Computer Science and Information Engineering National Chi Nan University

Combinatorial Mathematics

Dr. Justie Su-Tzu Juan

Chapter 9 Generating Functions § 9.5 The Summation Operator

Slides for a Course Based on the Text

Discrete & Combinatorial Mathematics (5th Edition)

by Ralph P. Grimaldi

Outline

1. Technique: The convolution of the sequence a_0 , a_1 , a_2 , and the sequence 1, 1, 1, ... is the sequence a_0 , $a_0 + a_1$, $a_0 + a_1 + a_2$, $a_0 + a_1 + a_2 + a_3$, ...

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots$$

$$g(x) = 1 + x + x^2 + x^3 + \dots = 1/(1 - x)$$

$$\Rightarrow f(x) \cdot g(x) = f(x)/(1 - x) = a_0 + (a_0 + a_1)x + (a_0 + a_1 + a_2)x^2 + (a_0 + a_1 + a_2 + a_3)x^3 + \dots$$

 $\therefore f(x)/(1-x)$ generates the sequence of sums

$$a_0$$
, $a_0 + a_1$, $a_0 + a_1 + a_2$, $a_0 + a_1 + a_2 + a_3$, ...

= The convolution of the sequence a_0 , a_1 , a_2 , and the sequence b_0 , b_1 , b_2 , ... where $b_i = 1 \forall n \in \mathbb{N}$.


```
Ex 9.30: (a) : 1/(1-x) is the G.F. for the seq. 1, 1, 1, ...
                 \therefore (1/(1-x))/(1-x) is the G.F. for the seq. 1, 1+1, 1+1+1, ...
                 i.e. 1/(1-x)^2 is the G.F. for the seq. 1, 2, 3, ...
            (b) : x + x^2 is the G.F. for the seq. 0, 1, 1, 0, 0, 0, ...
                 (x + x^2)/(1 - x) is the G.F. for the seq. 0, 1, 2, 2, 2, ...
                 \Rightarrow (x + x^2)/(1 - x)^2 is the G.F. for the seq. 0, 1, 3, 5, 7, 9,...
                \Rightarrow (x + x^2)/(1 - x)^3 is the G.F. for the seq. 0, 1, 4, 9, 16, 25,...
                 \sum_{k=1}^{n} (2k-1) = n^2?
                 to verify this, look at the coefficient of x^n in (x + x^2)/(1 - x)^3
                 = the coefficient of x^n in x(1-x)^{-3} + x^2(1-x)^{-3}
                = {\binom{-3}{n-1}} (-1)^{n-1} + {\binom{-3}{n-2}} (-1)^{n-2}
                = \frac{\binom{n-1}{n-1}\binom{n-2}{n-1}\binom{n-2}{n-1}(-1)^{n-1} + (-1)^{n-2}\binom{3+(n-2)-1}{n-2}(-1)^{n-2}}{2(n+1)(n) + \frac{1}{2}(n)(n-1) = n^2}
                 (as Example 4.7)
```

Ex 9.31:
$$0^2 + 1^2 + 2^2 + 3^2 + ... + n^2 = ?$$

Sol. (1/2)

Let
$$g(x) = 1/(1-x) = 1 + x + x^2 + x^3 + \dots$$

$$\frac{dg(x)}{dx} = 1 + 2x + 3x^2 + 4x^3 + \dots = 1/(1-x)^2$$

$$x \cdot \frac{dg(x)}{dx} = 0 + x + 2x^2 + 3x^3 + 4x^4 + \dots = x/(1-x)^2$$

$$\frac{d}{dx} \left[x \left(\frac{dg(x)}{dx} \right) \right] = 1 + 2^2 x^1 + 3^2 x^2 + 4^2 x^3 + \dots = \frac{(1-x)^{21} - x(2)(1-x)(-1)}{(1-x)^{43}}$$

$$x \cdot \frac{d}{dx} \left[x \left(\frac{dg(x)}{dx} \right) \right] = 0 + x + 2^2 x^2 + 3^2 x^3 + 4^2 x^4 + \dots = x \frac{(1-x+2x)}{(1-x)^3} = \frac{x(1+x)}{(1-x)^3}$$

§ 9.5 The Sumn
$$x \cdot \frac{d}{dx} \left[x \left(\frac{dg(x)}{dx} \right) \right] = 0 + x + 2^2 x^2 + 3^2 x^3 + 4^2 x^4 + \dots = \frac{x(1+x)}{(1-x)^3}$$

Ex 9.31:
$$0^2 + 1^2 + 2^2 + 3^2 + ... + n^2 = ?$$

Sol.
$$(2/2)$$

Sol. (2/2)

$$\therefore \frac{x(1+x)}{(1-x)^3} \text{ is the G.F. of } 0^2, 1^2, 2^2, 3^2, \dots$$

$$\Rightarrow \frac{x(1+x)}{(1-x)^3} \frac{1}{(1-x)} = \frac{x(1+x)}{(1-x)^4} \text{ is the G.F. for } 0^2, 0^2 + 1^2, 0^2 + 1^2 + 2^2, \dots$$

