§ 7.1 Relations Revisited: Properties of Relations

ChecKklist

1. The Properties of Relations

O Reflexive
O Symmetric

O Transitive
O Antisymmetric
2. Special Relations
O Partial Ordering Relation

O Egquivalence Relation

3. Counting
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§ 7.2 Computer Recognition: Zero-One Matrices and

Directed Graphs
Outline
1. Composite Relation
2. Relation Matrices

3. The Directed Graph Associated with a Relation
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§ 7.2 Computer Recognition: Zero-One Matrices and
Directed Graphs

Def7.8: A4,B,C:sets, Ri,c Ax B, R, Bx C.The
composite relation Ry » R, = A x C defined by
R Ry={x,2)| xe A,z e C,and I y € B with (x, y)
€ Ry, (1, 2) € Ry}

Ex717: A={1,2,3,4}, B={w,x,y,2}, C=1{5,6, 7} ».
={1,x), (2,x),3,»),3,2)} cAx B
932 ={w,3), (x,0); = BxC
={w,5),(w,6)} =c BxC
° R, ={(1, 6), (2, 6)} Ry LRl
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§ 7.2 Computer Recognition: Zero-One Matrices and
Directed Graphs

Ex 7.18 : A: employees, B: programming languages,

C= {plapb ceey P8}3 projects.
RicAxB:(x,y) € R means x is proficient in y,

R, BxC:(y,z) € R, means 7 need y.

= R, ° R, has been used to set up a matching
process between employees and projects on the
basis of employee knowledge of specific
programming languages.
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§ 7.2 Computer Recognition: Zero-One Matrices and
Directed Graphs

Thm7.1:A4,B,C,D :sets, RicAxXB, R, cBxC, R, CxD.
The Ry > (Ry° R3) = (R ° Ry) ° Rs.

Proof.

LR > (Rye R)AXD, (R > R,) > Ry A X D.

2.V (a,d) € Ry > (R, ° Ry)
—>dbeBst. (a,b) e RN (b,d) € R, > Ry
—>dce Cs.t.(b,c) e RyA(c,d) € Ry
“(a,b) €e Ry A (b, c) € R, = (@, c) e Ry ° R,
V@) eR RN (e, d) € ‘(]33 4 "-'t'.'r}'.;'i;-.?{ |

= (a,d) € (‘(Rl \ 1 |

TR (R RS (R Ry) o Ry ‘ ¢ e |'
Similar, (R, ° R,) - R3S Ry ° (Ry° 333) &, L
=SR2 (Ry° R)=(R1° Ry ° Ry ‘F’ —
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§ 7.2 Computer Recognition: Zero-One Matrices and
Directed Graphs

Def 7.9 : A: sets, R = A x A. The power of R defined recursively:
(a) R = R;
b)RN=R-R",VneZ.

Ex 7.19: A = {19 29 39 4}3 R = {(19 2)9 (19 3)9 (29 4)9 (39 2)} back
=>R={1,4),(1,2),3,4)}
= R={1,4)}
> R'"=¢,V n=4.
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§ 7.2 Computer Recognition: Zero-One Matrices and
Directed Graphs

Def 7.10: 1) An mxn zero-one matrix E = (€;) x5 (0, 1)-matrix:
= m rows, n columns, each entry is 0 or 1.
2) ¢;; = the entry in the ith row and the jth column of E,
Vi<i<mand1<j<n.

(1 0 0 1]
Ex720: E={0 1 0 1lisa3x4(0,1)-matrix.
1 0 0 0

1) e =1 2)e); =0 3)e; =

Note : Use the standard operations of matrix addltf nand. .~
multiplication with the stipulation that 1 + 1 Z
(Boolean addition). w L
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§ 7.2 Computer Recogn
Directed Graphs

t721 = {(19 X), (29 X), (39 y)9 (33 Z)} - AxB
*(RZ = {(W, 5)9 (X, 6)} - BxC

Ex 7.21: The relation matrices for R, R, of Ex 7.17: ..

w) (x) () (2)«—B

M[fo 1 0 0
()]0 1 0 0
M(*(Rl)=(3) 00 1 1 M(R,) =
(4|0 0 0 O]

