Computer Science and Information Engineering National Chi Nan University

Combinatorial Mathematics

Dr. Justie Su-Tzu Juan

Chapter 7 Relations: The Second Time Around

§ 7.3 Partial Orders: Hasse Diagrams Slides for a Course Based on the Text
Discrete \& Combinatorial Mathematics ($5^{\text {th }}$ Edition) by Ralph P. Grimaldi

§ 7.3 Partial Orders: Hasse Diagrams

Outline

1. Hasse diagram

- Topological Sorting Algorithm

2. Special Elements
3. Special Poset

§ 7.3 Partial Orders: Hasse Diagrams

$$
\begin{aligned}
& \mathrm{N} \longrightarrow \mathrm{Z} \longrightarrow \mathrm{Q} \longrightarrow \mathrm{C} \\
& \text { closed under }+, \quad 2 x+3=4 ? \quad x^{2}-2=0 \quad x^{2}+1=0 \\
& \text { but not - } \\
& x+5=2 \text { ? } \\
& \left.\begin{array}{|c|}
\forall r_{1} \neq r_{2} \Rightarrow \text { either } \\
r_{1}<r_{2} \text { or } r_{1}>r_{2}
\end{array} \right\rvert\, \rightarrow ? ? \times
\end{aligned}
$$

Def: 1) (A, \mathscr{R}) is called a poset (partially ordered set) \equiv A relation \mathscr{R} on \boldsymbol{A} is a partial order. 2) A is called a poset $\equiv \exists$ a relation \mathcal{R} on A
s.t. (A, \mathscr{R}) is a poset.

§ 7.3 Partial Orders: Hasse Diagrams

EX 7.34: Let $A=\{x \mid x$ is a course offered at a college $\}$
Define \mathcal{R} on A by $x \mathscr{R} y$ if x, y are the same course or if x is a prerequisite for y.
$\Rightarrow \mathscr{R}$ makes \boldsymbol{A} into a poset.
Ex 7.35: Let $A=\{1,2,3,4\}$
Define $\mathscr{R}=\{(x, y)|x, y \in A, x| y\}$
$\mathfrak{R}=\{(1,1),(2,2),(3,3),(4,4),(1,2),(1,3),(1,4),(2,4)\}$ is a partial orders.
$\therefore(A, \mathscr{R})$ is a poset.

§ 7.3 Partial Orders: Hasse Diagrams

Ex 7.36:

$A=$ a set of tasks that must be performed in building a house \mathfrak{R} on A by $x \mathscr{R} y$ if x, y denote the same task or
if task \boldsymbol{x} must be performed before the start of task \boldsymbol{y}.
$\Rightarrow A$ is a poset

$\because(1,2),(2,1) \in \mathscr{R}$
with $1 \neq 2$: A

$\because(1,2),(2,3) \in \mathscr{R} \Rightarrow(1,3) \in \mathcal{R}$ but $(3,1) \in \mathcal{R}$ and $1 \neq 3: \mathcal{A}$

§ 7.3 Partial Orders: Hasse Diagrams

Note: In a digraph $G=(A, \mathcal{R})$, when
(1) $\exists a \neq b \in A,(a, b),(b, a) \in \mathscr{R}$, or
(2) \exists a directed cycle
then \mathscr{R} cannot be transitive and antisymmetric.
$\therefore(A, \mathcal{R})$ is not a poset.
Ex 7.37: Hasse diagram for \mathfrak{R} : Give $G=(A, \mathscr{R})$
step 1: eliminate the loops at $x, \forall x \in A$.
step 2: eliminate the edges is enough to in sure the existence by transitive. (if $\exists(x, y),(y, z) \in \mathscr{R}$, eliminate (x, z))
step 3: eliminate the directions : the directions are assumed to go from the bottom to the top.
ex:

(c) Spring 2024, Justie Su-Tzu Juan

§ 7.3 Partial Orders: Hasse Diagrams

(c) Spring 2024, Justie Su-Tzu Juan

§ 7.3 Partial Orders: Hasse Diagrams

Ex 7.39: Let $A=\{1,2,3,4,5\}, \mathcal{R}$ on A defined by $x \mathcal{R} y$ if $x \leq y$ A is a poset, denoted by (A, \leq). $B=\{1,2,4\} \subset A ; B \times B \cap \mathscr{R}$ is a partial order on B $=\{(1,1),(2,2),(4,4),(1,2),(1,4),(2,4)\}$

Note: If \mathscr{R} is a partial order on A, then $\forall B \subset A,(B,(B \times B) \cap \mathscr{R})$ is a poset.
$\mathbf{e x}:\{\phi,\{1\},\{3\},\{1,3\},\{1,2,3\}\}=B$. see
Def 7.16: 1) A partial order \mathfrak{R} on \boldsymbol{A} is called a total order if $\forall x, y \in A$, either $x \mathscr{R} y$ or $y \mathcal{R} x$.
2) \mathscr{R} is a total order on A, then A is called totally ordered.

§ 7．3 Partial Orders：Hasse Diagrams

Ex 7．40：（a）(\mathbb{N}, \leq) is a total order．
（b） $\mathcal{U}=\{1,2,3\},(\mathcal{P}(\mathcal{U})), \subseteq)$ is not a total order． $\because\{1,2\},\{1,3\} \in \mathscr{P}(\mathcal{U})$ ，but $\{1,2\} \not \subset\{1,3\},\{1,3\} \notin\{1,2\}$ ．
（c）Ex 7.38 （b）shows a total order．see

Ex 7．41：請自己看！

Q：Whether we can take the partial order \mathscr{R} ，given by the Hasse diagram，and fine a total order \mathfrak{T} on these tasks for which $\mathfrak{R} \subseteq \mathscr{T}$ ？
ex：

（c）Spring 2024，Justie Su－Tzu Juan

§ 7.3 Partial Orders: Hasse Diagrams

Topological Sorting Algorithm (for a poset (A, \mathscr{R}) with $|\boldsymbol{A}|=n$)
Step 1: Let $k=1$. Let $H_{1}=$ the Hasse diagram for (A, \mathcal{R})
Step 2: Select $\boldsymbol{v}_{\boldsymbol{k}} \in V\left(H_{k}\right)$ s.t. no edge in $\boldsymbol{H}_{\boldsymbol{k}}$ starts at $\boldsymbol{v}_{\boldsymbol{k}}$
Step 3: If $k=n$, output \mathcal{T} : $v_{n}<v_{n-1}<\ldots<v_{2}<v_{1}$ and STOP else $(k<n)\left\{H_{k+1}:=H_{k}-v_{k} ; k:=k+1 ;\right.$ go to Step2.\}
ex: $E<B<A<C<G<F<D$
$\Rightarrow 12$ possible answers

(c) Spring 2024, Justie Su-Tzu Juan

§ 7.3 Partial Orders: Hasse Diagrams

Def 7.17: (A, \mathscr{R}) is a poset:

1) $x \in A$ is called a maximal element of A
$\equiv \forall a \in A, a \neq x \Rightarrow x \mathscr{R} a \equiv \forall a \in A, x \mathcal{R} a \Rightarrow x=a$.
2) $y \in A$ is called a minimal element of A
$\equiv \forall b \in A, b \neq y \Rightarrow b \mathscr{R} y \equiv \forall b \in A, b \mathcal{R} y \Rightarrow y=b$.
Ex 7.42: Let $\mathcal{U}=\{\mathbf{1 , 2 , 3}, \boldsymbol{A}=\mathscr{P}(\mathcal{U})$
(a) For the poset (A, \subseteq), the maximal element $=\underline{U}$, and the minimal element $=\bar{\phi}$
(b) Let $B=A-\{\{1,2,3\}\}$, In (B, \subseteq) : the maximal elements $=\{1,2\},\{1,3\},\{2,3\}$; the minimal element $=\phi$.