∴ the coefficient of
$$x^n$$
 in $\frac{x(1+x)}{(1-x)^4}$ is $\sum_{i=0}^n i^2$

$$\frac{x(1+x)}{(1-x)^4} = (x+x^2)(1-x)^{-4} = (x+x^2)[(^{-4}_0) + (^{-4}_1)(-x) + (^{-4}_2)(-x)^2 + \dots]$$

∴ the coefficient of
$$x^n = (^{-4}_{n-1})(-1)^{n-1} + (^{-4}_{n-2})(-1)^{n-2}$$

$$= (-1)^{n-1} (^{4+n-1-1}_{n-1})(-1)^{n-1} + (-1)^{n-2} (^{4+n-2-1}_{n-2})(-1)^{n-2}$$

$$= (^{n+2}_{n-1}) + (^{n+1}_{n-2}) = (n+2)!/[(n-1)!3!] + (n+1)!/[(n-2)!3!]$$

$$= (1/6)[(n+2)(n+1)n + (n+1)(n)(n-1)]$$

$$= (1/6)(n)(n+1)(n+2+n-1)$$

$$=(1/6)n(n+1)(2n+1)$$

Checklist:

1. Technique:

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots$$

$$f(x)/(1-x) \text{ generates the sequence of sums}$$

$$a_0, a_0 + a_1, a_0 + a_1 + a_2, a_0 + a_1 + a_2 + a_3, \dots$$

= The convolution of the sequence a_0 , a_1 , a_2 , and the sequence 1, 1, 1, ...

Discussion (10 min):

Exercise 9.5.4: If
$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
,

- 1) what is the generation function for the sequence a_0 , $a_0 + a_1$, $a_1 + a_2$, $a_2 + a_3$, ...?
- 2) What is the generating function for the sequence a_0 , $a_0 + a_1$, $a_0 + a_1 + a_2$, $a_1 + a_2 + a_3$, $a_2 + a_3 + a_4$, ...?
- 3) What is the generation function for the sequence $\frac{a_0}{4}$, $\frac{a_0}{2}$ + $\frac{a_1}{4}$, $\frac{a_0}{4}$ + $\frac{a_1}{2}$ + $\frac{a_2}{4}$, $\frac{a_1}{4}$ + $\frac{a_2}{2}$ + $\frac{a_3}{4}$, ...

Computer Science and Information Engineering National Chi Nan University

Combinatorial Mathematics

Dr. Justie Su-Tzu Juan

Chapter 10 Recurrence Relations § 10.1 The First-Order Linear Recurrence Relation

Slides for a Course Based on the Text

Discrete & Combinatorial Mathematics (5th Edition)

by Ralph P. Grimaldi

Outline

- 1. Definition
- 2. Formula
- 3. Application
- 4. Special Case

<u>Def</u>: "Function a(n), preferably written as a_n (for $n \ge 0$), where a_n depends on some of the prior terms $a_{n-1}, a_{n-2}, ..., a_1, a_0$." This study of what are called either recurrence relations or difference equations.

<u>Def</u>: A geometric progression is an infinite sequence of numbers $a_0 = a$, $a_1 = ar$, $a_2 = ar^2$, $a_3 = ar^3$, ...; where r is called the common ratio. $a_1/a_0 = a_2/a_1 = a_3/a_2 = ... = (ar/a = ar^2/ar = ar^3/ar^2 = ... = r)$

ex: 5, 15, 45, 135,
$$a_{n+1} = 3a_n, n \ge 0$$
but 7, 21, 63, 189, ... also satisfies the relation
$$\therefore \begin{cases} a_0 = 5 \\ a_{n+1} = 3a_n, \forall n \ge 0 \end{cases} \qquad \begin{cases} a_0 = 7 \\ a_{n+1} = 3a_n, \forall n \ge 0 \end{cases}$$

- **<u>Def</u>**: ① A relation is said to be a first order \equiv a_{n+1} depends only on its immediate predecessor.
 - ② In particular, a first-order linear homogeneous recurrence relation with constant coefficients:
 - 1. The general form : $a_{n+1} = da_n$, $n \ge 0$, where d is a constant.
 - 2. a_0 or a_1 given in addition to the recurrence relations, are called boundary conditions.
 - 3. The expression $a_0 = A$, where A is a constant, is also referred to as an initial condition.

ex:
$$\begin{cases} a_0 = 5 \\ a_{n+1} = 3a_n, n \ge 0. \end{cases} \Rightarrow a_n = 5 \cdot 3^n, \forall n \ge 0.$$

Result: The general solution of the recurrence relation

$$\begin{cases} a_{n+1} = d \cdot a_n, \text{ where } n \ge 0, d \text{ is a constant and} \\ a_0 = A \end{cases}$$

is unique and is given by $a_n = A \cdot d^n$, $n \ge 0$.

Ex 10.1:
$$a_2 = 98$$

 $a_n = 7a_{n-1}$, where $n \ge 1$.

