§ 7.1 Relations Revisited: Properties of Relations

Checklist

1. The Properties of Relations

- Reflexive
\square Symmetric
- Transitive
- Antisymmetric

2. Special Relations

- Partial Ordering Relation
- Equivalence Relation

3. Counting

Computer Science and Information Engineering National Chi Nan University

Discrete Mathematics

Dr. Justie Su-Tzu Juan

Chapter 7 Relations: The Second Time Around

§ 7.2 Computer Recognition: Zero-One
Matrices and Directed Graphs
Slides for a Course Based on the Text
Discrete \& Combinatorial Mathematics ($5^{\text {th }}$ Edition) by Ralph P. Grimaldi

§ 7.2 Computer Recognition: Zero-One Matrices and Directed Graphs

Outline

1. Composite Relation
2. Relation Matrices
3. The Directed Graph Associated with a Relation
§ 7.2 Computer Recognition: Zero-One Matrices and Directed Graphs

Def 7.8 : A, B, C : sets, $\mathscr{R}_{1} \subseteq A \times B, \mathscr{R}_{2} \subseteq B \times C$. The composite relation $\mathscr{R}_{1} \circ \mathscr{R}_{2} \subseteq A \times C$ defined by $\mathscr{R}_{1} \circ \mathscr{R}_{2}=\{(x, z) \mid x \in A, z \in C$, and $\exists y \in B$ with (x, y) $\left.\in \mathscr{R}_{1},(y, z) \in \mathscr{R}_{2}\right\}$.

$$
\begin{aligned}
\text { Ex 7.17: } A & =\{1,2,3,4\}, B=\{w, x, y, z\}, C=\{5,6,7\}_{\text {back }} \\
\mathscr{R}_{1} & =\{(1, x),(2, x),(3, y),(3, z)\} \subseteq A \times B \\
\mathscr{R}_{2} & =\{(w, 5),(x, 6)\} \subseteq B \times C \\
\mathscr{R}_{3} & =\{(w, 5),(w, 6)\} \subseteq B \times C \\
\mathscr{R}_{1} & \circ \mathscr{R}_{2}=\{(1,6),(2,6)\} \quad \mathcal{R}_{1} \circ \mathcal{R}_{3}=\phi
\end{aligned}
$$

§ 7.2 Computer Recognition: Zero-One Matrices and Directed Graphs

Ex 7.18 : A : employees, B : programming languages, $C=\left\{p_{1}, p_{2}, \ldots, p_{8}\right\}:$ projects. $\mathscr{R}_{1} \subseteq A \times B:(x, y) \in \mathscr{R}_{1}$ means x is proficient in y, $\mathscr{R}_{2} \subseteq B \times C:(y, z) \in \mathscr{R}_{2}$ means z need y.
$\Rightarrow \mathscr{R}_{1} \circ \mathscr{R}_{2}$ has been used to set up a matching process between employees and projects on the basis of employee knowledge of specific programming languages.
§ 7.2 Computer Recognition: Zero-One Matrices and Directed Graphs

Chm 7.1 : A, B, C, D : sets, $\mathscr{R}_{1} \subseteq A \times B, \mathscr{R}_{2} \subseteq B \times C, \mathscr{R}_{3} \subseteq C \times D$.
The $\mathscr{R}_{1} \circ\left(\mathscr{R}_{2} \circ \mathscr{R}_{3}\right)=\left(\mathscr{R}_{1} \circ \mathscr{R}_{2}\right) \circ \mathscr{R}_{3}$.
Proof.

$$
\begin{aligned}
& \text { 1. } \mathscr{R}_{1} \circ\left(\mathscr{R}_{2} \circ \mathscr{R}_{3}\right) \subseteq A \times D,\left(\mathcal{R}_{1} \circ \mathscr{R}_{2}\right) \circ \mathscr{R}_{3} \subseteq A \times D . \\
& \text { 2. } \forall(a, d) \in \mathscr{R}_{1} \circ\left(\mathcal{R}_{2} \circ \mathscr{R}_{3}\right) \\
& \Rightarrow \exists b \in B \text { s.t. }(a, b) \in \mathscr{R}_{1} \wedge(b, d) \in \mathscr{R}_{2} \circ \mathscr{R}_{3} \\
& \Rightarrow \exists c \in C \text { s.t. }(b, c) \in \mathscr{R}_{2} \wedge(c, d) \in \mathscr{R}_{3} \\
& \because(a, b) \in \mathscr{R}_{1} \wedge(b, c) \in \mathscr{R}_{2} \quad \Rightarrow(a, c) \in \mathscr{R}_{1} \circ \mathscr{R}_{2} \\
& \because(a, c) \in \mathscr{R}_{1} \circ \mathscr{R}_{2} \wedge(c, d) \in \mathscr{R}_{3} \\
& \Rightarrow(a, d) \in\left(\mathcal{R}_{1} \circ \mathscr{R}_{2}\right) \circ \mathscr{R}_{3}
\end{aligned}
$$