§ 7.3 Partial Orders: Hasse Diagrams

Ex 7.43: 1) (Z, \leq) is a poset: the maximal element = None; the minimal element $=$ None.
2) (N, \leq) is a poset: the minimal element $=0$; the maximal element $=$ None (empty set).

Ex 7.44: In Ex 7.38 (b), (c), (d): see

	minimal element	maximal element
(b)	1	8
(c)	$2,3,5,7$	$2,3,5,7$
(d)	$2,3,5,7,11$	12,385

(c) Spring 2024, Justie Su-Tzu Juan

§ 7.3 Partial Orders: Hasse Diagrams

Thm 7.3: If (A, \mathscr{R}) is a poset and A is finite, then A has both a maximal and a minimal element.
Proof. maximal:
Let $a_{1} \in A$, If $\forall a \in A, a \neq a_{1}, a_{1} \notin a \Rightarrow a_{1}$ is maximal
else $\exists a_{2} \in A, a_{2} \neq a_{1}, a_{1} \mathcal{R} a_{2}$:
If $\forall a \in A, a \neq a_{2}, a_{2} \Re a \Rightarrow a_{2}$ is maximal
else $\exists a_{3} \in A, a_{3} \neq a_{2}, a_{2} \mathcal{R} a_{3}$:
$\because \mathscr{R}$ is antisymmetric and $a_{1} \mathscr{R} a_{2} \therefore a_{3} \neq a_{1}$
$\because a_{1} \mathscr{R} a_{2}$ and $a_{2} \mathscr{R} a_{3} \quad \therefore a_{1} \mathscr{R} a_{3}$
If $\forall a \in A, a \neq a_{3}, a_{3} \Re a \Rightarrow a_{3}$ is maximal else ...
Continuing in this manner, $\because A$ is finite
\therefore We get $a_{n} \in A$ with $\forall a \in A, a \neq a_{n}, a_{n} \mathcal{R} a$
$\Rightarrow a_{n}$ is maximal.
minimal element can be proved in a similar way.

§ 7.3 Partial Orders: Hasse Diagrams

Note: In the topological sorting algorithm: Step2 selecting a maximal element from (A, \mathscr{R}) or (B, \mathfrak{R}^{\prime}), where $B \subseteq A$; $\boldsymbol{R}^{\prime}=(\boldsymbol{B} \times \boldsymbol{B}) \cap \boldsymbol{R}$.
\Rightarrow By Thm 7.3, \exists at least one such element!
Def 7.18: (A, \mathcal{R}) is a poset:

1) $x \in A$ is called a least element $\equiv \forall a \in A, x \mathscr{R} a$.
2) $y \in A$ is called a greatest element $\equiv \forall a \in A, a \mathcal{R} y$.

Ex 7.45: Let $\mathcal{U}=\{1,2,3\}, \mathcal{R}=\subseteq$, the subset relation
(a) $A=\mathscr{P}(U):(A, \subseteq)$: least element $=\phi$; greatest element $=u$
(b) $B=\mathscr{P}(\mathcal{U})-\{\phi\}:(B, \subseteq)$: greatest element $=\mathcal{U}$; no least element,
(but $\exists 3$ minimal element.)

§ 7.3 Partial Orders: Hasse Diagrams

Ex 7.46: In Ex 7.38: see

	least element	greatest element
(b)	1	8
(c)	no	no
(d)	no	no

Thm 7.4: If the poset (A, \mathscr{R}) has a greatest (least) element, then the element is unique.
Proof. Suppose $\exists x, y \in A$ and both are greatest elements
$\because x$ is a greatest element $\therefore y \mathscr{R} x$
$\because y$ is a greatest element $\therefore x \mathcal{R} y$
$\Rightarrow \because \mathscr{R}$ is antisymmetric $\quad \therefore x=y$
The proof for the least element is similar.
(c) Spring 2024, Justie Su-Tzu Juan

§ 7.3 Partial Orders: Hasse Diagrams

Def 7.19: Let (A, \mathcal{R}) be a poset with $B \subseteq A$:

1) $x \in A$ is called a lower bound of $B \equiv x \mathscr{R} b, \forall b \in B$.
2) $y \in A$ is called a upper bound of $B \equiv b \mathscr{R} y, \forall b \in B$.
3) A lower bound of $B, x^{\prime} \in A$ is called a greatest lower bound (glb) of $B \equiv \forall$ lower bounds $x^{\prime \prime}\left(\neq x^{\prime}\right)$ of $B, x^{\prime \prime} \mathcal{R} x^{\prime}$.
4) A upper bound of $B, y^{\prime} \in A$ is called a least upper bound (lub) of $B \equiv \forall$ upper bounds $y^{\prime \prime}\left(\neq y^{\prime}\right)$ of $B, y^{\prime} \mathfrak{R} y^{\prime \prime}$.

Ex 7.47: $\mathcal{U}=\{1,2,3,4\}, A=\mathscr{P}(\mathcal{U}), B=\{\{1\},\{2\},\{1,2\}\}:$
In (B, \subseteq) : upper bounds: $\{1,2\},\{1,2,3\},\{1,2,4\},\{1,2,3,4\}$

$$
\begin{array}{ll}
\text { lub: }\{1,2\} & (\in B) \\
\text { glb: } \phi \quad & (\notin B)
\end{array}
$$

§ 7.3 Partial Orders: Hasse Diagrams

Ex 7.48: $\mathcal{R}=\leq$ ("less than or equal to")
a) $\boldsymbol{A}=\mathrm{R}, \boldsymbol{B}=[0,1]: \boldsymbol{B}$ has glb: $0(\in \boldsymbol{B})$ lub: $1(\in \boldsymbol{B})$
$A=\mathrm{R}, C=(0,1]: C$ has glb: $0(\notin C)$ lub: $1(\in C)$
b) $\boldsymbol{A}=\mathrm{R}, \boldsymbol{B}=\left\{\boldsymbol{q} \in \mathrm{Q} \mid \boldsymbol{q}^{2}<\mathbf{2}\right\}: \overline{\boldsymbol{B} \text { has glb: }-\overline{\sqrt{2}}(\notin \boldsymbol{B})}$ lub: $\sqrt{2}(\notin \boldsymbol{B})$
c) $A=Q, B=\left\{q \in Q \mid q^{2}>2\right\}$: B has no glb or lub.

Thm 7.5: If (A, \mathscr{R}) is a poset and $B \subseteq A$, then B has at most one lub (glb).

Def 7.20: The poset (A, \mathcal{R}) is called a lattice
$\equiv \forall x, y \in A, \operatorname{lub}\{x, y\}$ and $\operatorname{glb}\{x, y\}$ both exist in A
$(\exists a, b \in A$, which $a=\operatorname{lub}\{x, y\}, b=\operatorname{glb}\{x, y\})$

§ 7.3 Partial Orders: Hasse Diagrams

Ex 7.49: $A=N$, define \mathcal{R} on A by $x \mathscr{R} y$ if $x \leq y:(\mathbb{N}, \leq):$ $\operatorname{lub}\{x, y\}=\max \{x, y\} ; \operatorname{glb}\{x, y\}=\min \{x, y\}$ $\Rightarrow(\mathbb{N}, \leq)$ is a lattice.

Ex 7.50: $\mathcal{U}=\{1,2,3\}$ in $(\mathcal{P}(\mathcal{U}), \subseteq): \forall S, T \in \mathcal{P}(\mathcal{U})$ $\operatorname{lub}\{S, T\}=S \cup T(\in \mathscr{P}(\mathcal{U})) ; \operatorname{glb}\{x, y\}=S \cap T(\in \mathscr{P}(\mathcal{U}))$ $\Rightarrow(\mathscr{P}(U), \subseteq)$ is a lattice.