T
A
0 1 0 O0][1 0 O] [0
01 0 0/|0 1 0| |0
M(R)-M(R,) = =
(1)(2)00110000
0 0 0 0/|0 0 0] [0

Note : M(gll)-M(fRz) — M(le N 532)

(c) Spring 2024, Justie Su-Tzu Juan
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oS O O

(3) (6) (7
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(W)
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)

0
0
0
O_




§ 7.2 Computer Recognition: Zero-One Matrices and
Directed Graphs

Ex7.22:4=1{1,2,3,4}, R={({1, 2), (1, 3), (2, 4), 3, 2)},

as in Ex 7.19. ...
Define the relation matrix for R: M(R) is the 4x4 (0, 1)-matrix
whose entries m;, for 1 <i, j < 4, are given by m; =| 1, if (i, j) € R,
0, otherwise.

ijo

M(R) = (M(R))* =

= M(R?)

o O O O
_—_ O O O
R O =
__ O O

0000
0000
0000
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§ 7.2 Computer Recognition: Zero-One Matrices and
Directed Graphs

In general : A: set, |A| =n, R < A x A, M(R) is the relation
matrix for R :
@ MR)=0 (all 0’s) iff R= ¢
b)yMR)=1 (all I’s) iff R=Ax A
(c) M(R™) = [M(R)]|™, for m €Z".

Det 7.11 : E = (¢)mxns F' = (fi)mxn + 2 mxn (0, 1)-matrices.
E precedes (or is less than) F,EXF,
V1<i<m,1<j<n.

€ < fijs '

1 0 1 1 0 1 £
Ex 7.23 :EF = , = = E < Ko R e
0 O 1 O 1 1 e, 179 ,’; ."c“ ",

— 3 8 (0, 1)-matrices G for which E<G. * "}
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§ 7.2 Computer Recognition: Zero-One Matrices and
Directed Graphs

Def 7.12 : For n €Z7, I,, = (6;) 1, is the nxn (0, 1)-matrix, where

0; = llfl—],
0,if 7 #].

Def 7.13 : Let A = (a,])mx,,, The transpose of A, A" = (a";;) yxmo
wherea ag foralll1<j<n,1<i<m.
0 1
Ex7.24: A=0 0] , A”{O / 1}
R 1 0 1

Def : 1) 000 = 0n1 =110 =0, 1N1 = 1 (usual multiplication)
2) ENF = (X;)uxns Where x;; = e, fa "yr o
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§ 7.2 Computer Recognition: Zero-One Matrices and
Directed Graphs

Thm 7.2 : A: set, |[A|=n, R < A x A, let M denote the relation
matrix for . Then
(a) R is reflexive iff
(b) R is symmetric iff
(c) R is transitive iff
(d) R is antisymmetric iff

Kahoot!: https://play.kahoot.it/v2/?quizld=2e4a70da-637b-
4ab9-8fec-fa99c7679b8f&hostld=e3b5c5c7-c22d-
4353-a580-53¢c46d132332

Discussion (5+5 min):
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§ 7.2 Computer Recognition: Zero-One Matrices and
Directed Graphs

Thm 7.2 : A: set, |[A|=n, R < A x A, let M denote the relation
matrix for R. Then
(c) R is transitive iff M-M = M?< M.
Proof. (1/2)
Let M = (@) xn-
©) (<) Leth <M. (x, ), (5, 2) € R.

= m,, =1
(mxy means the entry of M in row (x), column (y))
= S, =1

(S, means the entry of M? in row (x), column (z))
“ME<SM - m, =1 |
=>x,2) R and R is transitive.
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§ 7.2 Computer Recognition: Zero-One Matrices and
Directed Graphs

Thm 7.2 : A: set, |[A|=n, R < A x A, let M denote the relation

matrix for R. Then
(c) R is transitive iff M-M = M?*< M.
Proof. (2/2)
(c) (=) If R is transitive
Let s, = the entry in row (x) and column (z) of

M =1

vS,=1 ~dyedstm,=m, =1
= X)) ERAN(D,2)ER

= ((x,2) e R (~ Ris transitive)
=>m,=1

M < M.
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§ 7.2 Computer Recognition: Zero-One Matrices and
Directed Graphs

