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Def: 1) (A, R) is called a poset (partially ordered set) 
º A relation R on A is a partial order.

2) A is called a poset º $ a relation R on A
s.t. (A, R) is a poset.

§ 7.3 Partial Orders: Hasse Diagrams

N Z Q R C
closed under +, ×
but not –

x + 5 = 2?

2x + 3 = 4? x2 – 2 = 0 x2 + 1 = 0

"r1 ¹ r2 Þ either  
r1 < r2 or r1 > r2 ? ´
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EX 7.34: Let A = {x | x is a course offered at a college}
Define R on A by xRy if x, y are the same course or 

if x is a prerequisite for y.
Þ R makes A into a poset.

Ex 7.35: Let A = {1, 2, 3, 4}
Define R = {(x, y) | x, y Î A, x | y}
R = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (1, 3), (1, 4), (2, 4)} 

is a partial orders.
\ (A, R) is a poset.

§ 7.3 Partial Orders: Hasse Diagrams
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Ex 7.36: 
A =  a set of tasks that must be performed in building a house
R on A by xRy if x, y denote the same task or

    if task x must be performed before the start of task y.
Þ A is a poset

ex: (a) (b) 

§ 7.3 Partial Orders: Hasse Diagrams
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∵ (1, 2), (2, 1) Î R
with 1 ¹ 2 : A

∵ (1, 2), (2, 3) Î RÞ (1, 3) Î R
but (3, 1) Î R and 1 ¹ 3 : A
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Note:  In a digraph G = (A, R),  when
(1) $ a ¹ b Î A, (a, b), (b, a) Î R, or
(2) $ a directed cycle
then R cannot be transitive and antisymmetric.

\ (A, R) is not a poset.

Ex 7.37: Hasse diagram for R : Give G = (A, R)
step 1: eliminate the loops at x, " x Î A.
step 2: eliminate the edges is enough to in sure the existence 

by transitive. (if $ (x, y), (y, z) Î R, eliminate (x, z))
step 3: eliminate the directions : the directions are assumed 

to go from the bottom to the top.

ex:

§ 7.3 Partial Orders: Hasse Diagrams
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Ex 7.38: (a) U = {1, 2, 3} (b) A = {1, 2, 4, 8}
 A = P(U), R = Í  R = {(x, y) | x, y Î A, x | y}

(d) A = {2, 3, 5, 6, 7, 11, 12, 35, 385}
R = {(x, y) | x, y Î A, x | y}

(c) A = {2, 3, 5, 7}
R = {(x, y) | x, y Î A, x | y}

§ 7.3 Partial Orders: Hasse Diagrams

{1, 2, 3}

{1, 2} {1, 3} {2, 3}

{1} {2} {3}
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Ex 7.39: Let A = {1, 2, 3, 4, 5}, R on A defined by xRy if x £ y
A is a poset, denoted by (A, £).
B = {1, 2, 4} Ì A; B ´ B Ç R is a partial order on B 
= {(1, 1), (2, 2), (4, 4), (1, 2), (1, 4), (2, 4)}

Note: If R is a partial order on A, then " B Ì A, (B, (B´B)ÇR) 
is a poset.

ex: {f, {1}, {3}, {1, 3}, {1, 2, 3}} = B. see

Def 7.16: 1) A partial order R on A is called a total order
if " x, y Î A, either xRy or yRx.

 2) R is a total order on A, then A is called totally ordered.

§ 7.3 Partial Orders: Hasse Diagrams



(c) Spring 2024, Justie Su-Tzu Juan 9

Ex 7.40:  (a) (N, £) is a total order.
(b) U = {1, 2, 3}, (P(U)), Í) is not a total order.

∵ {1, 2}, {1, 3} Î P(U), but {1, 2}R{1, 3}, {1, 3}R{1, 2}.
(c) Ex 7.38 (b) shows a total order. see

Ex 7.41: 請自己看！

Q: Whether we can take the partial order R, given by the Hasse 
diagram, and fine a total order T on these tasks for which R Í T?

ex:

§ 7.3 Partial Orders: Hasse Diagrams
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Topological Sorting Algorithm (for a poset (A, R) with |A| = n)

ex: E < B < A < C < G < F < D
      Þ 12 possible answers

§ 7.3 Partial Orders: Hasse Diagrams

Step 1: Let k = 1. Let H1 = the Hasse diagram for (A, R)
Step 2: Select vk Î V(Hk) s.t. no edge in Hk starts at vk
Step 3: If k = n, output T: vn < vn–1 < … < v2 < v1 and STOP

 else (k < n) { Hk+1 := Hk – vk; k := k + 1;
      go to Step2.}

G F D

C

B E

A
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Def 7.17: (A, R) is a poset:
1) x Î A is called a maximal element of A
º " a Î A, a ¹ x Þ xRa º " a ÎA, xRa Þ x = a.