Ex 7.51: In Ex 7.38 (d):
$\operatorname{lub}\{2,3\}=6 ; \operatorname{lub}\{3,6\}=6 ; \operatorname{lub}\{5,7\}=35 ; \operatorname{lub}\{7,11\}=385 ;$ $\operatorname{glb}\{3,6\}=3 ; \operatorname{glb}\{2,12\}=2 ; \operatorname{glb}\{35,385\}=35 ;$ but $\nexists \operatorname{glb}\{2,3\} \in A, \nexists \operatorname{glb}\{5,7\} \ldots$
\Rightarrow this poset is not a lattice.
Q3:

§ 7.3 Partial Orders: Hasse Diagrams

Checklist

1. Hasse diagram

- Topological Sorting Algorithm

2. Special Elements

- Maximal, minimal
- Least, greatest
- Lower bound, upper bound
- glb, lub

4. Special Poset

- Total Order
- Lattice

Computer Science and Information Engineering National Chi Nan University

Combinatorial Mathematics

Dr. Justie Su-Tzu Juan

Chapter 7 Relations: The Second Time Around

§ 7.4 Equivalence Relations and Partitions
Slides for a Course Based on the Text
Discrete \& Combinatorial Mathematics (5 ${ }^{\text {th }}$ Edition) by Ralph P. Grimaldi

§ 7.4 Equivalence Relations and Partitions

Outline

1. Partition
2. Equivalence Relations: Equivalence Class
3. Thm 7.6
4. Equivalence Relations vs. Partition
5. Counting

§ 7.4 Equivalence Relations and Partitions

Note: 1) If $\boldsymbol{A} \neq \boldsymbol{\phi}, \mathcal{R}=$ the equality relation.
$\Rightarrow(A, \mathscr{R})$ is a equivalence relation.
\Rightarrow establishes the property of "sameness" on A.
2) If $A=Z, \mathcal{R}$ defined by $x \mathscr{R} y$ if $2 \mid(x-y)$.
$\Rightarrow(Z, \mathscr{R})$ is a equivalence relation.
\Rightarrow splits \mathbb{Z} into two subsets consisting of the odd and even integers.

Def 7.21: A : set; I : index set; $\forall i \in I, \phi \neq A_{i} \subseteq A$

1) $\left\{A_{i}\right\}_{i \in I}$ is a partition of A if
(a) $A=\bigcup_{i \in I} A_{i}$ and (b) $\forall i, j \in I$ where $i \neq j, A_{i} \cap A_{j}=\phi$.
2) Each $\boldsymbol{A}_{\boldsymbol{i}}$ is called a cell (or block) of the partition.

§ 7.4 Equivalence Relations and Partitions

Ex 7.52: $A=\{1,2,3, \ldots, 10\}$, each of (a), (b), (c) determines a partition of A :
a) $A_{1}=\{1,2,3,4,5\}, A_{2}=\{6,7,8,9,10\}$.
b) $A_{1}=\{1,2,3\}, A_{2}=\{4,6,7,9\}, A_{3}=\{5,8,10\}$.
c) $A_{i}=\{i, i+5\}, 1 \leq i \leq 5$.

Note: Each element of \boldsymbol{A} belongs to exactly one cell in each partition.
($\forall x \in A, \exists!i^{*} \in I$, s.t. $x \in A_{i^{*}}$ for any partition $\left.\left\{A_{i}\right\}_{i \in I}\right)$
Ex 7.53: Let $A=\mathrm{R}, \forall i \in \mathbb{Z}$, let $\boldsymbol{A}_{\boldsymbol{i}}=[\boldsymbol{i}, \boldsymbol{i}+1)$ $\Rightarrow\left\{A_{i}\right\}_{i \in Z}$ is a partition of R

§ 7.4 Equivalence Relations and Partitions

Def 7.22: Let \mathscr{R} be an equivalence relation on a set $A . \forall x \in A$, the equivalence class of x, denoted by $[x] \equiv\{y \in A \mid y \mathscr{R} x\}$

Ex 7.54: Define \mathfrak{R} on Z by $x \mathscr{R} y$ if $4 \mid(x-y)$
$[0]=\{\ldots,-8,-4,0,4,8, \ldots\}=\{4 k \mid k \in \mathbb{Z}\}$
$[1]=\{4 k+1 \mid k \in Z\} ;[2]=\{4 k+2 \mid k \in Z\} ;[3]=\{4 k+3 \mid k \in Z\} ;$
$[4]=[0]=[8]=\ldots ;[5]=[1]=[9]=\ldots ;$
$[6]=[2]=[10]=\ldots ; \ldots$
e.g.: $[6]=[2]=[-2] ;[51]=[3], \ldots$
$\Rightarrow\{[0],[1],[2],[3]\}$ provides a partition of Z.