Def 7.14 : V: finite nonempty. A directed graph (or digraph) G =

o G=(V,E),where Vis called the vertex set, EC V x V'is called
the edge set.

o v € Vis called the vertices or nodes of G

e (a, b) € E is called the (directed) edges or arcs of G

e a is called the origin or source of (a, b)

e b is called the ferminus or terminating vertex of (a, b)

e ais adjacent to b; b is adjacent from a

e (a,a)is called a loop at a

isolated vertex
Ex7.25:V=1{1,2,3,4,5, ¥ 2
E={1,1),(,2),(,4),@3,2)}
4 3
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§ 7.2 Computer Recognition: Zero-One Matrices and

Directed Graphs oo £
b a b

a
Def : If (a, b), (b, a) € E, (a # b), then use {a, b} = {b, a} to
represent. a and b are called adjacent vertices.

Ex 7.26 : precedence graph for the computer program
(S1)b:=3

(S2)c:=b+2 :

(S3)a:=1 4
(S4)d:=axb+5

(S5) e:=d -1 ’ e
(S6) f:=7 (
S7He:=c+d

(S8) g:=bxf - ) ]

(c) Spring 2024, Justie Su-Tzu Juan 17



§ 7.2 Computer Recognition: Zero-One Matrices and
Directed Graphs

Ex7.27:4={1,2,3,4}, R={(1, 1), 1, 2), (2, 3), 3, 2), 3, 3),
(3,4), (4, 2)}. The directed graph associated with R is G =
(4, R), where undirected edge {x, y} = (x, y) and (y, x).

The associated undirected graph - replace all edges (x, y) by
undirected edges {x, y}.

(c) Spring 2024, Justie Su-Tzu Juan 18



§ 7.2 Computer Recognition: Zero-One Matrices and
Directed Graphs

Def : For an undirected graph G = (V, E):

1) A x-y path starting at x and ending at y =
a finite sequence of undirected edges with no repeat
vertex.

2) The length of a path = the edge on the path

3) A pathis closed=x=y

4) A closed path = cycle (= 3 edges)
(a finite sequence of undirected edges with no repeat
vertex except x =y.)

5) A undirected graph is connected=V x #y € V, 3 x-y pat

|
"
WP
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§ 7.2 Computer Recognition: Zero-One Matrices and
Directed Graphs

Def : For an directed graph G = (V, E):
1) A directed x-y path starting at x and ending at y =
a finite sequence of directed edges with no repeat vertex.
2) A closed directed path = directed cycle (= 3 edges)
(a finite sequence of directed edges with no repeat
vertex except x =y.)
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§ 7.2 Computer Recognition: Zero-One Matrices and

Directed Graphs

Note : (1) loops < cycles;

(2) loops have no bearing on graph connectivity

(1) {a, b}, {Z ej, i, f3, {f, b}, 1b, a; is not a path
(2) (b, N, (1, e, (e, d), (d, ¢), (c, b) = a directed cycle |

(c) Spring 2024, Justie Su-Tzu Juan 21



§ 7.2 Computer Recognition: Zero-One Matrices and
Directed Graphs

Def 7.15 : A directed graph G = (V, E) is called strongly connected
=V x,y € V, where x # y, 34 x-y directed path
i.e.(x,y)e Eordv,vy ...xv, €V
s.t. (X, vl)a (vla Vz)a seey (vm y) € E

Ex : In Ex 7.27, G is not strongly connected.
(> no 3-1 directed path)

1 2
Def : loop-free = no loop Zl G
= 3

Ex : 1) = FExtH » Dfsstrongly connected and loop-free..
2) G is strongly connected and loop-free. \
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§ 7.2 Computer Recognition: Zero-One Matrices and
Directed Graphs

Ex 7.29 :
o Complete graphs on n vertices, K, = an undirected graph that
are loop-free and have an edge for every pair of distinct

vertices.
Kl KZ K3 K4 KS
o o o é @

o The adjacency matrix for G = (A, R)
= the relation matrix for R.