Sol.

$$\begin{cases} a_2 = 98 \\ a_{n+1} = 7a_n, \text{ where } n \ge 0 \end{cases}$$

 \therefore The general solution: $a_n = (7^n)a_0$.

$$a_2 = 98 = a_0 \cdot (7^2), \Rightarrow a_0 = 2$$

$$\therefore a_n = 2(7^n), \forall n \geq 0$$

Ex 10.2: Bonnie deposits \$1000; 6%/年; 每月複利; after 1 year? Sol.

$$6\%/12 = 0.5\% = 0.005$$

 $\forall 0 \le n \le 12$, let p_n denote the value of Bonnie's deposit at the end n months.

$$\therefore p_{n+1} = p_n + 0.005p_n, \forall 0 \le n \le 11, p_0 = \$1000.$$

 \rightarrow the interest earned on p_n during month n+1.

$$\Rightarrow \begin{cases} p_{n+1} = p_n(1.005) \\ p_0 = 1000 \end{cases}$$

$$\Rightarrow p_n = p_0(1.005)^n = 1000 \cdot (1.005)^n$$

$$\therefore$$
 one year $\Rightarrow 1000(1.005)^{12} = 1061.68$

Ex 10.3: The compositions of n:

$$\begin{cases} a_{n+1} = 2a_n, n \ge 1 \\ a_1 = 1 \end{cases}$$

$$|\det b_n = a_{n+1}|$$

$$\Rightarrow b_{n+1} = 2b_n, n \ge 0$$

$$b_0 = 1$$

so,
$$b_n = b_0(2^n) = 2^n$$

 $\Rightarrow a_n = b_{n-1} = 2^{n-1}$

$$(1') 4$$

$$(2') 1 + 3$$

$$(3') 2 + 2$$

$$(4') 1 + 1 + 2$$

$$(3) 2 + 1$$

$$(4) 1 + 1 + 1$$

$$(2") 1 + 2 + 1$$

$$(2") 1 + 2 + 1$$

$$(3") 2 + 1 + 1$$

$$(4") 1 + 1 + 1 + 1$$

Def: A recurrence relation is called linear

 \equiv each subscripted term appears to the first power and no product such as $a_n a_{n-1}$.

Substitution:

Ex 10.4: Find a_{12} if $a_{n+1}^2 = 5 a_n^2$, where $a_n > 0$ for $n \ge 0$, and $a_0 = 2$. Sol.

Let
$$b_n = a_n^2 \Rightarrow \begin{cases} b_{n+1} = 5b_n, \forall n \ge 0 \\ b_0 = 4 \end{cases}$$

$$\Rightarrow b_n = 4 \cdot 5^n$$

$$\Rightarrow a_n = 2(\sqrt{5})^n, \forall n \ge 0$$

$$\therefore a_{12} = 2 \cdot 5^6 = 31250$$

<u>Def</u>: The general first-order linear recurrence relation with constant coefficients: $a_{n+1} + c \cdot a_n = f(n)$, $n \ge 0$, where c is a constant and f(n) is a function on the set \mathbb{N} of nonnegative integers.

- where f(n) = 0, $\forall n \in \mathbb{N}$, the relation is called homogeneous;
- otherwise it is called nonhomogeneous.

Ex 10.5: bubble sort: input a positive integer n and an array $x_1, x_2, ..., x_n$ of real numbers that are to be sorted into ascending order. The time-complexity = ?

Sol. (1/3)

```
Procedure Bubble Sort (n: positive integer;
                           x_1, x_2, x_3, ..., x_n: real numbers)
   begin
     for i := 1 to n - 1 do
     for j := n downto i + 1 do
        if x_i < x_{i-1} then
          ·begin
                  {interchange}
            temp := x_{i-1}
            x_{i-1} := x_i
            x_i := \text{temp}
   end
```

Ex 10.5: bubble sort: input a positive integer n and an array $x_1, x_2, ..., x_n$ of real numbers that are to be sorted into ascending order. The time-complexity = ?

Sol. (2/3)

See p-451 example:
$$x_1 = 7$$
, $x_2 = 9$, $x_3 = 2$, $x_4 = 5$, $x_5 = 8$, $n = 5$.

The time-complexity function f(n), count the total number of comparisons.

Let a_n denotes the number of comparisons needs to sort n numbers in this way, then:

$$\begin{cases} a_n = a_{n-1} + (n-1), n \ge 2 \\ a_1 = 0 \end{cases}$$

§ 10.1 The First-Order Lipson Polymone Polymone Sol. (3/3)

$$\begin{cases}
a_1 = 0 & a_n = a_{n-1} + (n-1), n \ge 2 \\
a_1 = 0 & a_2 = a_1 + (2-1) = 1 \\
a_3 = a_2 + (3-1) = 1 + 2 \\
a_4 = a_3 + (4-1) = 1 + 2 + 3 \\
\vdots \\
a_n = a_{n-1} + (n-1) \\
= [a_{n-2} + (n-2)] + (n-1) \\
= \dots \\
= a_1 + 1 + 2 + 3 + \dots + (n-2) + (n-1) \\
= 0 + 1 + 2 + 3 + \dots + (n-2) + (n-1) \\
= n(n-1)/2 = (n^2 - n)/2
\end{cases}$$

∴ the bubble sort determine the time-complexity function

$$f: \mathbb{Z}^+ \to \mathbb{R}$$
 given by $f(n) = a_n = (n^2 - n)/2$

we write $f(n) = O(n^2)$: the bubble sort is require $O(n^2)$ comparisons.