Note: The index set for the partition is implicit.

§ 7.4 Equivalence Relations and Partitions

Ex 7.55: Define \mathscr{R} on \mathbb{Z} by $a \mathscr{R} b$ if $a^{2}=b^{2}(a= \pm b)$.

1) \mathscr{R} is an equivalence relation:
1. $\forall a \in \mathbb{Z}, a^{2}=a^{2} \quad \Rightarrow a \mathcal{R} a$
2. $\forall a, b \in \mathbb{Z}$, if $a \mathfrak{R} b \Rightarrow a^{2}=b^{2} \Rightarrow b^{2}=a^{2} \Rightarrow b \Re a$
3. $\forall a, b, c \in \mathbb{Z}$, if $a \mathfrak{R} b$ and $b \mathfrak{R} c \Rightarrow$

$$
a^{2}=b^{2} \text { and } b^{2}=c^{2} \Rightarrow a^{2}=c^{2} \quad \Rightarrow a \mathscr{R} c
$$

2) What can we say about the corresponding partition of \mathbb{Z} ?
$\because[0]=\{0\},[1]=\{1,-1\},[2]=\{2,-2\}, \ldots$
In general, $\forall n \in \mathbb{Z}^{+},[n]=\{-n, n\}$
\therefore The partition: $\mathbb{Z}=\cup_{n=0}^{\infty}[n]=\cup_{n \in N}[n]$

$$
\begin{aligned}
& =\{0\} \cup \cup_{n=1}^{\infty}\{-n, n\} \\
& =\{0\} \cup \cup_{n \in \mathbf{Z}^{+}}[n]
\end{aligned}
$$

§ 7.4 Equivalence Relations and Partitions

Thm 7.6: \mathscr{R} is an equivalence relation on A, and $x, y \in A$, then (a) $x \in[x]$
(b) $x \mathfrak{R} y \Leftrightarrow[x]=[y]$
(c) $[x]=[y]$ or $[x] \cap[y]=\phi_{\text {back }}$

Proof. (1/2)
(a) $\because \mathscr{R}$ is reflexive
(b) $(\Rightarrow) \forall w \in[x], w \mathscr{R} x$
$\because x \Re y$ and \mathscr{R} is transitive $\Rightarrow w \mathscr{R} y$
$\Rightarrow w \in[y] \quad \therefore[x] \subseteq[y] \ldots(1)$
$\forall t \in[y], t \mathcal{R} y$
$\because \mathcal{R}$ is symmetric $\quad \therefore x \mathcal{R} y \Rightarrow y \mathcal{R} x$
$\Rightarrow \because t \mathcal{R} y$ and $y \mathscr{R} x$ and \mathscr{R} is transitive $\therefore t \mathscr{R} x$
$\Rightarrow t \in[x] \quad \therefore[y] \subseteq[x] \ldots(2)$ by (1), (2), $[x]=[y]$.