$\therefore \mathscr{R}_{1} \circ\left(\mathscr{R}_{2} \circ \mathscr{R}_{3}\right) \subseteq\left(\mathscr{R}_{1} \circ \mathscr{R}_{2}\right) \circ \mathscr{R}_{3}$
Similar, $\left(\mathscr{R}_{1} \circ \mathscr{R}_{2}\right) \circ \mathscr{R}_{3} \subseteq \mathscr{R}_{1} \circ\left(\mathscr{R}_{2} \circ \mathscr{R}_{3}\right)$
$\Rightarrow \mathscr{R}_{1} \circ\left(\mathscr{R}_{2} \circ \mathscr{R}_{3}\right)=\left(\mathscr{R}_{1} \circ \mathscr{R}_{2}\right) \circ \mathscr{R}_{3}$
(c) Spring 2024, Justice Su-Tzu Juan

§ 7.2 Computer Recognition: Zero-One Matrices and Directed Graphs

Def 7.9 : A : sets, $\mathscr{R} \subseteq A \times A$. The power of \mathscr{R} defined recursively:
(a) $\mathscr{R}^{1}=\mathfrak{R}$;
(b) $\mathscr{R}^{n+1}=\mathscr{R} \circ \mathscr{R}^{n}, \forall n \in Z^{+}$.

$$
\begin{aligned}
& \text { Ex 7.19: } A=\{1,2,3,4\}, \mathcal{R}=\{(1,2),(1,3),(2,4),(3,2)\}_{\text {back }} \\
& \quad \Rightarrow \mathcal{R}^{2}=\{(1,4),(1,2),(3,4)\} \\
& \Rightarrow \mathcal{R}^{3}=\{(1,4)\} \\
& \quad \Rightarrow \mathcal{R}^{n}=\phi, \forall n \geq 4 .
\end{aligned}
$$

§ 7.2 Computer Recognition: Zero-One Matrices and

 Directed GraphsDef 7.10: 1) An $m \times n$ zero-one matrix $E=\left(e_{i j}\right)_{m \times n},(0,1)$-matrix:
$\equiv \boldsymbol{m}$ rows, \boldsymbol{n} columns, each entry is 0 or 1 .
2) $e_{i j} \equiv$ the entry in the i th row and the j th column of E,
$\forall 1 \leq i \leq m$ and $1 \leq j \leq n$.
$\underline{\text { Ex 7.20 }:} E=\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0\end{array}\right]$ is a $3 \times 4(\mathbf{0}, \mathbf{1})$-matrix.
$\begin{array}{lll}\text { 1) } e_{11}=1 & \text { 2) } e_{23}=0 & \text { 3) } e_{31}=1\end{array}$

Note : Use the standard operations of matrix addition and multiplication with the stipulation that $1+1=1$ (Boolean addition).
(c) Spring 2024, Justie Su-Tzu Juan
§ 7.2 Computer Recogn

$$
\mathcal{R}_{1}=\{(1, x),(2, x),(3, y),(3, z)\} \subseteq A \times B
$$ Directed Graphs $\mathcal{R}_{2}=\{(w, 5),(x, 6)\} \subseteq B \times C$

Ex 7.21: The relation matrices for $\mathscr{R}_{1}, \mathcal{R}_{2}$ of Ex 7.17:

$$
\begin{aligned}
& \boldsymbol{M}\left(\boldsymbol{R}_{1}\right) \cdot \boldsymbol{M}\left(\boldsymbol{R}_{2}\right)=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\boldsymbol{M}\left(\boldsymbol{R}_{1} \circ \boldsymbol{R}_{2}\right)
\end{aligned}
$$

Note : $M\left(\mathscr{R}_{1}\right) \cdot M\left(\mathscr{R}_{2}\right)=M\left(\mathcal{R}_{1} \circ \mathscr{R}_{2}\right)$

§ 7.2 Computer Recognition: Zero-One Matrices and

 Directed GraphsEx $7.22: A=\{1,2,3,4\}, \mathcal{R}=\{(1,2),(1,3),(2,4),(3,2)\}$, as in Ex 7.19. see Define the relation matrix for $\mathfrak{R}: M(\mathcal{R})$ is the $4 \times 4(0,1)$-matrix whose entries $m_{i j}$, for $1 \leq i, j \leq 4$, are given by $m_{i j}=\{1$, if $(i, j) \in \mathscr{R}$, 0 , otherwise.

$$
\begin{aligned}
& \boldsymbol{M}(\boldsymbol{R})=\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad(\boldsymbol{M}(\boldsymbol{R}))^{\mathbf{2}}= \\
& \left.\mathbf{(M (\mathcal { R })) ^ { \mathbf { 4 } } =} \begin{array}{lllll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \Rightarrow \mathscr{R}^{4}=\boldsymbol{\phi} \\
& \text { (c) Spring 2024, Justie Su-Tzu Juan }
\end{aligned}
$$