2) y Î A is called a minimal element of A
º " b Î A, b ¹ y Þ bRy º " b ÎA, bRy Þ y = b.

Ex 7.42: Let U = {1, 2, 3}, A = P(U)
(a) For the poset (A, Í), the maximal element = U, and

the minimal element = f
(b) Let B = A – {{1, 2, 3}},  In (B, Í):

 the maximal elements = {1, 2}, {1, 3}, {2, 3}; 
the minimal element = f.

§ 7.3 Partial Orders: Hasse Diagrams



minimal element maximal element
(b) 1 8
(c) 2, 3, 5, 7 2, 3, 5, 7
(d) 2, 3, 5, 7, 11 12, 385
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Ex 7.43:  1) (Z, £) is a poset: the maximal element = None; 
the minimal element = None.

 2) (N, £) is a poset: the minimal element = 0; 
the maximal element = None (empty set).

Ex 7.44: In Ex 7.38 (b), (c), (d): see

§ 7.3 Partial Orders: Hasse Diagrams
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Thm 7.3: If (A, R) is a poset and A is finite, then A has both a 
maximal and a minimal element.

Proof. maximal: 
Let a1 Î A, If " a Î A, a ¹ a1, a1Ra Þ a1 is maximal

 else $ a2 Î A, a2 ¹ a1, a1Ra2:
If " a Î A, a ¹ a2, a2Ra Þ a2 is maximal
else $ a3 Î A, a3 ¹ a2, a2Ra3:

∵ R is antisymmetric and a1Ra2\ a3 ¹ a1
∵ a1Ra2 and a2Ra3 \ a1Ra3
If " a Î A, a ¹ a3, a3Ra Þ a3 is maximal
else …

 Continuing in this manner, ∵ A is finite
 \ We get an Î A with " a Î A, a ¹ an, anRa
 Þ an is maximal.

minimal element can be proved in a similar way.

§ 7.3 Partial Orders: Hasse Diagrams
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Note:  In the topological sorting algorithm: Step2 selecting a 
maximal element from (A, R) or (B, R'), where B Í A; 
R' = (B´B)ÇR.
Þ By Thm 7.3, $ at least one such element!

Def 7.18: (A, R) is a poset:
1) x Î A is called a least element º " a Î A, xRa.
2) y Î A is called a greatest element º " a Î A, aRy.

Ex 7.45: Let U = {1, 2, 3}, R = Í, the subset relation
(a) A = P(U): (A, Í): least element = f; greatest element = U
(b) B = P(U) – {f}: (B, Í): greatest element = U; 

no least element, 
(but $ 3 minimal element.)

§ 7.3 Partial Orders: Hasse Diagrams
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Ex 7.46: In Ex 7.38: see

Thm 7.4: If the poset (A, R) has a greatest (least) element, 
then the element is unique.

Proof. Suppose $ x, y Î A and both are greatest elements
   ∵ x is a greatest element \ yRx
   ∵ y is a greatest element \ xRy
   Þ ∵ R is antisymmetric \ x = y
   The proof for the least element is similar.

§ 7.3 Partial Orders: Hasse Diagrams

least element greatest element
(b) 1 8
(c) no no
(d) no no
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Def 7.19: Let (A, R) be a poset with B Í A:
1) x Î A is called a lower bound of B º xRb, " b Î B.
2) y Î A is called a upper bound of B º bRy, " b Î B.
3) A lower bound of B, x' ÎA is called a greatest lower bound 

(glb) of B º " lower bounds x'' (¹ x') of B, x''Rx'.
4) A upper bound of B, y' ÎA is called a least upper bound 

(lub) of B º " upper bounds y'' (¹ y') of B, y'Ry''.

Ex 7.47: U = {1, 2, 3, 4}, A = P(U), B = {{1}, {2}, {1, 2}}:
In (B, Í): upper bounds: {1, 2}, {1, 2, 3}, {1, 2, 4}, {1, 2, 3, 4}

lub: {1, 2} (Î B)
glb: f (Ï B)

§ 7.3 Partial Orders: Hasse Diagrams
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Ex 7.48: R = £ (“less than or equal to”)
a) A = R, B = [0, 1]: B has glb: 0 (Î B) lub: 1 (Î B)

 A = R, C = (0, 1]: C has glb: 0 (Ï C) lub: 1 (Î C)
b) A = R, B = {q ÎQ | q2 < 2}: B has glb: – (Ï B) lub: (Ï B)
c) A = Q, B = {q ÎQ | q2 > 2}: B has no glb or lub.

