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§ 7.3 Partial Orders: Hasse Diagrams

N >/ > Q » R
closed under +,- 2, +3=4?2? x2-2=0 x2+1=0

but not — .
Vry# r, = either
x+5=2? ri<r,orry>rnr

0

Def: 1) (4, R) is called a poset (partially ordered set)
= A relation R on A is a partial order.
2) A is called a poset =3 a relation R on 4
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§ 7.3 Partial Orders: Hasse Diagrams

EX 7.34: Let A = {x | x is a course offered at a college}
Define R on A by xRy if x, y are the same course or
if x is a prerequisite for y.
= R makes A into a poset.

Ex 7.35: Let A = {1, 2, 3, 4}
Define R = {(x,y) | x,y € 4, x| y}
R=1{1, 1), 2,2), 3, 3), 4 4),{d,2), 1, 3), (1,4), (2, 4)}
is a partial orders.
S (A, R) is a poset.
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§ 7.3 Partial Orders: Hasse Diagrams

Ex 7.36:

A = a set of tasks that must be performed in building a house
R on A by xRy if x, y denote the same task or

if task x must be performed before the start of task y.
— A is a poset

1 1 "
(1,2, DeR v (1,2), (2,3) € R=> (L I)e

with 1 %2 : X but (3, 1) € % and L@
' /: }% l’ "',:‘f ‘.:jl?' ;;. ” it v
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§ 7.3 Partial Orders: Hasse Diagrams

Note: In a digraph G = (4, R), when
- (M) 3a=be A, (b)), ac R, or
2)da dlrected cycle
then R cannot be transitive and antisymmetric.
. (4, R) is not a poset.

Ex 7.37: Hasse diagram for R : Give G = (4, R)
step 1: eliminate the loops atx, V x € A.
step 2: eliminate the edges is enough to in sure the existence
by transitive. (if 3 (x, ), (1, 2) € R, eliminate (x, 7))
step 3: eliminate the directions : the directions are assumed_
to go from the bottom to the top. skl |

€X.
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§ 7.3 Partial Orders: Hasse Diagrams

Ex 7.38: (a) U = {1, 2, 3} tu (b) A ={1,2,4,8) sk
A=W, R=c R={x,p) | x,y € A, x|y}
;{l, 2, 3}2 8

4
2
1

d)A4=1{2,3,5,6,7, 11, 12, 35, 385}
ﬂff {p)|x,yeAd x|y}
acC 12 o

» 3,5, 7}
back R={xp) |x,y € A, x|y}

o © o o 6
back -
= 2 3 S 7 A TN
2 3~ 7 b1l
\ ,‘L" f £
W TN ’ 1A
A s, '
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§ 7.3 Partial Orders: Hasse Diagrams

Ex 7.39: Let A=1{1,2,3,4,5}, R on A defined by xRy if x < y
A is a poset, denoted by (A4, <).
={1,2,4} c A; Bx BN R is a partial order on B

=i, 1),2,2),(4,4),d,2),1,4), (2, 4)j

Note: If R is a partial order on 4, then V B c A4, (B, (BXxB)NR)
is a poset.

€X. {¢9 {1}9 {3}9 {19 3}9 {19 29 3}} = B. =

Def 7.16: 1) A partial order R on A4 is called a total order |
if V x, y € A, either xRy or yRx.
2) R is a total order on A, then A4 is called tS ally
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§ 7.3 Partial Orders: Hasse Diagrams

Ex 7.40: (a) (IN, <) is a total order.
(b) U= {1, 2, 3}, (P(U)), ©) is not a total order.
{19 2}9 {19 3} = ?(?,l,), but {19 2}‘?{{19 3}9 {19 3}‘%{19 2}
(c¢) Ex 7.38 (b) shows a total order. ..

Ex 741: cFHCE |

Q: Whether we can take the partial order R, given by the Hasse
diagram, and fine a total order J on these tasks for which R c 9?

G F D
€X.:
C
—»
A ?
B E
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§ 7.3 Partial Orders: Hasse Diagrams

Topological Sorting Algorithm (for a poset (4, R) with |[4| = n)

Step 1: Let £ = 1. Let H, = the Hasse diagram for (4, R)
Step 2: Select v, € V(H,) s.t. no edge in H, starts at v,
Step 3: If k=n, output 5: v, <v, ; <...<v,<v, and STOP
else(k<n){H,:=H,—v,; k:=k+1;
go to Step2.;

ex: E<B<A<C<G<F<D G F D
= 12 possible answers
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§ 7.3 Partial Orders: Hasse Diagrams

Def 7.17: (A, R) is a poset:
1) x € Ais called a maximal element of A
=VaeAd,azx=>xRa=V a €A, xRa = x=a.
2) y € Ais called a minimal element of 4

=VbeA,b#y=>bRy=V b eA, bRy = y=0>h.