§ 7.2 Computer Recognition: Zero-One Matrices and Directed Graphs

In general : A : set, $|A|=n, \mathscr{R} \subseteq A \times A, M(\mathscr{R})$ is the relation matrix for \mathfrak{R} :
(a) $M(\mathscr{R})=0$ (all 0 's) iff $\mathscr{R}=\phi$
(b) $M(\mathscr{R})=1$ (all 1 's) iff $\mathscr{R}=A \times A$
(c) $M\left(\mathscr{R}^{m}\right)=[M(\mathscr{R})]^{m}$, for $m \in Z^{+}$.

Def 7.11: $E=\left(e_{i j}\right)_{m \times n}, F=\left(f_{i j}\right)_{m \times n}: 2 m \times n(0,1)$-matrices.
E precedes (or is less than) $F, E \leq F$,
$\equiv e_{i j} \leq f_{i j}, \forall 1 \leq i \leq m, 1 \leq j \leq n$.
$\underline{\operatorname{Ex} 7.23}: E=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 1\end{array}\right], F=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right] \quad \Rightarrow E \leq F$
$\Rightarrow \exists 8(0,1)$-matrices G for which $E \leq G$.

§ 7.2 Computer Recognition: Zero-One Matrices and Directed Graphs

Def 7.12 : For $n \in Z^{+}, I_{n}=\left(\delta_{i j}\right)_{n \times n}$ is the $n \times n(0,1)$-matrix, where

$$
\delta_{i j}=\left\{\begin{array}{l}
\mathbf{1 ,} \text { if } \boldsymbol{i}=\boldsymbol{j} ; \\
\mathbf{0}, \text { if } i \neq \boldsymbol{j} .
\end{array}\right.
$$

Def 7.13: Let $A=\left(a_{i j}\right)_{m \times n}$. The transpose of $A, A^{t r}=\left(a_{j i}^{*}\right)_{n \times m}$, where $a_{j i}^{*}=a_{i j}$, for all $1 \leq j \leq n, 1 \leq i \leq m$.
Ex 7.24: $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0 \\ 1 & 1\end{array}\right], A^{t r}=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 1\end{array}\right]$
Def : 1) $0 \cap 0=0 \cap 1=1 \cap 0=0,1 \cap 1=1$ (usual multiplication)
2) $E \cap F=\left(x_{i j}\right)_{m \times n}$, where $x_{i j}=e_{i j} \cap f_{i j}$.

§ 7.2 Computer Recognition: Zero-One Matrices and

 Directed GraphsThm 7.2 : A : set, $|A|=n, \mathscr{R} \subseteq A \times A$, let M denote the relation matrix for \mathscr{R}. Then
(a) \mathcal{R} is reflexive iff
(b) \mathcal{R} is symmetric iff
(c) \mathcal{R} is transitive iff
(d) \mathcal{R} is antisymmetric iff

Kahoot!: https://play.kahoot.it/v2/?quizld=2e4a70da-637b-4ab9-8fec-fa99c7679b8f\&hostld=e3b5c5c7-c22d-4353-a580-53c46d132332

Discussion ($5+5 \mathrm{~min}$):

§ 7.2 Computer Recognition: Zero-One Matrices and

 Directed GraphsThm 7.2 : A : set, $|A|=n, \mathcal{R} \subseteq A \times A$, let M denote the relation matrix for \mathfrak{R}. Then
(c) \mathcal{R} is transitive iff $M \cdot M=M^{2} \leq M$.

Proof. (1/2)
Let $M=\left(a_{i j}\right)_{n \times n}$.
(c) (\Leftarrow) Let $M^{2} \leq M$. If $(x, y),(y, z) \in \mathscr{R}$.
$\Rightarrow m_{x y}=m_{y z}=1$
($m_{x y}$ means the entry of M in row (x), column (y))
$\Rightarrow s_{x z}=1$
($s_{x z}$ means the entry of M^{2} in row (x), column (z))
$\because M^{2} \leq M \quad \therefore m_{x z}=1$
$\Rightarrow(x, z) \in \mathscr{R}$ and \mathscr{R} is transitive.
§ 7.2 Computer Recognition: Zero-One Matrices and Directed Graphs

Thm 7.2 : A : set, $|A|=n, \mathscr{R} \subseteq A \times A$, let M denote the relation matrix for \mathfrak{R}. Then
(c) \mathscr{R} is transitive iff $M \cdot M=M^{2} \leq M$.