補充: the complexity of an algorithm exactly: f(n): $\mathbb{N} \to \mathbb{R}^+$, g(n): $\mathbb{N} \to \mathbb{R}^+$

- ① f(n) = O(g(n)): $\exists c > 0, \exists n_0 \in \mathbb{N} \text{ s.t. } f(n) \leq c \cdot g(n), \forall n \geq n_0$.
- ② $f(n) = \Omega(g(n))$: $\exists c > 0, \exists n_0 \in \mathbb{N} \text{ s.t. } f(n) \geq c \cdot g(n), \forall n \geq n_0$.

Ex 10.6:
$$a_0 = 0$$
, $a_1 = 2$, $a_2 = 6$, $a_3 = 12$, $a_4 = 20$, $a_5 = 30$, $a_6 = 42$, ..., $a_n = ?$

$$a_1 - a_0 = 2 \qquad a_3 - a_2 = 6 \qquad a_5 - a_4 = 10$$

$$a_2 - a_1 = 4 \qquad a_4 - a_3 = 8 \qquad a_6 - a_5 = 12$$

$$\Rightarrow \begin{cases} a_n - a_{n-1} = 2n, & n \ge 1, \\ a_0 = 0 \end{cases}$$

$$x_1 - a_0 = 2$$

$$x_2 - x_1 = 4$$

$$x_3 - x_2 = 6$$

$$x_4 - a_0 = 2$$

$$x_2 - a_1 = 4$$

$$x_3 - a_2 = 6$$

$$x_1 - a_0 = 2$$

$$x_2 - a_1 = 4$$

$$x_3 - a_2 = 6$$

$$x_1 - a_0 = 2$$

$$x_2 - a_1 = 4$$

$$x_3 - a_2 = 6$$

$$x_1 - a_0 = 2$$

$$x_2 - a_1 = 4$$

$$x_3 - a_2 = 6$$

$$x_1 - a_0 = 2$$

$$x_2 - a_1 = 4$$

$$x_3 - a_2 = 6$$

$$x_1 - a_0 = 2$$

$$x_2 - a_1 = 4$$

$$x_3 - a_2 = 6$$

$$x_1 - a_0 = 2$$

$$x_2 - a_1 = 4$$

$$x_3 - a_2 = 6$$

$$x_1 - a_0 = 2$$

$$x_2 - a_1 = 4$$

$$x_3 - a_2 = 6$$

$$x_1 - a_0 = 2$$

$$x_2 - a_1 = 4$$

$$x_3 - a_2 = 6$$

$$x_1 - a_0 = 2$$

$$x_2 - a_1 = 4$$

$$x_3 - a_2 = 6$$

$$x_1 - a_0 = 2$$

$$x_2 - a_1 = 4$$

$$x_3 - a_2 = 6$$

$$x_1 - a_0 = 2$$

$$x_2 - a_1 = 4$$

$$x_3 - a_2 = 6$$

$$x_1 - a_0 = 2$$

$$x_2 - a_1 = 4$$

$$x_3 - a_2 = 6$$

$$x_1 - a_0 = 2$$

$$x_2 - a_1 = 4$$

$$x_3 - a_2 = 6$$

$$x_1 - a_0 = 2$$

$$x_2 - a_1 = 4$$

$$x_3 - a_2 = 6$$

$$x_1 - a_0 = 2$$

$$x_2 - a_1 = 4$$

$$x_3 - a_2 = 6$$

$$x_1 - a_0 = 2$$

$$x_2 - a_1 = 4$$

$$x_3 - a_2 = 6$$

$$x_1 - a_0 = 2$$

$$x_2 - a_1 = 4$$

$$x_3 - a_2 = 6$$

$$x_1 - a_0 = 2$$

$$x_2 - a_1 = 4$$

$$x_3 - a_2 = 6$$

$$x_1 - a_0 = 2$$

$$x_2 - a_1 = 4$$

$$x_3 - a_2 = 6$$

$$x_1 - a_0 = 2$$

$$x_2 - a_1 = 4$$

$$x_3 - a_2 = 6$$

$$x_1 - a_0 = 2$$

$$x_2 - a_1 = 4$$

$$x_3 - a_2 = 6$$

$$x_1 - a_0 = 2$$

$$x_2 - a_1 = 4$$

$$x_3 - a_2 = 6$$

$$x_1 - a_0 = 2$$

$$x_2 - a_1 = 4$$

$$x_3 - a_2 = 6$$

$$x_1 - a_1 = 2$$

$$x_2 - a_1 = 4$$

$$x_3 - a_2 = 6$$

$$x_1 - a_1 = 2$$

$$x_2 - a_1 = 4$$

$$x_3 - a_2 = 6$$

$$x_1 - a_1 = 2$$

$$x_2 - a_1 = 4$$

$$x_3 - a_2 = 6$$

$$x_1 - a_1 = 2$$

$$x_2 - a_1 = 4$$

$$x_3 - a_2 = 6$$

$$x_1 - a_1 = 2$$

$$x_2 - a_1 = 4$$

$$x_3 - a_1 = 2$$

$$x_4 - a_1 = 2$$

$$x_1 - a_1 = 2$$

$$x_2 - a_1 = 4$$

$$x_3 - a_1 = 2$$

$$x_1 - a_1 = 2$$

$$x_2 - a_1 = 4$$

$$x_3 - a_1 = 2$$

$$x_1 - a_1 = 2$$

$$x_2 - a_1 = 4$$

$$x_3 - a_1 = 2$$

$$x_1 - a_1 = 2$$

$$x_2 - a_1 = 4$$

$$x_3 - a_1 = 2$$

$$x_1 - a_1 = 2$$

$$x_2 - a_1 = 4$$

$$x_3 - a_1 = 2$$

$$x_4 - a_1 = 2$$

$$x_1 - a_1 = 2$$

$$x_2 - a_1 = 4$$

$$x_3 - a_1 = 2$$

$$x_4 - a_1 = 2$$

$$x_1 - a_1 = 2$$

$$x_$$

Ex 10.7: a recurrence relation with a variable coefficient:

$$\begin{cases} a_n = n \cdot a_{n-1}, \text{ where } n \ge 1. \\ a_0 = 1 \end{cases}$$

Sol.

$$a_0 = 1$$
 $a_1 = 1 \cdot a_0 = 1$
 $a_2 = 2 \cdot a_1 = 2 \cdot 1$
 $a_3 = 3 \cdot a_2 = 3 \cdot 2 \cdot 1$
 $a_4 = 4 \cdot a_3 = 4 \cdot 3 \cdot 2 \cdot 1$
 $\Rightarrow a_n = n!$

 a_n (= n!) = the number of permutations of n objects, $n \ge 0$.

$$a_1 = 1: 1$$
 $a_2 = 2 \cdot a_1:$
2
1

$$a_3 = 3 \cdot a_2$$
:

1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
3

$$\frac{3}{2}$$
 $\frac{2}{2}$
 $\frac{1}{3}$
 $\frac{1}{1}$
 $\frac{3}{3}$

$$\Rightarrow a_n = n \cdot a_{n-1} = n!$$

$$a_{4} = 4 \cdot a_{3}: \qquad 1 \qquad 2 \qquad 3 \qquad 4$$

$$1 \qquad 2 \qquad 4 \qquad 3$$

$$1 \qquad 4 \qquad 2 \qquad 3$$

$$4 \qquad 1 \qquad 2 \qquad 3$$

$$4 \qquad 1 \qquad 3 \qquad 2$$

$$1 \qquad 4 \qquad 3 \qquad 2$$

$$1 \qquad 3 \qquad 4 \qquad 2$$

$$1 \qquad 3 \qquad 4 \qquad 2$$

$$1 \qquad 3 \qquad 2 \qquad 4$$

$$3 \qquad 1 \qquad 2 \qquad 4$$

$$3 \qquad 1 \qquad 2 \qquad 4$$

$$\vdots$$

$$4 \qquad 2 \qquad 1 \qquad 3$$

$$2 \qquad 4 \qquad 1 \qquad 3$$

$$2 \qquad 1 \qquad 4 \qquad 3$$

$$2 \qquad 1 \qquad 4 \qquad 3$$

Ex 10.8: recursive function and procedure: gcd(333, 84) = ? gcd(a, b) = ?

Sol. (1/2)
$$333 = 3(84) + 81$$
,
 $84 = 1(81) + 3$,
 $81 = 27(3) + 0$.
 \Rightarrow By Euclidean algorithm (Section 4.4) (p-232)
 $\gcd(333, 84) (= 3) = \gcd(84, 81) = \gcd(81, 3) = 3$

$$\begin{vmatrix} 3 & 3 & 3 & 84 & 1 \\ 252 & 81 & 3 \\ \hline 81 & 0 & 81 \end{vmatrix}$$

- ⇒ gcd(333, 84) = gcd(84, 333 mod 84) = gcd(333 mod 84, 84 mod (333 mod 84))
- ⇒ Idea:

Input $a, b \in \mathbb{Z}^+$

Step 1: If $b \mid a$ (or $a \mod b = 0$), then gcd(a, b) = b

Step 2: If $b \nmid a$, then:

- (i) set a = b
- (ii) set $b = a \mod b$. (old a)
- (iii) Return to Step 1.

§ 10.1 The First-Order

Ex 10.8: recursive function Sol. (2/2)

```
Input a, b \in \mathbb{Z}^+
Step 1: If b \mid a (or a \mod b = 0), then gcd(a, b) = b
Step 2: If b \nmid a, then:

(i) set a = b
(ii) set b = a \mod b. (old a)
(iii) Return to Step 1.
```

26

```
⇒ Procedure gcd2(a, b: positive integers)
begin
if a mod b = 0 then
gcd = b
else
gcd = gcd2(b, a mod b)
end
```

Compare with Fig 4.11 (p-234)

Outline

- 1. Definition
 - ☐ recurrence relations, geometric progression, first-order, linear, homogeneous, constant coefficients
- 2. Formula:
 - □ The general solution for a first-order linear homogeneous recurrence relation with constant coefficients $a_{n+1} = d \cdot a_n$, where $n \ge 0$, d is a constant and $a_0 = A$ is unique and is given by $a_n = A \cdot d^n$, $n \ge 0$.
- 3. Application
- 4. Special Case
 - **□** Nonhomogeneous
 - **□** Variable coefficient

Computer Science and Information Engineering National Chi Nan University

Combinatorial Mathematics

Dr. Justie Su-Tzu Juan

Chapter 10 Recurrence Relations

§ 10.2 The Second-Order Linear Homogeneous Recurrence Relation with Constant Coefficients (1)