Quiz:
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§ 7.2 Computer Recognition: Zero-One Matrices and
Directed Graphs

Note : R is reflexive & in G= (A4, R) : V x € V(G), 3 loop at x.

Note : R is symmetric<> in G=(A4, R) :
E(G) =loops U undirected edges

Note : R is antisymmetric < For the associated graph G = (A,
R), E(G) =loops U directed edges

Note : R is transitive < For the associated graph G = (4, R),
V x,y € A, 3 x-p directed path in G = 3 (v, y) € R.

(c) Spring 2024, Justie Su-Tzu Juan 24



§ 7.2 Computer Recognition: Zero-One Matrices and
Directed Graphs

Note : R is equivalence relation <

in 1ts associated graph G A, R),G=(A,{(a,a) | a e
A}uUE(K ), where Zz =|d| ,i;e 2",V 1<j<k
J=

i.e. Gi 1s one complete glfaph augmented by loops at
every vertex or consists of the disjoint union of

complete graphs augmented by loops at every vertex.

(c) Spring 2024, Justie Su-Tzu Juan
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§ 7.2 Computer Recognition: Zero-One Matrices and
Directed Graphs

ChecKklist

1. Composite Relation

O Associativity
O The power of R

2. Relation Matrix

O Definitions

O Thm 7.2: Use the relation matrix to find the properties of the
relation.

3. The Directed Graph Associated with a Relation
O Definitions

O Use the associated digraph to find the properties of the _‘ elation
O Find a equivalence relation quickly by its associated dlgrﬁﬂﬁ’ t*’?’f{'ﬂ
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§ 7.3 Partial Orders: Hasse Diagrams

Outline

1. Hasse diagram

2. Topological Sorting Algorithm
3. Special Elements
4. Special Poset
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§ 7.3 Partial Orders: Hasse Diagrams

N >/ > Q » R
closed under +,- 2, +3=4?2? x2-2=0 x2+1=0

but not — .
Vry# r, = either
x+5=2? ri<r,orry>rnr

0

Def: 1) (4, R) is called a poset (partially ordered set)
= A relation R on A is a partial order.
2) A is called a poset =3 a relation R on 4

(c) Spring 2024, Justie Su-Tzu Juan



§ 7.3 Partial Orders: Hasse Diagrams

EX 7.34: Let A = {x | x is a course offered at a college}
Define R on A by xRy if x, y are the same course or
if x is a prerequisite for y.
= R makes A into a poset.

Ex 7.35: Let A = {1, 2, 3, 4}
Define R = {(x,y) | x,y € 4, x| y}
R=1{1, 1), 2,2), 3, 3), 4 4),{d,2), 1, 3), (1,4), (2, 4)}
is a partial orders.
S (A, R) is a poset.
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§ 7.3 Partial Orders: Hasse Diagrams

Ex 7.36:

A = a set of tasks that must be performed in building a house
R on A by xRy if x, y denote the same task or

if task x must be performed before the start of task y.
— A is a poset

1 1 "
(1,2, DeR v (1,2), (2,3) € R=> (L I)e

with 1 %2 : X but (3, 1) € % and L@
' /: }% l’ "',:‘f ‘.:jl?' ;;. ” it v
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§ 7.3 Partial Orders: Hasse Diagrams

Note: In a digraph G = (4, R), when
- (M) 3a=be A, (b)), ac R, or
2)da dlrected cycle
then R cannot be transitive and antisymmetric.
. (4, R) is not a poset.

Ex 7.37: Hasse diagram for R : Give G = (4, R)
step 1: eliminate the loops atx, V x € A.
step 2: eliminate the edges is enough to in sure the existence
by transitive. (if 3 (x, ), (1, 2) € R, eliminate (x, 7))
step 3: eliminate the directions : the directions are assumed_
to go from the bottom to the top. skl |

€X.
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§ 7.3 Partial Orders: Hasse Diagrams

Ex 7.38: (a) U = {1,2, 3} (b) A =1{1,2, 4,8
A=PW,R=c R={x,y) | x,y € 4,x |y}
;{1, 2, 3}2 8