Proof. (2/2)
(c) (\Rightarrow) If \mathscr{R} is transitive

Let $s_{x z} \equiv$ the entry in row (x) and column (z) of $M^{2}=1$
$\because s_{x z}=1 \quad \therefore \exists y \in A$ s.t. $m_{x y}=m_{y z}=1$
$\Rightarrow(x, y) \in \mathfrak{R} \wedge(y, z) \in \mathfrak{R}$
$\Rightarrow(x, z) \in \mathscr{R} \quad(\because \mathscr{R}$ is transitive $)$
$\Rightarrow m_{x z}=1$
$\therefore M^{2} \leq M$.
§ 7.2 Computer Recognition: Zero-One Matrices and Directed Graphs
Def 7.14 : V : finite nonempty. A directed graph (or digraph) $G \equiv$

- $G=(V, E)$, where V is called the vertex set, $E \subseteq V \times V$ is called the edge set.
- $v \in V$ is called the vertices or nodes of G
- $(a, b) \in E$ is called the (directed) edges or arcs of \boldsymbol{G}
- a is called the origin or source of $(\boldsymbol{a}, \boldsymbol{b})$
- b is called the terminus or terminating vertex of $(\boldsymbol{a}, \boldsymbol{b})$
- \boldsymbol{a} is adjacent to $\boldsymbol{b} \boldsymbol{b} \boldsymbol{b}$ is adjacent from \boldsymbol{a}
- (a, a) is called a loop at a

$$
\begin{aligned}
\text { Ex } 7.25: & V \\
E & =\{1,2,3,4,5\}, \\
& =\{(1,1),(1,2),(1,4),(3,2)\}
\end{aligned}
$$

(c) Spring 2024, Justie Su-Tzu Juan

§ 7.2 Computer Recognition: Zero-One Matrices and

 Directed GraphsDef : If $(a, b),(b, a) \in E,(a \neq b)$, then use $\{a, b\}=\{b, a\}$ to represent. a and b are called adjacent vertices.

Ex 7.26 : precedence graph for the computer program (S1) $b:=3$
(S2) $c:=b+2$
(S3) $a:=1$
(S4) $d:=a \times b+5$
(S5) $e:=d-1$
(S6) $f:=7$
(S7) $e:=c+d$
(S8) $g:=b \times f$

§ 7.2 Computer Recognition: Zero-One Matrices and Directed Graphs

$$
\text { Ex } 7.27: A=\{1,2,3,4\}, \mathfrak{R}=\{(1,1),(1,2),(2,3),(3,2),(3,3),
$$ $(3,4),(4,2)\}$. The directed graph associated with \mathfrak{R} is $G=$ (A, \mathcal{R}), where undirected edge $\{x, y\}=(x, y)$ and (y, x).

The associated undirected graph : replace all edges (x, y) by undirected edges $\{\boldsymbol{x}, \boldsymbol{y}\}$. back

(c) Spring 2024, Justie Su-Tzu Juan
§ 7.2 Computer Recognition: Zero-One Matrices and Directed Graphs

Def : For an undirected graph $G=(V, E)$:

1) A $x-y$ path starting at x and ending at $y \equiv$ a finite sequence of undirected edges with no repeat vertex.
2) The length of a path \equiv the edge on the path
3) A path is closed $\equiv x=y$
4) A closed path \equiv cycle (≥ 3 edges)
(a finite sequence of undirected edges with no repeat vertex except $x=y$.)
5) A undirected graph is connected $\equiv \forall x \neq y \in V, \exists x-y$ path

§ 7.2 Computer Recognition: Zero-One Matrices and Directed Graphs

Def : For an directed graph $G=(V, E)$:

1) A directed $x-y$ path starting at x and ending at $y \equiv$ a finite sequence of directed edges with no repeat vertex.
2) A closed directed path \equiv directed cycle (≥ 3 edges) (a finite sequence of directed edges with no repeat vertex except $x=y$.)

§ 7.2 Computer Recognition: Zero-One Matrices and Directed Graphs

Note : (1) loops \subseteq cycles;
(2) loops have no bearing on graph connectivity

Ex :

back
(1) $\{a, b\},\{b, e\},\{e, f\},\{f, b\},\{b, a\}$ is not a path
(2) $(b, f),(f, e),(e, d),(d, c),(c, b)=\mathbf{a}$ directed cycle of length 5
(3) $(b, f),(f, e),(e, b),(b, d),(d, c),(c, b) \neq$ directed cycle

§ 7．2 Computer Recognition：Zero－One Matrices and

 Directed GraphsDef 7.15 ：A directed graph $G=(V, E)$ is called strongly connected
$\equiv \forall x, y \in V$ ，where $x \neq y, \exists x-y$ directed path i．e．$(x, y) \in E$ or $\exists v_{1}, v_{2}, \ldots, v_{n} \in V$

$$
\text { s.t. }\left(x, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{n}, y\right) \in E
$$

Ex ：In Ex 7．27， \boldsymbol{G} is not strongly connected．

Def ：loop－free \equiv no loop
（ \because no 3－1 directed path）

Ex：1）上上Ex中，D 為strongly connected and loop－free． 2） \boldsymbol{G} is strongly connected and loop－free．

§ 7.2 Computer Recognition: Zero-One Matrices and

 Directed Graphs
Ex 7.29 :

- Complete graphs on n vertices, $K_{n} \equiv$ an undirected graph that are loop-free and have an edge for every pair of distinct vertices. K_{1}

- The adjacency matrix for $G=(A, \mathscr{R})$ \equiv the relation matrix for \mathfrak{R}.