Slides for a Course Based on the Text

Discrete & Combinatorial Mathematics (5th Edition)

by Ralph P. Grimaldi

Outline

- 1. Definition
- 2. Formula (characteristic function): 3 cases

<u>Def</u>: Let $k \in \mathbb{Z}^+$, c_n , c_{n-1} , c_{n-2} , ..., $c_{n-k} \in \mathbb{R} - \{0\}$. a_n is a discrete function for $n \ge 0$:

- 1. $c_n a_n + c_{n-1} a_{n-1} + c_{n-2} a_{n-2} + \dots + c_{n-k} a_{n-k} = f(n), n \ge k$, is a linear recurrence relation (with constant coefficients) of order k.
- 2. if f(n) = 0 for all $n \ge 0$; the relation is called homogeneous; otherwise, it is nonhomogeneous.

- <u>Def</u>: 3. $c_n \cdot r^2 + c_{n-1} \cdot r + c_{n-2} = 0$ is called the characteristic function.
 - 4. The roots r_1 , r_2 of characteristic function are called characteristic roots.
 - ⇒ 3 case: (A) Distinct Real Roots
 - (B) (Conjugate) Complex Roots
 - (C) Repeated Real Roots

Case (A): Distinct Real Roots

Ex 10.9:
$$\begin{cases} a_n + a_{n-1} - 6a_{n-2} = 0, \text{ where } n \ge 2, \\ a_0 = -1, a_1 = 8. \end{cases}$$

Sol.

Let
$$a_n = cr^n$$
 with $c \neq 0$, $r \neq 0$
 $\Rightarrow r^2 + r - 6 = 0$
 $\Rightarrow r = 2, -3$
 $\because \exists k \in \mathbb{R} \text{ s.t. } 2^n = k(-3)^n \text{ for all } n. \text{ (linear independent solutions)}$
Let $a_n = c_1(2^n) + c_2(-3)^n, c_1, c_2 \in \mathbb{R}. \text{ (general solution)}$
 $\because a_0 = -1 = c_1 \cdot 2^0 + c_2 \cdot (-3)^0 = c_1 + c_2$
 $a_1 = 8 = c_1 \cdot 2 + c_2 \cdot (-3) = 2c_1 - 3c_2$
i.e. $\begin{cases} -1 = c_1 + c_2 \\ 8 = 2c_1 - 3c_2 \end{cases} \Rightarrow \begin{cases} -2 = 2c_1 + 2c_2 \\ 8 = 2c_1 - 3c_2 \end{cases} \Rightarrow \begin{cases} c_1 = 1 \\ c_2 = -2 \end{cases}$
 $\Rightarrow a_n = 2^n - 2(-3)^n, \forall n \geq 0.$
(is the unique solution of the given recurrence relation)

"unique": need 2 initial conditions (values)

$$\underbrace{ \text{Ex 10.10:}}_{F_{n+2}} \left\{ F_{n+1} + F_n, \forall n \geq 0, \right.$$
 (Fibonacci relation)
$$\left\{ F_0 = 0, F_1 = 1. \right.$$
 Sol. Let $F_n = cr^n, r, c \neq 0, \forall n \geq 0$
$$\Rightarrow cr^{n+2} = cr^{n+1} + cr^n$$

$$\Rightarrow \text{ the characteristic equation: } r^2 - r - 1 = 0$$

$$\Rightarrow \text{ the characteristic roots are } r = (1 \pm \sqrt{5})/2$$

$$\therefore \text{ Let the general solution: } F_n = c_1 \left[(1 + \sqrt{5})/r^n + c_2 \left[(1 - \sqrt{5})/r^n + c_2$$

Ex 10.11: For $n \ge 0$, let $S = \{1, 2, ..., n\}$, $(n = 0, S = \phi)$ let $a_n = \#$ of subsets of S that contain no consecutive integers. Find and solve a recurrence relation for a_n .

Sol. (1/2)

$$a_0 = 1$$
: $\{\phi\}$
 $a_1 = 2$: $\{\phi, \{1\}\}\}$
 $a_2 = 3$: $\{\phi, \{1\}, \{2\}\}\}$ $(3 \notin A)$ $(3 \in A)$
 $a_3 = 5$: $\{\phi, \{1\}, \{2\}, \{3\}, \{1, 3\}\}\} = \{\phi, \{1\}, \{2\}\} \cup \{\{3\}, \{1, 3\}\}\}$

If $A \subseteq S$ and A is to be counted in a_n :

- (a) $n \in A$: $n 1 \notin A \Rightarrow \# \text{ of } (A \{n\}) = a_{n-2}$.
- (b) $n \notin A$: # of $A = a_{n-1}$.

Ex 10.11: For $n \ge 0$, let $S = \{1, 2, ..., n\}$, $(n = 0, S = \phi)$ let $a_n = \#$ of subsets of S that contain no consecutive integers. Find and solve a recurrence relation for a_n .