4
2
1

d)4=142,3,5,6,7,11, 12, 35, 385}
R={x,y) |x,y € 4,x |y}

939 59 7} e 12°¢ 38248

back R={x,p) | x,y € A, x| y}

o (@) o o 6
back 2 3 5 7
2 3
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§ 7.3 Partial Orders: Hasse Diagrams

Ex 7.39: Let A=1{1,2,3,4,5}, R on A defined by xRy if x < y
A is a poset, denoted by (A4, <).
={1,2,4} c A; Bx BN R is a partial order on B

=i, 1),2,2),(4,4),d,2),1,4), (2, 4)j

Note: If R is a partial order on 4, then V B c A4, (B, (BXxB)NR)
is a poset.

ex: {9, {1}, {3}, {1, 3}, {1,2, 3}} = B.

Def 7.16: 1) A partial order R on A4 is called a total order |
if V x, y € A, either xRy or yRx.
2) R is a total order on A, then A4 is called tS ally
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§ 7.3 Partial Orders: Hasse Diagrams

Ex 7.40: (a) (IN, <) is a total order.
(b) U= {1, 2, 3}, (P(U)), ©) is not a total order.
{19 2}9 {19 3} = ?(?,l,), but {19 2}‘?{{19 3}9 {19 3}‘%{19 2}
(c¢) Ex 7.38 (b) shows a total order.

Ex 741: cFHCE |

Q: Whether we can take the partial order R, given by the Hasse
diagram, and fine a total order J on these tasks for which R c 9?

G F D
€X.:
C
—»
A ?
B E

(c) Spring 2024, Justie Su-Tzu Juan 35



§ 7.3 Partial Orders: Hasse Diagrams

Topological Sorting Algorithm (for a poset (4, R) with |[4| = n)

Step 1: Let £ = 1. Let H, = the Hasse diagram for (4, R)
Step 2: Select v, € V(H,) s.t. no edge in H, starts at v,
Step 3: If k=n, output 5: v, <v, ; <...<v,<v, and STOP
else(k<n){H,:=H,—v,; k:=k+1;
go to Step2.;

ex: E<B<A<C<G<F<D G F D
= 12 possible answers

(c) Spring 2024, Justie Su-Tzu Juan 36



§ 7.3 Partial Orders: Hasse Diagrams

Def 7.17: (A, R) is a poset:
1) x € Ais called a maximal element of A
=VaeAd,azx=>xRa=V a €A, xRa = x=a.
2) y € Ais called a minimal element of 4

=VbeA,b#y=>bRy=V b eA, bRy = y=0>h.

Ex7.42: LetU={1,2,3},4A=2U)
(a) U is maximal and ¢ is minimal for the poset (4, ©)
(b) VB=A4-{{1,2,3}}, In (B, ©):
i1, 2}, {1, 3}, {2, 3} are all maximal elements;
¢ is the minimal element.

(c) Spring 2024, Justie Su-Tzu Juan 7



§ 7.3 Partial Orders: Hasse Diagrams

Ex 7.43: 1) (Z,<) is a poset: neither a maximal

nor a minimal element.
2) (N, ) is a poset: minimal element = 0;

no maximal element.

Ex 7.44: In Ex 7.38 (b), (¢), (d): s

minimal element | maximal element
(b) 1 8
(¢) 2,3,5,7
(d) 2,3,5,7,11

(c) Spring 2024, Justie Su-Tzu Juan 38



§ 7.3 Partial Orders: Hasse Diagrams

Thm 7.3: If (4, R) is a poset and A is finite, then 4 has both a
maximal and a minimal element.
Proof. maximal:
Leta, e A, IfVaeA a+a,aRa = a,is maximal
else d a, € 4, a, # a,, a,Ra,:
IfVaeA a+#a,aRa = a,is maximal
else d a; € A, a; # a,, a,Ra,:
R is antisymmetric and a,Ra, ... a; # a,
“ a,Ra, and a,Ra, .. a,Ra,
IfVaeA a#ay;a;Ra = a; is maximal
else . wll
Contlnulng in this manner, = A4 IS fmlten‘~ =
. Wegeta, € AwithV a € 4,a#¢ 1 VR
:> a, is maximal. il _L r
minimal element can be proved in a 81mllar %ﬂa_'_ .
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§ 7.3 Partial Orders: Hasse Diagrams

Note: In the topological sorting algorithm: Step2 selecting a
maximal element from (4, R) or (B, R'), where B  A;
R' = (BxB)NAR.
= By Thm 7.3, 3 at least one such element!