§ 7.4 Equivalence Relations and Partitions

Thm 7.6: \mathscr{R} is an equivalence relation on A, and $x, y \in A$, then (a) $x \in[x]$
(b) $x \mathcal{R} y \Leftrightarrow[x]=[y]$
(c) $[x]=[y]$ or $[x] \cap[y]=\phi$

Proof. (2/2)
(b) (\Leftarrow) If $[x]=[y]$, by (a), $x \in[x] \Rightarrow x \in[y] \Rightarrow x \Re y$
(c) $(p \vee q) \Leftrightarrow\left(\neg p \wedge \neg q \rightarrow F_{0}\right)$ (Prove by contradiction)

If $[x] \neq[y]$ and $[x] \cap[y] \neq \phi$,
then let $v \in A$, s.t. $v \in[x] \cap[y]$
that is, $v \in[x]$ and $v \in[y]$
$\Rightarrow \nu \mathcal{R} x$ and $\nu \mathscr{R} y$
$\because \mathfrak{R}$ is symmetric $\quad \therefore \boldsymbol{\sim} \boldsymbol{x} \quad \Rightarrow \boldsymbol{x} v$
$\because x \mathcal{R} v$ and $\nu \mathcal{R} y \Rightarrow x \mathcal{R} y$
By (b), $x \mathfrak{R} y \quad \Rightarrow[x]=[y] \rightarrow \leftarrow$

§ 7.4 Equivalence Relations and Partitions

Ex 7.56:

(a) $A=\{1,2,3,4,5\}$,

$$
\mathscr{R}=\{(1,1),(2,2),(2,3),(3,2),(3,3),(4,4),(4,5),(5,4),(5,5)\}
$$

$\Rightarrow \mathscr{R}$ is an equivalence relation on A :
Sol.

$$
\begin{aligned}
& {[1]=\{1\} ;[2]=\{2,3\}=[3] ;[4]=\{4,5\}=[5]} \\
& A=[1] \cup[2] \cup[4]([1] \cap[2]=\phi=[1] \cap[4]=[2] \cap[4])
\end{aligned}
$$

$\therefore\{[1],[2],[4]\}$ determines a partition of A

§ 7.4 Equivalence Relations and Partitions

Ex 7.56:

(b) In Ex 7.16 (d), $A=\{1,2,3,4,5,6,7\}, B=\{x, y, z\}$,
$f: A \rightarrow B$ is the onto function,
$f=\{(1, x),(2, z),(3, x),(4, y),(5, z),(6, y),(7, x)\}$
Define \mathscr{R} on \boldsymbol{A} by $a \mathfrak{R} b$ if $f(a)=f(b)$ was shown to be an equivalence relation:
Sol.

$$
\begin{aligned}
& f^{-1}(x)=\{1,3,7\}=[1](=[3]=[7]) \\
& f^{-1}(y)=\{4,6\}=[4](=[6]) \\
& f^{-1}(z)=\{2,5\}=[2](=[5]) \\
& A=[1] \cup[4] \cup[2]=f^{-1}(x) \cup f^{-1}(y) \cup f^{-1}(z)
\end{aligned}
$$

$\therefore\left\{f^{-1}(x), f^{-1}(y), f^{-1}(z)\right\}$ determines a partition of A.

§ 7.4 Equivalence Relations and Partitions

Note: \forall nonempty sets A, B if $f: A \rightarrow B$ is an onto function $\Rightarrow A=\cup_{b \in B} f^{-1}(b)$ and $\left\{f^{-1}(b) \mid b \in B\right\}$ determines a partition of A.

Ex 7.57: In C++:

$\equiv a, c, p$ share one memory location; up, down share another memory location
\therefore all variable is partitioned by the equivalence relation \mathcal{R}, where $v_{1} \mathscr{R} v_{2}$ if v_{1}, v_{2} share the same memory location.

§ 7.4 Equivalence Relations and Partitions

Ex 7.58: $A=\{1,2,3,4,5,6,7\}$. If \mathscr{R} induces the partition of A $=\{1,2\} \cup\{3\} \cup\{4,5,7\} \cup\{6\}$. What is \mathcal{R}.
Sol.

