n}+c_{2} r_{1}{ }^{n}$, where $r_{1} \neq r$;
$C \cdot n^{2} r^{n}, C$ is a constant, if $a_{n}^{(h)}=\left(c_{1}+c_{2} n\right) r^{n}$.

## § 10.3 The Nonhomogeneous Recurrence Relation

Ex 10.28: The Towers of Hanoi. peg $1 \rightarrow$ peg 3

Sol. (1/2)

(3) 9

For $n \geq 0$, let $a_{n} \equiv$ the minimum number of moves it takes to transfer $n$ disks from peg 1 to peg 3 in the manner described.
then for $\boldsymbol{n}+1$ disks:
a)

$:$ need $a_{n}$ steps
b)

: need 1 step
c)

$:$ need $a_{n}$ steps

## § 10.3 The Nonhomogeneous Recurrence Relation

Ex 10.28: The Towers of Hanoi. peg $1 \rightarrow$ peg 3

Sol. (2/2)

(3) 9

$$
\begin{aligned}
& \Rightarrow a_{n+1}=2 a_{n}+1, n \geq 1 ; a_{0}=0 \\
& \text { (1) } a_{n+1}^{(h)}-2 a_{n}{ }^{(h)}=0 \Rightarrow a_{n}^{(h)}=c\left(2^{n}\right) \\
& \text { (2) } \because f(n)=1 \neq \text { the solution of } a_{n+1}-2 a_{n}=0 \\
& \quad \therefore \text { Let } a_{n}{ }^{(p)}=A\left(1^{n}\right)=A \\
& \quad \Rightarrow A-2 A=1 \Rightarrow A=-1 \\
& \quad \Rightarrow a_{n}^{(p)}=-1 \\
& \text { (3) } \therefore a_{n}=c\left(2^{n}\right)-1 \\
& \quad \because a_{0}=0=c-1 \\
& \quad \therefore c=1 \\
& \quad \Rightarrow a_{n}=2^{n}-1, n \geq 0
\end{aligned}
$$

## § 10.3 The Nonhomogeneous Recurrence Relation

## Ex 10.29: loan: $S$, be paid back: $T$ period time.

the interest rate per period: $r$
$\Rightarrow$ payment at the end of each period: $P=$ ?
Sol. (1/2)
Let $a_{n}=$ owed after the $n$th payment.
$\Rightarrow\left\{\begin{array}{l}a_{n+1}=a_{n}+r a_{n}-P, 0 \leq n \leq T-1 \\ a_{0}=S ; a_{T}=0 .\end{array}\right.$
(1) $a_{n+1}{ }^{(h)}-(1+r) a_{n}{ }^{(h)}=0 \Rightarrow a_{n}{ }^{(h)}=c(1+r)^{n}$
(2) Let $a_{n}{ }^{(p)}=A \Rightarrow A=A+r \cdot A-P \Rightarrow r \cdot A=P \Rightarrow A=P / r$

$$
\text { i.e. } a_{n}{ }^{(p)}=P / r
$$

(3) $a_{n}=c(1+r)^{n}+P / r$

$$
\left.\begin{array}{rl}
\because a_{0} & =S=c+P / r \Rightarrow c=S-P / r \\
\therefore a_{n} & =(S-P / r)(1+r)^{n}+P / r, 0 \leq n \leq T \\
\because 0 & =a_{T}
\end{array}=(S-P / r)(1+r)^{T}+P / r\right)(P / r-S)(1+r)^{T} .
$$

## § 10.3 The Nonhomogeneous Recurrence Relation

## Ex 10.29: loan: $S$ be paid back: $T$ period time.

## the interest rate per period: $r$

$\Rightarrow$ payment at the end of each period: $P=$ ?
Sol. (2/2)

$$
\begin{aligned}
& \because 0=a_{T}=(S-P / r)(1+r)^{T}+P / r \\
& \quad \Rightarrow P / r=(P / r-S)(1+r)^{T} \\
& \quad \therefore P=(P-r S)(1+r)^{T} \Rightarrow P\left[1-(1+r)^{T}\right]=-\operatorname{Sr}(1+r)^{T} \\
& \quad \Rightarrow P=-\operatorname{Sr}(1+r)^{T}\left[1-(1+r)^{T}\right]^{-1} \\
& \quad=\operatorname{Sr}\left[-(1+r)^{-T}\right]^{-1}\left[1-(1+r)^{T}\right]^{-1} \quad\left(\frac{-(1+r)^{T}}{1-(1+r)^{T}}=\frac{1}{\left.1-\frac{1}{(1+r)^{T}}\right)} \quad\right.
\end{aligned}
$$

$S=1,000,000 r=1.5 \% / 12 T=20 * 12 \rightarrow P=4825.454088819525$

$$
S=1,000,000 r=3 \% / 12 T=20 * 12 \rightarrow P=5545.97597853912
$$

$$
S=1,000,000 r=8 \% / 12 T=20 * 12 \rightarrow P=8364.400689934629
$$