Quiz:

https://play.kahoot.it/v2/?quizId=a3ca3070-b05f-438 67f34fb55991\&hostId=e3b5c5c7-c22d-4353-as8flob
§ 7.2 Computer Recognition: Zero-One Matrices and Directed Graphs

Note : \mathscr{R} is reflexive \Leftrightarrow in $G=(A, \mathscr{R}): \forall x \in V(G), \exists$ loop at x.
Note : \mathscr{R} is symmetric \Leftrightarrow in $G=(A, \mathscr{R})$:
$E(G)=$ loops \cup undirected edges
Note : \mathscr{R} is antisymmetric \Leftrightarrow For the associated graph $G=(A$, $\mathcal{R}), E(G)=$ loops \cup directed edges

Note : \mathscr{R} is transitive \Leftrightarrow For the associated graph $G=(A, \mathscr{R})$, $\forall x, y \in A, \exists x-y$ directed path in $G \Rightarrow \exists(x, y) \in \mathcal{R}$.

§ 7.2 Computer Recognition: Zero-One Matrices and Directed Graphs

Note : \mathfrak{R} is equivalence relation \Leftrightarrow
in its associated graph $G=(A, \mathcal{R}), G=(A,\{(a, a) \mid a \in$
$A\} \cup \bigcup_{j=1}^{k} E\left(K_{i_{j}}\right)$, where $\sum_{j=1}^{k} i_{j}=|A|, i_{j} \in \mathrm{Z}^{+}, \forall \mathbf{1} \leq \boldsymbol{j} \leq \boldsymbol{k}$.
i.e. G is one complete graph augmented by loops at every vertex or consists of the disjoint union of complete graphs augmented by loops at every vertex.

§ 7.2 Computer Recognition: Zero-One Matrices and Directed Graphs

Checklist

1. Composite Relation

- Associativity
\square The power of \mathcal{R}

2. Relation Matrix

- Definitions
- Thm 7.2: Use the relation matrix to find the properties of the relation.

3. The Directed Graph Associated with a Relation
\square Definitions

- Use the associated digraph to find the properties of the relation.
- Find a equivalence relation quickly by its associated digraph.

Computer Science and Information Engineering National Chi Nan University

Combinatorial Mathematics

Dr. Justie Su-Tzu Juan

Chapter 7 Relations: The Second Time Around

§ 7.3 Partial Orders: Hasse Diagrams Slides for a Course Based on the Text
Discrete \& Combinatorial Mathematics (5 ${ }^{\text {th }}$ Edition) by Ralph P. Grimaldi

§ 7.3 Partial Orders: Hasse Diagrams

Outline

1. Hasse diagram
2. Topological Sorting Algorithm
3. Special Elements
4. Special Poset

§ 7.3 Partial Orders: Hasse Diagrams

$$
\begin{aligned}
& \mathrm{N} \longrightarrow \mathrm{Z} \longrightarrow \mathrm{Q} \longrightarrow \mathrm{C} \\
& \text { closed under }+, \quad 2 x+3=4 ? \quad x^{2}-2=0 \quad x^{2}+1=0 \\
& \text { but not - } \\
& x+5=2 \text { ? } \\
& \left.\begin{array}{|c|}
\forall r_{1} \neq r_{2} \Rightarrow \text { either } \\
r_{1}<r_{2} \text { or } r_{1}>r_{2}
\end{array} \right\rvert\, \rightarrow ? ? \times
\end{aligned}
$$

Def: 1) (A, \mathscr{R}) is called a poset (partially ordered set) \equiv A relation \mathscr{R} on \boldsymbol{A} is a partial order. 2) A is called a poset $\equiv \exists$ a relation \mathcal{R} on A
s.t. (A, \mathscr{R}) is a poset.

§ 7.3 Partial Orders: Hasse Diagrams

EX 7.34: Let $A=\{x \mid x$ is a course offered at a college $\}$
Define \mathcal{R} on A by $x \mathscr{R} y$ if x, y are the same course or if x is a prerequisite for y.
$\Rightarrow \mathscr{R}$ makes \boldsymbol{A} into a poset.
Ex 7.35: Let $A=\{1,2,3,4\}$
Define $\mathscr{R}=\{(x, y)|x, y \in A, x| y\}$
$\mathfrak{R}=\{(1,1),(2,2),(3,3),(4,4),(1,2),(1,3),(1,4),(2,4)\}$ is a partial orders.
$\therefore(A, \mathscr{R})$ is a poset.