$$
\begin{aligned}
& \because\{1,2\} \Rightarrow[1]=\{1,2\}=[2] \\
& \Rightarrow(1,1),(1,2),(2,1),(2,2) \in \mathscr{R} \\
&\{4,5,7\} \Rightarrow[4]=[5]=[7]=\{4,5,7\} \\
& \Rightarrow\{4,5,7\} \times\{4,5,7\} \subseteq \mathscr{R} \\
& \vdots \\
& \therefore \mathscr{R}=(\{1,2\} \times\{1,2\}) \cup(\{3\} \times\{3\}) \cup(\{4,5,7\} \times\{4,5,7\}) \\
& \cup(\{6\} \times\{6\}) \\
&|\mathscr{R}|=2^{2}+1^{2}+3^{2}+1^{2}=15
\end{aligned}
$$

§ 7.4 Equivalence Relations and Partitions

Thm 7.7: \boldsymbol{A} is a set:
(a) Any equivalence relation \mathscr{R} on A induces a partition of A.
(b) Any partition of \boldsymbol{A} gives rise to an equivalence relation \mathfrak{R} on A.
Proof.
(a) By Thm 7.6 (a), (c). see
(b) For any partition $\left\{A_{i}\right\}_{i \in I}$ of A,

Define \mathscr{R} on A by $x \mathscr{R} y$ if x and y are in the same cell of the partition $\left(\mathscr{R}=\left\{(x, y) \mid \exists i \in I\right.\right.$, s.t. $x \in A_{i}$ and $\left.\left.y \in A_{i}\right\}\right)$ need to verify \mathscr{R} is an equivalence relation \rightarrow reader
§ 7.4 Equivalence Relations and $\mathbf{P}:^{S(m, n)=\frac{1}{n!} \sum_{n-0}^{n}(-1)^{k}\binom{n}{n-k}^{(n-k)^{m}}}$
Thm 7.8: \forall set $A: \exists 1-1$ correspondence between the set of equivalence relations on A and the set of partition of A.
Proof.

EXERCISE 7.4 (16)

Ex 7.59:
(a) $A=\{1,2,3,4,5,6\}$. How many relations on A are equivalence relation?
Sol.
(a) From Sec 5.3, using the Stirling numbers of the second kind, $\exists \quad \sum_{i=1}^{6} S(6, i)=203$ different partition of \boldsymbol{A}.
$\Rightarrow \exists 203$ equivalence relation on A.
§ 7.4 Equivalence Relations and $\mathbf{P}: \begin{aligned} & S(m, n)=\frac{1}{n!} \sum_{k=0}^{n}(-1)^{k}\binom{n}{n-k}(n-k)^{m}\end{aligned}$

Ex 7.59:

(b) How many of the equivalence relation in (a) satisfy $1,2 \in[4]$? Sol.
(b) Identifying 1, 2, 4 as the "same".
\Rightarrow Let $B=\{1,3,5,6\}$.
$\therefore \exists \sum_{i=1}^{4} S(4, i)=15$ equivalence relation on \boldsymbol{A} for which

$$
[1]=[2]=[4] .
$$

Note: If A is finite with $|A|=n$, then $\forall n \leq r \leq n^{2}$, \exists an equivalence relation \mathscr{R}_{k} on \boldsymbol{A} with $|\mathscr{R}|_{k}=r$ $\Leftrightarrow \exists \boldsymbol{n}_{\mathbf{1}}, \boldsymbol{n}_{\mathbf{2}}, \ldots, \boldsymbol{n}_{\boldsymbol{k}} \in \mathrm{Z}^{+}$s.t. $\sum_{i=1}^{k} n_{i}=n$ And $\sum_{i=1} n_{i}^{2}=r$.

§ 7.4 Equivalence Relations and Partitions

Discussion:
Ex 7.4.11: How many of the equivalence relations on $A=\{a, b, c$, $d, e, f\}$ have
(a) exactly two equivalence classes of size 3 ?
(b) exactly one equivalence class of size 3?
(c) one equivalence class of size 4 ?
(d) at least one equivalence class with three or more elements?

§ 7.4 Equivalence Relations and Partitions

Checklist

1. Partition - Judge
2. Equivalence Relations: Equivalence Class

- Definition and Symbol

3. Thm 7.6 - proof
4. Equivalence Relations vs. Partition

- 1-1 correspondence

5. Counting
