Before §8.4 \& §8.5

Ex 8.17: $A=\{1,2,3,4\}, B=\{u, v, w, x, y, z\}$.

How many 1-1 function $f: A \rightarrow B$ satisfy none of the following conditions: $c_{1}: f(1)=u$ or v

$$
\begin{aligned}
& c_{2}: f(2)=w \\
& c_{3}: f(3)=w \text { or } x \\
& c_{4}: f(4)=x, y \text { or } z
\end{aligned}
$$

Sol.

$$
\begin{aligned}
N\left(\bar{c}_{1} \bar{c}_{2} \bar{c}_{3} \bar{c}_{4}\right)= & S_{0}-S_{1}+S_{2}-S_{3}+S_{4} \\
= & (6!/ 2!)-(5!/ 2!+\ldots) \\
& +(4!/ 2!+\ldots) \\
& -(3!/ 2!+\ldots) \\
& +(2!/ 2!+\ldots)
\end{aligned}
$$

Computer Science and Information Engineering National Chi Nan University

Combinatorial Mathematics

Dr. Justie Su-Tzu Juan

Chapter 8 The Principle of Inclusion and Exclusion

§ 8.4 Rook Polynomials
Slides for a Course Based on the Text
Discrete \& Combinatorial Mathematics (5 ${ }^{\text {th }}$ Edition) by Ralph P. Grimaldi

§ 8.4 Rook Polynomials

Outline

1. Definitions
2. Calculate

§ 8.4 Rook Polynomials

Def: 1. rook (or castle): moved horizontally or vertically over any space.
2. $r_{k}\left(\right.$ or $\left.r_{k}(C)\right)$: number of ways in which k rooks can be placed on C s.t. no two of them can take each other.

Note: 1. $r_{1}=$ the number of squares on the board.
ex:

$$
\begin{aligned}
& r_{1}(C)=6 \quad\left(r_{0}(C)=1\right) \\
& r_{2}(C)= \mid\{\{1,4\},\{1,5\},\{2,4\},\{2,6\},\{3,5\},\{3,6\}, \\
&\{4,5\},\{4,6\}\} \mid=8
\end{aligned}
$$

Def: 3. the rook polynomial $r(C, x)$

$$
\begin{aligned}
& \equiv \forall k \geq 0 \text {, the coefficient of } x^{k}=r_{k}(C) \\
& \Rightarrow \text { i.e. } r(C, x)=\sum_{k=0}^{\infty} r_{k}(C) \cdot x^{k}
\end{aligned}
$$

§ 8.4 Rook Polynomials

$$
r\left(C_{1}, x\right)=1+4 x+2 x^{2}
$$

$$
\begin{equation*}
r\left(C_{2}, x\right)=1+7 x+10 x^{2}+2 x^{3} \tag{2}
\end{equation*}
$$

$$
r(C, x)=1+11 x+40 x^{2}+56 x^{3}+28 x^{4}+4 x^{5}
$$

$$
=r\left(C_{1}, x\right) \cdot r\left(C_{2}, x\right)
$$

Sol.

$$
\begin{aligned}
& r_{3} \text { for } C:\left(\begin{array}{l}
\text { (a) } 3 \text { from } C_{2} \\
\text { (b) } 2 \text { from } C_{2}, 1 \text { from } C_{1}: 10 \cdot 4=40 \\
\text { (c) } 1 \text { from } C_{2}, 2 \text { from } C_{1}: 7 \cdot 2=14
\end{array}\right] \\
& 56=2 \cdot 1+10 \cdot 4+7 \cdot 2=\text { the coefficient of } x^{3} \text { in } \\
& r\left(C_{1}, x\right) \cdot r\left(C_{2}, x\right)
\end{aligned}
$$

§ 8.4 Rook Polynomials

Note: If C is a chessboard made up of pairwise disj. subboards $C_{1}, C_{2}, \ldots, C_{n}$, then $r(C, x)=r\left(C_{1}, x\right) \cdot r\left(C_{2}, x\right) \cdot \ldots \cdot r\left(C_{n}, x\right)$.