Thm 7.5: If (A, R) is a poset and B Í A, then B has at most one 
lub (glb).

Def 7.20: The poset (A, R) is called a lattice
 º " x, y Î A, lub{x, y} and glb{x, y} both exist in A

($ a, b Î A, which a = lub{x, y}, b = glb{x, y})

§ 7.3 Partial Orders: Hasse Diagrams

2
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Ex 7.49: A = N, define R on A by xRy if x £ y: (N, £):
lub{x, y} = max{x, y}; glb{x, y} = min{x, y}
Þ (N, £) is a lattice.

Ex 7.50: U = {1, 2, 3} in (P(U), Í): " S, T Î P(U)
lub{S, T} = SÈT (Î P(U)); glb{x, y} = SÇT (Î P(U))
Þ (P(U), Í) is a lattice.

Ex 7.51: In Ex 7.38 (d): see
lub{2, 3} = 6; lub{3, 6} = 6; lub{5, 7} = 35; lub{7, 11} = 385; …
glb{3, 6} = 3; glb{2, 12} = 2; glb{35, 385} = 35; …
but $ glb{2, 3} Î A, $ glb{5, 7} …

Þ this poset is not a lattice.

Q3:

§ 7.3 Partial Orders: Hasse Diagrams
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Ex 7.52: A = {1, 2, 3, …, 10}, each of (a), (b), (c) determines a 
partition of A:

a) A1 = {1, 2, 3, 4, 5}, A2 = {6, 7, 8, 9, 10}.
b) A1 = {1, 2, 3}, A2 = {4, 6, 7, 9}, A3 = {5, 8, 10}.
c) Ai = {i, i + 5}, 1 £ i £ 5.

Note: Each element of A belongs to exactly one cell in each 
partition.
(" x Î A, $! i* Î I, s.t. x Î Ai* for any partition {Ai}iÎI)

Ex 7.53: Let A = R, " i Î Z, let Ai = [i, i+1)
Þ {Ai}iÎZ is a partition of R

§ 7.4 Equivalence Relations and Partitions
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Def 7.22: Let R be an equivalence relation on a set A. " x Î A, 
the equivalence class of x, denoted by [x] º {y Î A | yRx}

Ex 7.54: Define R on Z by xRy if 4 | (x – y)
[0] = {…, –8, –4, 0, 4, 8, …} = {4k | k Î Z}
[1] = {4k+1 | k Î Z}; [2] = {4k+2 | k Î Z}; [3] = {4k+3 | k Î Z};
[4] = [0] = [8] = … ; [5] = [1] = [9] = …; 
[6] = [2] = [10] = …; …

e.g.: [6] = [2] = [–2]; [51] = [3], …
Þ {[0], [1], [2], [3]} provides a partition of Z.

Note: The index set for the partition is implicit.

§ 7.4 Equivalence Relations and Partitions



(c) Spring 2024, Justie Su-Tzu Juan 25
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Thm 7.6: R is an equivalence relation on A, and x, y Î A, then
(a) x Î [x]
(b) xRy Û [x] = [y]
(c) [x] = [y] or [x] Ç [y] = f back

Proof.  (1/2)
(a) ∵ R is reflexive
 (b) (Þ) " w Î [x], wRx

  ∵xRy and R is transitive Þ wRy
Þ w Î [y] \ [x] Í [y] …(1)

" t Î [y], tRy
∵ R is symmetric \ xRy Þ yRx
Þ ∵ tRy and yRx and R is transitive \ tRx

                       Þ t Î [x]     \ [y] Í [x]…(2)
by (1), (2), [x] = [y].