Sol. (2/2)

Let
$$P = \{A \mid A \subseteq S, A \text{ contain no consecutive integers}\}$$

then $P = B \cup C$, where $B = \{A \in P \mid n \in A\}$
 $C = \{A \in P \mid n \notin A\}$
 $\Rightarrow |B| = a_{n-2}, |C| = a_{n-1}$
 $\therefore |P| = a_n = |B| + |C| = a_{n-2} + a_{n-1}$
 $\therefore |a_n = a_{n-2} + a_{n-1}, \forall n \ge 2$
 $\{a_0 = 1; a_1 = 2\}$
 $\Rightarrow a_n = F_{n+2}, n \ge 0$
 $\therefore a_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{n+2} - \left(\frac{1 - \sqrt{5}}{2} \right)^{n+2} \right], \forall n \ge 0$

Ex 10.12:

Let b_n = the number of ways we can cover a $2 \times n$ chessboard Sol. using 2×1 and 1×2 dominoes.

$$b_1 = 1 : one 2 \times 1,$$

$$b_2 = 2$$
: two 2 × 1 or two 1 × 2.

When $n \geq 3$,

i)
$$2\times(n-1)$$
: b_{n-1}

$$b_n = b_{n-2} + b_{n-1}, \forall n \ge 3$$

$$b_1 = 1; b_2 = 2$$

ii)
$$2 \times (n-2)$$
 : b_{n-2}

$$\Rightarrow b_n = F_{n+1}, n \ge 0$$

ii)
$$2 \times (n-2)$$

$$\Rightarrow b_n = F_{n+1}, n \ge 1$$

$$\therefore b_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right], \forall n \ge 1$$

Ex 10.13: (Lamé's Theorem) 略

Let $a, b \in \mathbb{Z}^+$ with $a \ge b \ge 2$. Then the number of divisions needs, on the Euclidean algorithm, to determine gcd(a, b) is at most 5 times the number of decimal digits in b.

Proof.

Use
$$F_n$$
 and $F_n > [(1+\sqrt{5})/2]^{n-2}$

Note: The number of divisions needed, in the Euclidean algorithm, to determine gcd(a, b), for $a, b \in \mathbb{Z}^+$ with $a \ge b \ge 2$, is $\mathcal{O}(\log_{10} b)$ — that is, on the order of the number of decimal digits in b.

Ex 10.14: (Comparable relation)

 $a_n = \#$ of "legal arithmetic expression without parentheses," that are made up of *n* symbols (+, *, /, 0, 1, 2, ..., 9). $a_n = ?$

operation symbols digits

$$a_1 = 10: (0, 1, ..., 9)$$

$$a_2 = 100$$
: (00, 01, ..., 99)

when $n \ge 3$; a_n :

1) dd:
$$a_{n-1} \cdot 10$$

1) dd:
$$a_{n-1} \cdot 10$$

2) od: $a_{n-2} \cdot (3 \cdot 10 - 1)$ (* no 70)

$$a_n = 10a_{n-1} + 29a_{n-2}, \text{ where } n \ge 3$$

$$a_1 = 10; a_2 = 100$$

$$a_1 = 10; a_2 = 100$$

$$\Rightarrow r^2 - 10r - 29 = 0 \Rightarrow r = 5 \pm 3\sqrt{6}$$

$$\Rightarrow a_n = \left(\frac{5}{3\sqrt{6}}\right) [(5+3\sqrt{6})^n - (5-3\sqrt{6})^n], n \ge 1$$

Ex 10.14: (Comparable relation)

 $a_n = \#$ of "legal arithmetic expression without parentheses," that are made up of *n* symbols (+, *, /, 0, 1, 2, ..., 9). $a_n = ?$

Sol.
$$(2/2)$$

operation symbols digits $a_n = 10a_{n-1} + 29a_{n-2}, \text{ where } n \ge 3$ $a_1 = 10; a_2 = 100$

Ex 10.15: palindromes of 3, 4, 5 and 6:

(1) 3	(1') 5	(1)	4	1')	6
(2) 1+1+1	(2') 2+1	+2 (2)	1+2+1	2')	2+2+2
	(1") 1+3	+1 (3)	2+2	3')	3+3
	(2") 1+1+1	+1+1 (4)	1+1+1+1	4')	2+1+1+2
				1")	1+4+1
				2")	1+1+2+1+1
				3")	1+2+2+1
				4")	1+1+1+1+1+1

- Sol. i) Add 1 to the first and last summands.
 - ii) Append "1+" and "+1" to the end.

For Let $n \in \mathbb{Z}^+$, let p_n = the number of palindromes of n.

Then
$$\begin{cases} p_n = 2p_{n-2}, \forall n \geq 3 \\ p_1 = 1; p_2 = 2 \end{cases}$$

$$\Rightarrow p_n = \begin{cases} \left(\frac{1}{2} + \frac{1}{2\sqrt{2}}\right) 2^k + \left(\frac{1}{2} - \frac{1}{2\sqrt{2}}\right) 2^k = 2^k = 2^{n/2}, \text{ if } n \text{ is even;} \end{cases}$$

$$(c) \text{ Spring 2024, Justie Su-Tzu Juan}$$

Ex 10.16: auxiliary variables:

Find a recurrence relation for the # of binary sequences of length *n* that have no consecutive 0's.