$$
\begin{aligned}
& \begin{array}{r}
\text { EX:(a) } \\
\cline { 2 - 3 } \\
\cline { 2 - 3 } \\
\hline \\
\hline \\
\\
\hline
\end{array} \\
& r_{k}(C)=r_{k-1}\left(C_{s}\right)+r_{k}\left(C_{e}\right) \\
& \text { (a) Place one on (*) : } r_{k-1}\left(C_{s}\right) \\
& \text { (b) Do not place on (*): } r_{k}\left(C_{e}\right) \\
& \Rightarrow r_{k}(C) x^{k}=r_{k-1}\left(C_{s}\right) x^{k}+r_{k}\left(C_{e}\right) x^{k} \\
& \therefore \sum_{k=1}^{\infty} r_{k}(C) x^{k}=x \sum_{k=1}^{\infty} r_{k-1}\left(C_{s}\right) x^{k-1}+\sum_{k=1}^{\infty} r_{k}\left(C_{e}\right) x^{k} \\
& \Rightarrow 1+\sum_{k=1}^{\infty} r_{k}(C) x^{k=}=x \cdot r\left(C_{s}, x\right)+\sum_{k=1}^{\infty} r_{k}^{k=1}\left(C_{e}\right) x^{k}+1 \\
& \Rightarrow r(C, x)=x \cdot r\left(C_{s}, x\right)+r\left(C_{e}, x\right)
\end{aligned}
$$

§ 8.4 Rook Polynomials

$$
r(C, x)=x \cdot r\left(C_{s}, x\right)+r\left(C_{e}, x\right)
$$

ex:

$$
\begin{aligned}
& =x\{x(\square)+(\square \square)\}+\left\{x\left(\begin{array}{|}
\square \square
\end{array}\right)+\left(\begin{array}{l}
\square \square \\
\square \square \\
\square \square
\end{array}\right)\right\} \\
& \left.=x^{2}(\square)+2 x(\square)\right)+\left\{x\binom{\square}{\square \square}+(\square)\right\} \\
& =x^{2}(1+2 x)+2 x\left(1+4 x+2 x^{2}\right)+x\left(1+3 x+x^{2}\right)+\{x \\
& =3 x+12 x^{2}+7 x^{3}+x(1+2 x)+\left(1+4 x+2 x^{2}\right) \\
& =1+8 x+16 x^{2}+7 x^{3}
\end{aligned}
$$

§ 8.4 Rook Polynomials

Discussion (10 min):

Ex: Find the rook polynomial for the following chessboard.

(c) Spring 2024, Justie Su-Tzu Juan

§ 8.4 Rook Polynomials

Checklist:

1. Definitions

- rook (or castle)
- $\quad r_{k}\left(\mathbf{o r} r_{k}(C)\right)$
- rook polynomial $r(C, x)$

2. Calculate

- Factoring (pairwise disjoint): $r(C, x)=r\left(C_{1}, x\right) \cdot \ldots \cdot r\left(C_{n}, x\right)$.
- $\quad r_{k}(C)=r_{k-1}\left(C_{s}\right)+r_{k}\left(C_{e}\right)$

Computer Science and Information Engineering National Chi Nan University

Combinatorial Mathematics

Dr. Justie Su-Tzu Juan

Chapter 8 The Principle of Inclusion and Exclusion

§8.5 Arrangement with Forbidden Positions
Slides for a Course Based on the Text
Discrete \& Combinatorial Mathematics (5 ${ }^{\text {th }}$ Edition) by Ralph P. Grimaldi

§ 8.5 Arrangement with Forbidden Positions

Outline

1. Understanding
2. Calculate

§ 8.5 Arrangement with Forbidden Positions

(a) R_{1} will not sit at T_{1} or T_{2}.
(b) R_{2} will not sit at T_{2}.
(c) R_{3} will not sit at T_{3} or T_{4}.
(d) R_{4} will not sit at T_{4} or T_{5}.