Ex 742: Let U = {1, 2, 3}, A = P(U)
(a) For the poset (4, <), the maximal element = U, and
the minimal element = ¢
(b) Let B=A - {{1, 2, 3}}, In (B, ©):
the maximal elements = {1, 2}, {1, 3}, {2, 3};
the minimal element = ¢.
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§ 7.3 Partial Orders: Hasse Diagrams

Ex 7.43: 1) (Z,<) is a poset: the maximal element = None;

the minimal element = None.
2) (N, 2) is a poset: the minimal element = 0;

the maximal element = None (empty set).

Ex 7.44: In Ex 7.38 (b), (¢), (d): s

minimal element | maximal element
(b) 1 8
(¢) 2,3,5,7
(d) 2,3,5,7,11
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§ 7.3 Partial Orders: Hasse Diagrams

Thm 7.3: If (4, R) is a poset and A is finite, then 4 has both a
maximal and a minimal element.
Proof. maximal:
Leta, e A, IfVaeA a+a,aRa = a,is maximal
else d a, € 4, a, # a,, a,Ra,:
IfVaeA a+#a,aRa = a,is maximal
else d a; € A, a; # a,, a,Ra,:
R is antisymmetric and a,Ra, ... a; # a,
“ a,Ra, and a,Ra, .. a,Ra,
IfVaeA a#ay;a;Ra = a; is maximal
else . wll
Contlnulng in this manner, = A4 IS fmlten‘~ =
. Wegeta, € AwithV a € 4,a#¢ 1 VR
:> a, is maximal. il _L r
minimal element can be proved in a 81mllar %ﬂa_'_ .
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§ 7.3 Partial Orders: Hasse Diagrams

Note: In the topological sorting algorithm: Step2 selecting a
maximal element from (4, R) or (B, R'), where B  A;
R' = (BxB)NAR.
= By Thm 7.3, 3 at least one such element!

Def 7.18: (4, R) is a poset:
1) x € A is called a least element=V a € A, xRa.
2) y € A is called a greatest element=V a € A, aRy.

Ex 7.45: Let U = {1, 2, 3}, R = c, the subset relation

(a) A =P(W): (A, ©): least element = @; greatest elemeﬁ
(b) B=2(U) — {¢}: (B, ©): greatest element = U; s ot
no least element, TP A

? ey g’f
?Iﬁ"‘\ yr';'.-a“'\ £

(but 3 3 minimal element.

wé

e N
]
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§ 7.3 Partial Orders: Hasse Diagrams

Ex 7.46: In Ex 7.38: ..

least element | greatest element
(b) 1 3
(¢) no no
(d) no no

Thm 7.4: If the poset (4, R) has a greatest (least) element,
then the element is unique.
Proof. Suppose dx,y € A and both are greatest elements

- x is a greatest element .. yRx
* yis a greatest element .. xRy
= R is antisymmetric .. x=y

The proof for the least element is similar.
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§ 7.3 Partial Orders: Hasse Diagrams

Def 7.19: Let (A, R) be a poset with B c A4:
1) x € A is called a lower bound of B=xRb,V b € B.
2) y € A is called a upper bound of B=bRy, V b € B.
3) A lower bound of B, x' €A4 is called a greatest lower bound
(2lb) of B =V lower bounds x'" (# x') of B, x""Rx".
4) A upper bound of B, y' €A is called a least upper bound
(lub) of B =V upper bounds y'"' (') of B, y'Ry"".

Ex747: U=4{1,2,3,4}, A=P(WN), B={{1}, {2}, {1, 2}}:
In (B, ©): upper bounds: {1, 2}, {1, 2, 3}, {1, 2, 4§, {1, 2, 3, 4}
lub: {1, 2} (¢ B) -i
olb: ¢ (¢ B)
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§ 7.3 Partial Orders: Hasse Diagrams

Ex 7.48: R = < (“less than or equal to”)

a)A=R, B=10,1]: B has glb: 0 (¢ B) lub: 1 (¢ B)
A=R,C=(0,1]: Chas glb: 0 (¢ O) lub: 1 (¢ ()

b)A=R,B=1{q € Q| ¢><2}: Bhas glb: —/2 (¢ B) lub: /2(¢ B)

c)A=Q, B={q € Q| ¢*>2}: B has no glb or lub.

Thm 7.5: If (A, R) is a poset and B — A, then B has at most one
lub (glb).

Def 7.20: The poset (4, R) is called a lattice
=V x,y € 4, lub{x, y} and glb{x, y} both exist i
(3 a, b € A, which a =lubix, y}, b = glb{x,

rw

“é‘ﬂ :
,w
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§ 7.3 Partial Orders: Hasse Diagrams

Ex 7.49: A =N, define £ on A by xRy if x < y: (IN, £):

lub{x, y} = maxix, y}; glb{x, y} = min{x, y}
= (N, ) is a lattice.