§ 7.3 Partial Orders: Hasse Diagrams

Ex 7.36:

$A=$ a set of tasks that must be performed in building a house \mathfrak{R} on A by $x \mathscr{R} y$ if x, y denote the same task or
if task \boldsymbol{x} must be performed before the start of task \boldsymbol{y}.
$\Rightarrow A$ is a poset

$\because(1,2),(2,1) \in \mathscr{R}$
with $1 \neq 2$: A

$\because(1,2),(2,3) \in \mathscr{R} \Rightarrow(1,3) \in \mathcal{R}$ but $(3,1) \in \mathscr{R}$ and $1 \neq 3: \wedge$

§ 7.3 Partial Orders: Hasse Diagrams

Note: In a digraph $G=(A, \mathcal{R})$, when
(1) $\exists a \neq b \in A,(a, b),(b, a) \in \mathscr{R}$, or
(2) \exists a directed cycle
then \mathscr{R} cannot be transitive and antisymmetric.
$\therefore(A, \mathcal{R})$ is not a poset.
Ex 7.37: Hasse diagram for \mathfrak{R} : Give $G=(A, \mathscr{R})$
step 1: eliminate the loops at $x, \forall x \in A$.
step 2: eliminate the edges is enough to in sure the existence by transitive. (if $\exists(x, y),(y, z) \in \mathscr{R}$, eliminate (x, z))
step 3: eliminate the directions : the directions are assumed to go from the bottom to the top.
ex:

(c) Spring 2024, Justie Su-Tzu Juan

§ 7.3 Partial Orders: Hasse Diagrams

(c) Spring 2024, Justie Su-Tzu Juan

§ 7.3 Partial Orders: Hasse Diagrams

Ex 7.39: Let $A=\{1,2,3,4,5\}, \mathcal{R}$ on A defined by $x \mathscr{R} y$ if $x \leq y$ A is a poset, denoted by (A, \leq). $B=\{1,2,4\} \subset A ; B \times B \cap \mathscr{R}$ is a partial order on B $=\{(1,1),(2,2),(4,4),(1,2),(1,4),(2,4)\}$

Note: If \mathscr{R} is a partial order on A, then $\forall B \subset A,(B,(B \times B) \cap \mathscr{R})$ is a poset.
$\mathbf{e x}:\{\phi,\{1\},\{3\},\{1,3\},\{1,2,3\}\}=B$. see
Def 7.16: 1) A partial order \mathfrak{R} on \boldsymbol{A} is called a total order if $\forall x, y \in A$, either $x \mathscr{R} y$ or $y \mathcal{R} x$.
2) \mathscr{R} is a total order on A, then A is called totally ordered.

§ 7．3 Partial Orders：Hasse Diagrams

Ex 7．40：（a）(\mathbb{N}, \leq) is a total order．
（b） $\mathcal{U}=\{1,2,3\},(\mathcal{P}(\mathcal{U})), \subseteq)$ is not a total order． $\because\{1,2\},\{1,3\} \in \mathscr{P}(\mathcal{U})$ ，but $\{1,2\} \not \subset\{1,3\},\{1,3\} \notin\{1,2\}$ ．
（c）Ex 7.38 （b）shows a total order．see

Ex 7．41：請自己看！

Q：Whether we can take the partial order \mathcal{R} ，given by the Hasse diagram，and fine a total order \mathfrak{T} on these tasks for which $\mathfrak{R} \subseteq \mathscr{T}$ ？
ex：

（c）Spring 2024，Justie Su－Tzu Juan

§ 7.3 Partial Orders: Hasse Diagrams

Topological Sorting Algorithm (for a poset (A, \mathscr{R}) with $|\boldsymbol{A}|=n$)
Step 1: Let $k=1$. Let $H_{1}=$ the Hasse diagram for (A, \mathcal{R})
Step 2: Select $\boldsymbol{v}_{\boldsymbol{k}} \in V\left(H_{k}\right)$ s.t. no edge in $\boldsymbol{H}_{\boldsymbol{k}}$ starts at $\boldsymbol{v}_{\boldsymbol{k}}$
Step 3: If $k=n$, output \mathcal{T} : $v_{n}<v_{n-1}<\ldots<v_{2}<v_{1}$ and STOP else $(k<n)\left\{H_{k+1}:=H_{k}-v_{k} ; k:=k+1 ;\right.$ go to Step2.\}
ex: $E<B<A<C<G<F<D$
$\Rightarrow 12$ possible answers