Sol. (1/4)

(a) For $n \ge 1$, let $a_n = |P_n| = |\{x \mid x \text{ is a binary sequence of length } n$ that have no consecutive 0's\|

$$a_n^{(1)} = |\{x \in P_n \mid x \text{ end in } 1\}| = |P_n^{(1)}|$$

$$a_n^{(0)} = |\{x \in P_n \mid x \text{ end in } 0\}| = |P_n^{(0)}|$$

$$\Rightarrow a_n = a_n^{(1)} + a_n^{(0)} \qquad (P_n = P_n^{(1)} \cup P_n^{(0)}) - (1)$$

Ex 10.16: auxiliary variables:

Find a recurrence relation for the # of binary sequences of length n that have no consecutive 0's.

Sol. (2/4)

①
$$a_{1} = 2:0,1$$

② $\forall n \geq 2, a_{n}: \underline{\text{case 1}}: \underbrace{x \in P_{n-1}^{(0)} \ 0}_{n = 1} \ 1 : a_{n-1}^{(0)}$
 $\underline{\text{case 2}}: \underbrace{x \in P_{n-1}^{(1)} \ 1}_{n = 1} \ 0 : 2 \cdot a_{n-1}^{(1)}$
 $\Rightarrow a_{n} = a_{n-1}^{(0)} + 2a_{n-1}^{(1)}$
and, $\forall y \in P_{n-2} \Rightarrow \underbrace{y \ 1}_{n = 1} \in P_{n-1}^{(1)}$
 $\forall \underbrace{z \ 1}_{n = 1} \in P_{n-1}^{(1)} \Rightarrow z \in P_{n-2}$
 $\therefore a_{n-2} = a_{n-1}^{(1)}$ (3)

§ 10.2 The Second-Order $I_{a_n = a_n^{(1)} + a_n^{(0)}}$ _____

The Second-Order
$$a_n = a_n^{(1)} + a_n^{(0)}$$
 -----(1)
Recurrence Relatio $a_n = a_{n-1}^{(0)} + 2a_{n-1}^{(1)}$ -----(2) ients $a_{n-2} = a_{n-1}^{(1)}$ -----(3)

Ex 10.16: auxiliary variables:

Find a recurrence relation for the # of binary sequences of length n that have no consecutive 0's.

Sol. (3/4)

$$(2) \Rightarrow a_n = \underbrace{a_{n-1}^{(0)} + a_{n-1}^{(1)}}_{a_n = a_{n-1} + a_{n-2}} + a_{n-1}^{(1)} + a_{n-1}^{(1)}$$

$$\therefore a_n = \underbrace{a_{n-1} + a_{n-2}}_{a_{n-1} + a_{n-2}} + a_{n-1}^{(1)} + a_{n-1}^{(1)}$$

$$\Rightarrow \begin{cases} a_n = a_{n-1} + a_{n-2}, \forall n \ge 3 \\ a_1 = 2; a_2 = 3 \quad (11, 01, 10) \end{cases}$$

(c) Spring 2024, Justie Su-Tzu Juan

Ex 10.16: auxiliary variables:

Find a recurrence relation for the # of binary sequences of length n that have no consecutive 0's.

Sol. (4/4)

(b) For $n \ge 1$, let a_n = the number of binary sequence of length n that have no consecutive 0's.

①
$$a_{1} = 2$$
; $a_{2} = 3$
② $\forall n \geq 3$, a_{n} : 1: a_{n-1}
 $n-1$
 a_{n-2}

$$\begin{cases} a_{n} = a_{n-1} + a_{n-2}, n \geq 3 \\ a_{1} = 2; a_{2} = 3 \Rightarrow a_{0} = 1 \end{cases}$$

$$\Rightarrow \begin{cases} a_{n} = a_{n-1} + a_{n-2} \\ a_{0} = 1; a_{1} = 2 \end{cases} (a_{n} = F_{n+2}, n \geq 0) \quad \boxed{\square} \text{Ex 10.11}$$

Ex 10.17: $a_n = \#$ of "arrange" (*n* identical pennies). s.t \otimes and 同列相鄰

$$a_1 = 1: \bigcirc$$

$$a_2 = 1: \bigcirc$$

$$a_3 = 2: \bigcirc$$

$$a_4 = 3: \bigcirc$$

$$a_5 = 5: \bigcirc$$

$$a_6 = 8: \bigcirc$$

$$\Rightarrow a_n = F_n? \Rightarrow \times$$

$$a_7 = 12 \neq 13 = F_7$$

$$a_8 = 18 \neq 21 = F_8$$

$$a_9 = 26 \neq 34 = F_9$$

(Extend)

Ex 10.19:

Sol. Let a_n = the number of ways we can cover a $2 \times n$ chessboard using the two types of tiles shown above.

$$a_1 = 1$$
: two 1 × 1, $a_2 = 5$: four 1 × 1 or one of each.
 $a_3 = 11$: six 1 × 1(1), three 1 × 1(8), no 1 × 1(2).

When $n \ge 3$,

i)
$$2\times(n-1) = :a_{n-1}$$

$$\exists : a_{n-1}$$
 $\therefore a_n = a_{n-1} + 4a_{n-2} + 2a_{n-3}, \forall n \ge 4$
$$\{a_1 = 1; a_2 = 5; a_3 = 11 \}$$

ii)
$$2\times(n-2)$$
 : $4a_{n-2}$

iii)
$$2\times(n-3)$$
 : $2a_{n-3}$