Ex7.50: U={1,2,3} in (P(U),=): VS, T € P(N)
lub{sS, T} = SUT (e (U)); glb{x, y} =SNT (e P(U))
= (P(W), <) is a lattice.

Ex 7.51: In Ex 7.38 (d): ..
[ub{2, 3} = 6; Iub{3, 6} = 6; lub{5, 7} = 35; lub{7 11} 385;
glb{3, 6} = 3; glb{2, 12} = 2, glb{35 385} =35; -
but A glb{2, 3} € A, A glb{5, 7} ..
—> this poset is not a lattice.

Q3:
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§ 7.3 Partial Orders: Hasse Diagrams
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1. Hasse diagram
O Topological Sorting Algorithm

2. Special Elements
OO0 Maximal, minimal
O Least, greatest

O Lower bound, upper bound
O glb,lub

4. Special Poset
OO0 Total Order
O Lattice
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§ 7.4 Equivalence Relations and Partitions
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§ 7.4 Equivalence Relations and Partitions

Note: 1) If A # ¢, R = the equality relation.
= (A4, R) is a equivalence relation.
= establishes the property of “sameness” on A.
2)If A =7, R defined by xRy if 2 | (x —y).
= (Z, R) is a equivalence relation.
= splits Z into two subsets consisting of the odd and
even integers.

Def 7.21: A: set; I: indexset; Vie I, 9+ A, c A
1) {A};_,1s a partition of A4 if

(a) A= U;c;A; and (b) V i, j € I where i #j, A; (A ‘i

2) Each A, is called a cell (or block) of the partltl n. » .«.'f';.,‘
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§ 7.4 Equivalence Relations and Partitions

Ex752:4={1,2,3, ..., 10}, each of (a), (b), (¢) determines a
partition of A4:
a)A,=1{1,2,3,4,5},4,=16,7,8,9, 10}.
b)A,={1,2,3},A,=1{4,6,7,9}, A; = {5, 8, 10}.
)A;={,i+5},1<i<5.

Note: Each element of 4 belongs to exactly one cell in each
partition.
(Vx e A,3!i* € I, s.t. x € A for any partition {4;};_;)

Ex753: LetA=R,Viel/ZletA;=]iitl)
= {A;},.~ is a partition of R
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§ 7.4 Equivalence Relations and Partitions

Def 7.22: Let R be an equivalence relation on aset 4. V x € A,
the equivalence class of x, denoted by [x] = {y € 4 | yRx}

Ex 7.54: Define R on Z by xRy if 4 | (x — p)
0]=4...,-8,-4,0,4,8, ...} ={4k | k € /}

1 —{4k+1|keZ} [2]—{4k+2|keZ} [3] = {4k+3 | k € /};
4] =[0]=[8]=...5[SI=[1]=[9]=...;

6]=12]=[10] =...; ...

e.g.: [6] = [2] = [-2]; [31] = [3], ...
= {[0], [1], [2], [3]} provides a partition of /. e 1|

Note: The index set for the partition is implicit.
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§ 7.4 Equivalence Relations and Partitions

Ex 7.55: Define R on Z by aRRb if a*> = b* (a = £b).

1) R is an equivalence relation:
l.VYaeZ,a*>=a* = aRa
2.Va,beZ ifaRb= a*>*=b*> = b>*=a*> = bRa
3.Va,b,ceZ,ifaRb and bRc =

a>=b*and b*=c? = a*=? = aRc

2) What can we say about the corresponding partition of Z?
“ 0] =103, [1] = {1, 13, [2] = {2, -2, ...
In general, V n € /%, [n] = { —n, n}

.. The partition: Z = U, _oln] = U, epyln]

= {0} U Upez+(nl
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§ 7.4 Equivalence Relations and Partitions

Thm 7.6: R is an equivalence relation on 4, and x, y € A4, then
(a) x € [x]
(b) xRy < [x] = |yl
(© [x] =[ylor[x] N[yl =¢ v
Proof. (1/2)
(a) ~ R is reflexive
(b) =)V we |x], wRx
xRy and R is transitive = wRy
=>wely] .. Ixlch]...(1)
Vtely], tRy
v Ris symmetric . xRy = yRx
=~ tRy and yRx and R is transitive ..
=>tel|x] .. [yl clx]...(2)
by (1), (2), [x] = [yl
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§ 7.4 Equivalence Relations and Partitions