§ 7.4 Equivalence Relations and Partitions
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§ 7.4 Equivalence Relations and Partitions
Thm 7.6: R is an equivalence relation on A, and x, y Î A, then

(a) x Î [x]
(b) xRy Û [x] = [y]
(c) [x] = [y] or [x] Ç [y] = f

Proof.  (2/2)
(b) (Ü) If [x] = [y], by (a), x Î [x]  Þ x Î [y]  Þ xRy
(c) (p Ú q) Û (¬p Ù ¬q ® F0) (Prove by contradiction)

If [x] ¹ [y] and [x] Ç [y] ¹ f, 
then let v Î A, s.t. v Î [x] Ç [y]

    that is, v Î [x] and v Î [y]
Þ vRx and vRy
∵ R is symmetric \ vRx Þ xRv
∵ xRv and vRy Þ xRy
By (b), xRy Þ [x] = [y] ®¬
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Ex 7.56: 
(a) A = {1, 2, 3, 4, 5}, 

 R = {(1, 1), (2, 2), (2, 3), (3, 2), (3, 3), (4, 4), (4, 5), (5, 4), (5, 5)}
 Þ R is an equivalence relation on A:

Sol.
       [1] = {1}; [2] = {2, 3} = [3]; [4] = {4, 5} = [5]
       A = [1] È [2] È [4]  ([1] Ç [2] = f = [1] Ç [4] = [2] Ç [4])
       \ {[1], [2], [4]} determines a partition of A

§ 7.4 Equivalence Relations and Partitions
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Ex 7.56: 
(b) In Ex 7.16 (d),  A = {1, 2, 3, 4, 5, 6, 7}, B = {x, y, z}, 

 f: A ® B is the onto function, 
f = {(1, x), (2, z), (3, x), (4, y), (5, z), (6, y), (7, x)}
 Define R on A by aRb if f(a) = f(b) was shown to be an 
equivalence relation:

Sol.
f–1(x) = {1, 3, 7} = [1] (= [3] = [7])
f–1(y) = {4, 6} = [4] (= [6]) 
f–1(z) = {2, 5} = [2] (= [5])
 A = [1] È [4] È [2] = f–1(x) È f–1(y) È f–1(z) 
 \ {f–1(x), f–1(y), f–1(z)} determines a partition of A. 

§ 7.4 Equivalence Relations and Partitions
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Ex 7.58: A = {1, 2, 3, 4, 5, 6, 7}. If R induces the partition of A
= {1, 2} È {3} È {4, 5, 7} È {6}. What is R?

Sol.
∵ {1, 2} Þ [1] = {1, 2} = [2]

Þ (1, 1), (1, 2), (2, 1), (2, 2) Î R
{4, 5, 7} Þ [4] = [5] = [7] = {4, 5, 7}

Þ {4, 5, 7} ´ {4, 5, 7} Í R
：

 \ R = ({1, 2}´{1, 2}) È ({3}´{3}) È ({4, 5, 7}´{4, 5, 7})
È ({6}´{6})

|R| = 22 + 12 +32 + 12 = 15

§ 7.4 Equivalence Relations and Partitions
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Thm 7.7: A is a set: 
(a) Any equivalence relation R on A induces a partition of A.
(b) Any partition of A gives rise to an equivalence relation R

on A.
Proof. 

(a) By Thm 7.6 (a), (c). see

(b) For any partition {Ai}iÎI of A,
Define R on A by xRy if x and y are in the same cell of the 
partition (R = {(x, y) | $ i Î I, s.t. x Î Ai and y Î Ai}) 
need to verify R is an equivalence relation ® reader

§ 7.4 Equivalence Relations and Partitions
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Thm 7.8: " set A: $ 1-1 correspondence between the set of 
equivalence relations on A and the set of partition of A.

Proof. 
EXERCISE 7.4 (16)

Ex 7.59: 
(a) A = {1, 2, 3, 4, 5, 6}. How many relations on A are equivalence 

relation?
Sol.
(a) From Sec 5.3, using the Stirling numbers of the second kind,

  $       different partition of A.
 Þ $ 203 equivalence relation on A.

§ 7.4 Equivalence Relations and Partitions
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Ex 7.59: 
(b) How many of the equivalence relation in (a) satisfy 1, 2 Î [4]?
Sol.
(b) Identifying 1, 2, 4 as the “same”.

Þ Let B = {1, 3, 5, 6}.
\ $      equivalence relation on A for which 

[1] =[2] = [4].

Note: If A is finite with |A| = n, then " n £ r £ n2, 
$ an equivalence relation R on A with |R| = r
Û $ n1, n2, …, nk Î Z+ s.t.  And                . 

§ 7.4 Equivalence Relations and Partitions
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Discussion:
Ex 7.4.11: How many of the equivalence relations on A = {a, b, c, 

d, e, f} have 
(a) exactly two equivalence classes of size 3?
(b) exactly one equivalence class of size 3? 
(c) one equivalence class of size 4?
(d) at least one equivalence class with three or more 
elements?

§ 7.4 Equivalence Relations and Partitions
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