Let condition $c_{i}: \mathbf{R}_{i}$ in forbidden position.
$S=5$!
$S_{1}=N\left(c_{1}\right)+N\left(c_{2}\right)+N\left(c_{3}\right)+N\left(c_{4}\right)$
$=(4!+4!)+4!+(4!+4!)+(4!+4!)=7 \cdot(4!)$
$S_{2}: N\left(c_{1} c_{2}\right)=3!\quad N\left(c_{1} c_{3}\right)=3!+3!+3!+3!$
$S_{2}=16 \cdot(3!)$
§ 8.5 Arrangement with Forbidden Positions

(a) R_{1} will not sit at T_{1} or T_{2}.
(b) R_{2} will not sit at T_{2}.
(c) R_{3} will not sit at T_{3} or T_{4}.
(d) R_{4} will not sit at T_{4} or T_{5}.

Sol. (2/2)

$$
\begin{aligned}
& \left.\begin{array}{l}
\Rightarrow 7=r_{1}(C) \\
16=r_{2}(C)
\end{array}\right\} C \text { : } \\
& \Rightarrow \forall 0 \leq i \leq 4, S_{i}=r_{i}(C) \cdot(5-i) \text { ! } \\
& \because r(C, x)=\left(1+3 x+x^{2}\right)\left(1+4 x+3 x^{2}\right) \\
& =1+7 x+16 x^{2}+13 x^{3}+3 x^{4} \\
& \therefore N\left(\bar{c}_{1} \bar{c}_{2} \bar{c}_{3} \bar{c}_{4}\right)=S_{0}-S_{1}+S_{2}-S_{3}+S_{4} \\
& =5!-7(4!)+16(3!)-13(2!)+3(1!) \\
& =\sum_{i=0}(-1)^{i} r_{i}(5-i)!=25
\end{aligned}
$$

§ 8.5 Arrangement with Forbidden Positions

Ex 8.16: two dice: one red; other green.
red green
(a, b) row six times.
If $(1,2),(2,1),(2,5),(3,4),(4,1),(4,5),(6,6)$ did not occur, what's the probability that we obtain all six values on both dices? Sol. (1/2)

§ 8.5 Arrangement with Forbidden Positions

Ex 8.16: two dice: one red; other green.

red green

$(\stackrel{\downarrow}{a}, b)$ row six times.
If $(1,2),(2,1),(2,5),(3,4),(4,1),(4,5),(6,6)$ did not occur, what's the probability that we obtain all six values on both dices? Sol. (2/2)
$\forall 1 \leq i \leq 6$, let condition $c_{i}:(i, x), x \in s(i)$ occur.

$$
\begin{aligned}
& \therefore 6!N\left(\bar{c}_{1} \bar{c}_{2} \cdot \ldots \bar{c}_{6}\right)=(6!) \sum_{i=0}^{6}(-1)^{i} S_{i}=(6!) \sum_{i=0}^{6}(-1)^{i} r_{i} \cdot(6-i)! \\
&=6!\left[6!-7(5!)+17(4!)-19(3!)^{+}+10(2!)-2(1!)+0(0!)\right] \\
&=6!(192)=138240 \\
& \because|S|=296 \\
& \Rightarrow 138240 /(29)^{6} \fallingdotseq \mathbf{0 . 0 0 0 2 3} .
\end{aligned}
$$

§ 8.5 Arrangement with Forbidden Positions
Ex 8.17: $A=\{1,2,3,4\}, B=\{u, v, w, x, y, z\}$.
How many 1-1 function $f: A \rightarrow B$ satisfy none of the following conditions: $c_{1}: f(1)=u$ or v

$$
\begin{aligned}
& c_{2}: f(2)=w \\
& c_{3}: f(3)=w \text { or } x \\
& c_{4}: f(4)=x, y \text { or } z
\end{aligned}
$$

Sol.

$$
\begin{aligned}
& \begin{array}{l}
1 \\
2 \\
2
\end{array} \\
& r(C, x)=(1+2 x)\left(1+6 x+9 x^{2}+2 x^{3}\right) \\
& =1+8 x+21 x^{2}+20 x^{3}+4 x^{4} \\
& \therefore N\left(\bar{c}_{1} \bar{c}_{2} \bar{c}_{3} \bar{c}_{4}\right)=S_{0}-S_{1}+S_{2}-S_{3}+S_{4} \\
& =(6!/ 2!)-8(5!/ 2!)+21(4!/ 2!) \\
& =\sum_{i=0}^{4}(-1)^{i} r_{i}(6-i)!/ 2!=76
\end{aligned}
$$