Thm 7.6: R is an equivalence relation on 4, and x, y € A4, then
(a) x € [x]
(b) xRy < [x] = |yl
© [x]=Dlorx]n[y]=¢
Proof. (2/2)
(b) (&) If [x] =[yl, by (a), x € [x] = x € [y] = xRy
©) (pvVqg)e (—p A—g—> Fy) (Prove by contradiction)
If [x] # [y] and [x] N [y] = 4,
thenletv € A4, s.t.v € [x] N [y]
thatis, v € [x] and v € [y]
= vRx and vRy
* Ris symmetric .. vRx = xRy
xRy and vRy = xRy
By (b), xRy = [x] =[y] >«
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§ 7.4 Equivalence Relations and Partitions

Ex 7.56:

(a)A4=14{1,2,3,4,5},
Rr=1{1,1),(2,2),(2,3),3,2),3,3), (4,4, 4,5), 5, 4, 5, 5)}
— R is an equivalence relation on A:

Sol.

[1] = {135 [2] = {2, 3} = [3]; [4] = {4, 5} =[]
A=[1]V 2]V [4] (1] N [2]=¢=[1] N [4] =[2] N [4])
= {[1], [2], [4]} determines a partition of A
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§ 7.4 Equivalence Relations and Partitions

Ex 7.56:
(b)InEx7.16 (d), A={1,2,3,4,5,6,7}, B={x,y, z},
f: A —> B is the onto function,
=11, x), (2, 2), 3,x), (4, ), (5, 2), (6, ), (7, x)}
Define R on A by afRb if f(a) = f(b) was shown to be an
equivalence relation:

Sol.
1) ={1,3,7y=[1] (= [3] = [7])
1) =14, 6} = [4] (= [6])
£1@) = 12,5} = 21 (= [5) ]
A=V 4V 2] =) V1) Y fiE) i
S A1), (), f1(2)} determines a partition of 4SS

:
¥
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§ 7.4 Equivalence Relations and Partitions

Note: V nonempty sets A, Bif f: A — B is an onto function
= A =Upep f~1(b) and {f'(b) | b €B} determines a partition of A.

Ex 7.57: In C++:

union union
int a; int up;
int c; int down;
int p; e
;

= a, ¢, p share one memory location;

up, down share another memory location
. all variable is partitioned by the equivalence relat
where v, Rv, if v,, v, share the same memory o n.
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§ 7.4 Equivalence Relations and Partitions

Ex7.58:4=1{1,2,3,4,5,6,7}. If R induces the partition of A4
={1,2} U {3l U {4,5, 7} U {6}. What is R?

Sol.
={1,1),1,2),2,1),2,2) e R
435, T=141=151=1711=#4,5,7}
= {457 < 4,5 c R

LR =11, 2%, 2})U({3}><{3})U({4 S, T3xi4, 3, 7})

U ({16}x16})
R =22+ 12432+ 12=15
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§ 7.4 Equivalence Relations and Partitions

Thm 7.7: A is a set:
(a) Any equivalence relation R on 4 induces a partition of A.
(b) Any partition of A4 gives rise to an equivalence relation R

on A.
Proof.

(a) By Thm 7.6 (a), (¢). se

(b) For any partition {4;};_; of A,
Define R on A by xRy if x and y are in the same cell of the
partition (R={(x,y)|die l,st.x e A;andy € A})
need to verify R is an equivalence relation — reader = |

L
T L L
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. . S(m, n) — %ZZZO (_l)k( n kj(n B k)m
§ 7.4 Equivalence Relations and P n: n—

Thm 7.8: V set A: 3 1-1 correspondence between the set of

equivalence relations on 4 and the set of partition of A.
Proof.

EXERCISE 7.4 (16)

Ex 7.59:

(a)4=1{1,2,3,4,5,6}. How many relations on A are equivalence
relation?

Sol.
(a) From Sec 5.3, using the Stirling numbers of the second kind,

3 Z §(6,i) = 203 different partition of 4.
= 3203 equlvalence relation on A.
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§ 7.4 Equivalence Relations and P

Ex 7.59:
(b) How many of the equivalence relation in (a) satisfy 1, 2 € [4]?
Sol.
(b) Identifying 1, 2, 4 as the “same”.
= Let B {1, 3,5, 6}.
= Z ~§(4,i) = 15 equivalence relation on A for which

[1] =[2] = [4].

Note: If A is finite with |4| = n, then V n < r < n?,
3 an equivalence relation R on A with |R| =r

2

< 3dng,n,,....n, € 7S n.=n And ) n
1 2 k i zf

= =1 | (| ¢
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§ 7.4 Equivalence Relations and Partitions

Discussion:

Ex 7.4.11: How many of the equivalence relations on 4 = {a, b, c,
d, e, f} have
(a) exactly two equivalence classes of size 3?
(b) exactly one equivalence class of size 3?
(c) one equivalence class of size 4?
(d) at least one equivalence class with three or more
elements?
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§ 7.4 Equivalence Relations and Partitions
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