(c) Spring 2024, Justie Su-Tzu Juan

§ 7.3 Partial Orders: Hasse Diagrams

Def 7.17: (A, \mathscr{R}) is a poset:

1) $x \in A$ is called a maximal element of A
$\equiv \forall a \in A, a \neq x \Rightarrow x \mathscr{R} a \equiv \forall a \in A, x \mathfrak{R} a \Rightarrow x=a$.
2) $y \in A$ is called a minimal element of A
$\equiv \forall b \in A, b \neq y \Rightarrow b \mathscr{R} y \equiv \forall b \in A, b \mathcal{R} y \Rightarrow y=b$.
Ex 7.42: Let $\mathcal{U}=\{\mathbf{1 , 2 , 3}, \boldsymbol{A}=\mathcal{T}(\mathcal{U})$
(a) \mathcal{U} is maximal and ϕ is minimal for the poset (A, \subseteq)
(b) $\forall B=A-\{\{1,2, \mathbf{3}\}\}$, In (B, \subseteq) :
$\{1,2\},\{1,3\},\{2,3\}$ are all maximal elements;
ϕ is the minimal element.

§ 7.3 Partial Orders: Hasse Diagrams

Ex 7.43: 1) (Z, \leq) is a poset: neither a maximal nor a minimal element.
2) (N, \leq) is a poset: minimal element $=0$; no maximal element.

$$
\text { Ex 7.44: In Ex } 7.38 \text { (b), (c), (d): }
$$

	minimal element	maximal element
(b)	1	8
(c)	$2,3,5,7$	$2,3,5,7$
(d)	$2,3,5,7,11$	12,385

§ 7.3 Partial Orders: Hasse Diagrams

Thm 7.3: If (A, \mathscr{R}) is a poset and A is finite, then A has both a maximal and a minimal element.
Proof. maximal:
Let $a_{1} \in A$, If $\forall a \in A, a \neq a_{1}, a_{1} \notin a \Rightarrow a_{1}$ is maximal
else $\exists a_{2} \in A, a_{2} \neq a_{1}, a_{1} \Re a_{2}$:
If $\forall a \in A, a \neq a_{2}, a_{2} \Re a \Rightarrow a_{2}$ is maximal
else $\exists a_{3} \in A, a_{3} \neq a_{2}, a_{2} \mathcal{R} a_{3}$:
$\because \mathscr{R}$ is antisymmetric and $a_{1} \mathscr{R} a_{2} \therefore a_{3} \neq a_{1}$
$\because a_{1} \mathscr{R} a_{2}$ and $a_{2} \mathscr{R} a_{3} \quad \therefore a_{1} \mathscr{R} a_{3}$
If $\forall a \in A, a \neq a_{3}, a_{3} \Re a \Rightarrow a_{3}$ is maximal else ...
Continuing in this manner, $\because A$ is finite
\therefore We get $a_{n} \in A$ with $\forall a \in A, a \neq a_{n}, a_{n} \mathcal{R} a$
$\Rightarrow a_{n}$ is maximal.
minimal element can be proved in a similar way.

§ 7.3 Partial Orders: Hasse Diagrams

Note: In the topological sorting algorithm: Step2 selecting a maximal element from (A, \mathcal{R}) or (B, \mathcal{R}^{\prime}), where $B \subseteq A$; $\boldsymbol{R}^{\prime}=(\boldsymbol{B} \times \boldsymbol{B}) \cap \boldsymbol{\mathcal { R }}$.
\Rightarrow By Thm 7.3, \exists at least one such element!
Def 7.18: (A, \mathscr{R}) is a poset:

1) $x \in A$ is called a least element $\equiv \forall a \in A, x \mathcal{R} a$.
2) $y \in A$ is called a greatest element $\equiv \forall a \in A, a \mathcal{R} y$.

Ex 7.45: Let $\mathcal{U}=\{1,2,3\}, \mathcal{R}=\subseteq$, the subset relation
(a) $A=\mathscr{P}(U):(A, \subseteq)$: least element $=\phi$; greatest element $=u$
(b) $B=\mathscr{P}(\mathscr{U})-\{\phi\}:(B, \subseteq)$: greatest element $=U$; no least
element, but $\exists 3$ minimal element.

§ 7.3 Partial Orders: Hasse Diagrams

Ex 7.46: In Ex 7.38:

see

	least element	greatest element
(b)	1	8
(c)	no	no
(d)	no	no

Thm 7.4: If the poset (A, \mathcal{R}) has a greatest (least) element, then the element is unique.
Proof. Suppose $\exists x, y \in A$ and both are greatest elements
$\because x$ is a greatest element $\therefore y \mathscr{R} x$
$\because y$ is a greatest element $\therefore x \mathscr{R} y$
$\Rightarrow \because \mathscr{R}$ is antisymmetric $\quad \therefore x=y$
The proof for the least element is similar.