§ 8.5 Arrangement with Forbidden Positions

$$
\text { ex: } A=\{1,2,3,4,5,6,7,8\}
$$

How many 1-1 function $h: A \rightarrow A$ where $h(i) \neq i, \forall i \in A$. Sol.

$$
\begin{aligned}
& r(C, x)=(1+x)^{8}=\sum_{k=0}^{8}\left({ }_{k}^{8}\right) x^{k} \\
& \therefore N\left(\bar{c}_{1} \bar{c}_{2} \ldots \bar{c}_{8}\right)=\left({ }_{0}^{8}\right) 8!-\left({ }_{1}{ }_{1}\right) 7!+\left({ }_{2}^{8}\right) 6!-\ldots+\left({ }_{8}^{8}\right) 0 \text { ! } \\
& =8![1-1+1 /(2!)-1 /(3!)+\ldots+1 /(8!)] \\
& =d_{8}
\end{aligned}
$$

§ 8.5 Rook Polynomials

Discussion (10 min):
Exercise 8.5.11: A computer dating service wants to match each of four women with one of six men. According to the information these applicants provided when they joined the service, we can draw the following conclusions.

- Woman 1 would not be compatible with man 1,3 , or 6.
- Woman 2 would not be compatible with man 2 or 4.
- Woman 3 would not be compatible with man 3 or 6.
- Woman 4 would not be compatible with man 4 or 5. In how many ways can the service successfully match each of the five women with a compatible partner?

§ 8.5 Arrangement with Forbidden Positions

Checklist:

1. Understanding

- Define "conditions" correctly

2. Calculate

- The Principle of Inclusion and Exclusion
- Rook polynomial

§ 8.5 Rook Polynomials

Let's Kahoot!
https://play.kahoot.it/v2/?quizId=d9638913-594f-4831-9fba-
b88cde64235a\&hostId=e3b5c5c7-c22d-4353-a580-53c46d132332
(modified from holder1149)
(c) Spring 2024, Justie Su-Tzu Juan

Computer Science and Information Engineering National Chi Nan University

Combinatorial Mathematics

Dr. Justie Su-Tzu Juan

Chapter 9 Generating Functions § 9.1 Introductory Examples

Slides for a Course Based on the Text Discrete \& Combinatorial Mathematics (5 ${ }^{\text {th }}$ Edition) by Ralph P. Grimaldi

§ 9.1 Introductory Examples

Outline

1. Observation
2. Definition

§ 9.1 Introductory Examples

$$
\begin{aligned}
& c_{1}+c_{2}+c_{3}+c_{4}=25, \text { with } 0 \leq c_{i} \forall 1 \leq i \leq 4 \\
& c_{1}+c_{2}+c_{3}+c_{4}=25, \text { with } 0 \leq c_{i}<10 \forall 1 \leq i \leq 4 \rightarrow \text { Chap 1 } \\
& c_{1}+c_{2}+c_{3}+c_{4}=25, \text { with } 0 \leq c_{i}<10 \forall 1 \leq i \leq 4 \\
& \text { and } c_{2}: \text { even, } c_{3}: \text { a multiple of } 3 \\
& \rightarrow \text { Generating Function }
\end{aligned}
$$

§ 9.1 Introductory Examples

Ex 9.1: 12 oranges: Grace at least 4, Mary at least 2, Frank at least 2, no more then 5.