Def 7.18: (4, R) is a poset:
1) x € A is called a least element=V a € A, xRa.
2) y € A is called a greatest element=V a € A, aRy.

Ex 7.45: Let U = {1, 2, 3}, R = c, the subset relation
(a) A =P(W): (A, ©): least element = @; greatest eleme
(b) B=2(UW) - {¢}: (B, ©): greatest element = U; no.

element, but 3 3 minimal element. ER A B
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§ 7.3 Partial Orders: Hasse Diagrams

Ex 7.46: In Ex 7.38: ..

least element | greatest element
(b) 1 3
(¢) no no
(d) no no

Thm 7.4: If the poset (4, R) has a greatest (least) element,
then the element is unique.
Proof. Suppose dx,y € A and both are greatest elements

- x is a greatest element .. yRx
* yis a greatest element .. xRy
= R is antisymmetric .. x=y

The proof for the least element is similar.
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§ 7.3 Partial Orders: Hasse Diagrams

Def 7.19: Let (A, R) be a poset with B c A4:
1) x € A is called a lower bound of B=xRb,V b € B.
2) y € A is called a upper bound of B=bRy, V b € B.
3) A lower bound of B, x' €A4 is called a greatest lower bound
(2lb) of B =V lower bounds x'" (# x') of B, x""Rx".
4) A upper bound of B, y' €A is called a least upper bound
(lub) of B =V upper bounds y'"' (') of B, y'Ry"".

Ex747: U=4{1,2,3,4}, A=P(WN), B={{1}, {2}, {1, 2}}:
In (B, ©): upper bounds: {1, 2}, {1, 2, 3}, {1, 2, 4§, {1, 2, 3, 4}
lub: {1, 2} (¢ B) -i
olb: ¢ (¢ B)
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§ 7.3 Partial Orders: Hasse Diagrams

Ex 7.48: R = < (“less than or equal to”)

a)A=R, B=10,1]: B has glb: 0 (¢ B) lub: 1 (¢ B)
A=R,C=(0,1]: Chas glb: 0 (¢ O) lub: 1 (¢ ()

b)A=R,B=1{q € Q| ¢><2}: Bhas glb: —/2 (¢ B) lub: /2(¢ B)

c)A=Q, B={q € Q| ¢*>2}: B has no glb or lub.

Thm 7.5: If (A, R) is a poset and B — A, then B has at most one
lub (glb).

Def 7.20: The poset (4, R) is called a lattice
=V x,y € 4, lub{x, y} and glb{x, y} both exist i
(3 a, b € A, which a =lubix, y}, b = glb{x,

rw

“é‘ﬂ :
,w
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§ 7.3 Partial Orders: Hasse Diagrams

Ex 7.49: A =N, define £ on A by xRy if x < y: (IN, £):

lub{x, y} = maxix, y}; glb{x, y} = min{x, y}
= (N, ) is a lattice.

Ex7.50: U={1,2,3} in (P(U),=): VS, T € P(N)
lub{sS, T} = SUT (e (U)); glb{x, y} =SNT (e P(U))
= (P(W), <) is a lattice.

Ex 7.51: In Ex 7.38 (d): ..
[ub{2, 3} = 6; Iub{3, 6} = 6; lub{5, 7} = 35; lub{7 11} 385;
glb{3, 6} = 3; glb{2, 12} = 2, glb{35 385} =35; -
but A glb{2, 3} € A, A glb{5, 7} ..
—> this poset is not a lattice.
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§ 7.3 Partial Orders: Hasse Diagrams

Checklist
1. Hasse diagram

2. Topological Sorting Algorithm
3. Special Elements

OO0 Maximal, minimal
O Least, greatest

O Lower bound, upper bound
O glb,lub

4. Special Poset
OO0 Total Order
O Lattice
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