§ 7.3 Partial Orders: Hasse Diagrams

Def 7.19: Let (A, \mathcal{R}) be a poset with $B \subseteq A$:

1) $x \in A$ is called a lower bound of $B \equiv x \mathscr{R} b, \forall b \in B$.
2) $y \in A$ is called a upper bound of $B \equiv b \mathscr{R} y, \forall b \in B$.
3) A lower bound of $B, x^{\prime} \in A$ is called a greatest lower bound (glb) of $B \equiv \forall$ lower bounds $x^{\prime \prime}\left(\neq x^{\prime}\right)$ of $B, x^{\prime \prime} \mathcal{R} x^{\prime}$.
4) A upper bound of $B, y^{\prime} \in A$ is called a least upper bound (lub) of $B \equiv \forall$ upper bounds $y^{\prime \prime}\left(\neq y^{\prime}\right)$ of $B, y^{\prime} \mathfrak{R} y^{\prime \prime}$.

Ex 7.47: $\mathcal{U}=\{1,2,3,4\}, A=\mathscr{P}(\mathcal{U}), B=\{\{1\},\{2\},\{1,2\}\}:$
In (B, \subseteq) : upper bounds: $\{1,2\},\{1,2,3\},\{1,2,4\},\{1,2,3,4\}$

$$
\begin{array}{ll}
\text { lub: }\{1,2\} & (\in B) \\
\text { glb: } \phi \quad & (\notin B)
\end{array}
$$

§ 7.3 Partial Orders: Hasse Diagrams

Ex 7.48: $\mathcal{R}=\leq$ ("less than or equal to")
a) $\boldsymbol{A}=\mathrm{R}, \boldsymbol{B}=[0,1]: \boldsymbol{B}$ has glb: $0(\in \boldsymbol{B})$ lub: $1(\in \boldsymbol{B})$
$A=\mathrm{R}, C=(0,1]: C$ has glb: $0(\notin C)$ lub: $1(\in C)$
b) $\boldsymbol{A}=\mathrm{R}, \boldsymbol{B}=\left\{\boldsymbol{q} \in \mathrm{Q} \mid \boldsymbol{q}^{2}<\mathbf{2}\right\}: \overline{\boldsymbol{B} \text { has glb: }-\overline{\sqrt{2}}(\notin \boldsymbol{B})}$ lub: $\sqrt{2}(\notin \boldsymbol{B})$
c) $A=Q, B=\left\{q \in Q \mid q^{2}>2\right\}$: B has no glb or lub.

Thm 7.5: If (A, \mathcal{R}) is a poset and $B \subseteq A$, then B has at most one lub (glb).

Def 7.20: The poset (A, \mathcal{R}) is called a lattice
$\equiv \forall x, y \in A, \operatorname{lub}\{x, y\}$ and $\operatorname{glb}\{x, y\}$ both exist in A
$(\exists a, b \in A$, which $a=\operatorname{lub}\{x, y\}, b=\operatorname{glb}\{x, y\})$

§ 7.3 Partial Orders: Hasse Diagrams

Ex 7.49: $A=\mathrm{N}$, define \mathcal{R} on A by $x \mathscr{R} y$ if $x \leq y:(\mathbb{N}, \leq):$ $\operatorname{lub}\{x, y\}=\max \{x, y\} ; \operatorname{glb}\{x, y\}=\min \{x, y\}$ $\Rightarrow(\mathbb{N}, \leq)$ is a lattice.

Ex 7.50: $\mathcal{U}=\{1,2,3\}$ in $(\mathcal{P}(\mathcal{U}), \subseteq): \forall S, T \in \mathcal{P}(\mathcal{U})$ $\operatorname{lub}\{S, T\}=S \cup T(\in \mathscr{P}(\mathcal{U})) ; \operatorname{glb}\{x, y\}=S \cap T(\in \mathscr{P}(\mathcal{U}))$ $\Rightarrow(\mathscr{P}(U), \subseteq)$ is a lattice.

Ex 7.51: In Ex 7.38 (d):
$\operatorname{lub}\{2,3\}=6 ; \operatorname{lub}\{3,6\}=6 ; \operatorname{lub}\{5,7\}=35 ; \operatorname{lub}\{7,11\}=385$; $\operatorname{glb}\{3,6\}=3 ; \operatorname{glb}\{2,12\}=2 ; \operatorname{glb}\{35,385\}=35 ;$ but $\nexists \operatorname{glb}\{2,3\} \in A, \nexists \operatorname{glb}\{5,7\} \ldots$
\Rightarrow this poset is not a lattice.

§ 7.3 Partial Orders: Hasse Diagrams

Checklist

1. Hasse diagram
2. Topological Sorting Algorithm
3. Special Elements

- Maximal, minimal
- Least, greatest
- Lower bound, upper bound
- glb, lub

4. Special Poset

- Total Order
- Lattice