Sol.	Grace	4	4	4	4	5	5	5	5	6	6	6	7	7
8														
Mary	3	4	5	6	2	3	4	5	2	3	4	2	3	2
	Frank	5	4	3	2	5	4	3	2	4	3	2	3	2
2														

$$
\begin{aligned}
& \Rightarrow c_{1}+c_{2}+c_{3}=12 \text { where } 4 \leq c_{1}, 2 \leq c_{2}, 2 \leq c_{3} \leq 5 . \\
& f(x)=\left(x^{4}+x^{5}+x^{6}+x^{7}+x^{8}\right)\left(x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right) \\
& \quad\left(x^{2}+x^{3}+x^{4}+x^{5}\right) \\
& 4+3+5=12 \rightarrow x^{4} \cdot x^{3} \cdot x^{5} \\
& 4+4+4=12 \rightarrow x^{4} \cdot x^{4} \cdot x^{4}
\end{aligned}
$$

the number of distributions $=$ the coefficient of x^{12} in $f(x)$ $f(x)$ is called a generating function for the distribution

§ 9.1 Introductory Examples

Note: 1. $\left(x^{4}+\ldots+x^{8}\right)\left(x^{2}+\ldots+x^{6}\right)\left(x^{2}+\ldots+x^{5}\right)$
2. Table faster than G.F.?

Ex 9.2: red, green, white, black jelly beans
How many way can Douglas select 24 of these so that $\left\{\begin{array}{l}\text { white: even } \\ \text { black: at least } 6\end{array}\right.$
Sol.
red, green: $\left(1+x+x^{2}+\ldots+x^{24}\right)$
white: $\left(1+x^{2}+x^{4}+x^{6}+\ldots+x^{24}\right)$
black: $\left(x^{6}+x^{7}+x^{8}+\ldots+x^{24}\right)$
$f(x)=\left(1+x+\ldots+x^{24}\right)^{2}\left(1+x^{2}+x^{4}+\ldots+x^{24}\right)\left(x^{6}+x^{7}+\ldots+x^{24}\right)$
Answer $=$ the coefficient of x^{24} in $f(x)$.

§ 9．1 Introductory Examples

Ex 9．3：$c_{1}+c_{2}+c_{3}+c_{4}=25$ ，if $0 \leq c_{i}$ for all $1 \leq i \leq 4$ ．How many solutions？
Sol．
（1）Let $f(x)=\left(1+x+x^{2}+\ldots+x^{25}\right)^{4} \quad \rightarrow$ polynomial in x the coefficient of x^{25} in $f(x)$
（2）for easier to compute：$\quad \rightarrow$ power series in x Let $g(x)=\left(1+x+x^{2}+\ldots+x^{25}+x^{26}+\ldots\right)^{4}$ 冪級數 Note：$\forall k \geq 26, x^{k}$ are never need．

§ 9.1 Introductory Examples

Checklist:

1. Observation
\square The relationship between the way to find the answer of the problem and the way to calculate some coefficient of a function.
2. Definition
\square Find a generating function for the answer of the problem.

Computer Science and Information Engineering National Chi Nan University

Combinatorial Mathematics

Dr. Justie Su-Tzu Juan
Chapter 9 Generating Functions
§ 9.2 Definition and Examples: Calculational Techniques (1) Slides for a Course Based on the Text
Discrete \& Combinatorial Mathematics (5 ${ }^{\text {th }}$ Edition) by Ralph P. Grimaldi

§ 9.2 Definition and Examples: Calculational Techniques

Def 9.1: Let $a_{0}, a_{1}, a_{2}, \ldots$ be a sequence of real numbers.
The function $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots=\sum_{i=0}^{\infty} a_{i} x^{i}$ is called the generating function for the given sequence.

Ex 9.4: $\forall n \in \mathbb{Z}^{+},(1+x)^{n}=\binom{n}{0}+\binom{n}{1} x+\binom{n}{2} x^{2}+\ldots+\binom{n}{n} x^{n}$
$\Rightarrow(1+x)^{n}$ is the generating function for the sequence

$$
\binom{n}{0},\binom{n}{1}, \ldots,\binom{n}{n}, 0,0,0, \ldots
$$

Ex 9.5: a) $\forall n \in Z^{+},\left(1-x^{n+1}\right)=(1-x)\left(1+x+x^{2}+\ldots+x^{n}\right)$
$\Rightarrow\left(1-x^{n+1}\right) /(1-x)$ is the generating function for the sequence $1,1,1, \ldots, 1,0,0,0, \ldots$. $n+1$ 個

