§ 7.1 Relations Revisited: Properties of Relations

Checklist

1. The Properties of Relations

- **Reflexive**
- □ Symmetric
- **Transitive**
- □ Antisymmetric
- 2. Special Relations
 - **D** Partial Ordering Relation
 - **Equivalence Relation**
- 3. Counting

Computer Science and Information Engineering National Chi Nan University

Discrete Mathematics

Dr. Justie Su-Tzu Juan

Chapter 7 Relations: The Second Time Around

§ 7.2 Computer Recognition: Zero-One Matrices and Directed Graphs Slides for a Course Based on the Text Discrete & Combinatorial Mathematics (5th Edition) by Ralph P. Grimaldi

Outline

- 1. Composite Relation
- 2. Relation Matrices
- **3.** The Directed Graph Associated with a Relation

3

$$\begin{array}{l} \underline{\text{Def } 7.8}: A, B, C: \text{ sets}, \mathcal{R}_1 \subseteq A \times B, \mathcal{R}_2 \subseteq B \times C. \text{ The} \\ \hline composite \ relation \ \mathcal{R}_1 \circ \mathcal{R}_2 \subseteq A \times C \text{ defined by} \\ \mathcal{R}_1 \circ \mathcal{R}_2 = \{(x, z) \mid x \in A, z \in C, \text{ and } \exists \ y \in B \text{ with } (x, y) \\ \in \mathcal{R}_1, (y, z) \in \mathcal{R}_2\}. \end{array}$$

$$\begin{array}{l} \underline{\text{Ex } 7.17}: A = \{1, 2, 3, 4\}, B = \{w, x, y, z\}, C = \{5, 6, 7\} \text{ mak} \\ \mathcal{R}_1 = \{(1, x), (2, x), (3, y), (3, z)\} \subseteq A \times B \\ \mathcal{R}_2 = \{(w, 5), (x, 6)\} \subseteq B \times C \\ \mathcal{R}_3 = \{(w, 5), (w, 6)\} \subseteq B \times C \\ \mathcal{R}_1 \circ \mathcal{R}_2 = \{(1, 6), (2, 6)\} \qquad \mathcal{R}_1 \circ \mathcal{R}_3 = \phi \end{array}$$

(c) Spring 2024, Justie Su-Tzu Juan

4

Ex 7.18 : *A*: employees, *B*: programming languages,

 $C = \{p_1, p_2, ..., p_8\}$: projects. $\mathcal{R}_1 \subseteq A \times B : (x, y) \in \mathcal{R}_1$ means x is proficient in y, $\mathcal{R}_2 \subseteq B \times C : (y, z) \in \mathcal{R}_2$ means z need y. $\Rightarrow \mathcal{R}_1 \circ \mathcal{R}_2$ has been used to set up a matching process between employees and projects on the basis of employee knowledge of specific programming languages.

 $\frac{\text{Thm 7.1}}{\text{The } \mathcal{R}_1} : A, B, C, D : \text{sets}, \mathcal{R}_1 \subseteq A \times B, \mathcal{R}_2 \subseteq B \times C, \mathcal{R}_3 \subseteq C \times D.$ The $\mathcal{R}_1 \circ (\mathcal{R}_2 \circ \mathcal{R}_3) = (\mathcal{R}_1 \circ \mathcal{R}_2) \circ \mathcal{R}_3.$

Proof.

1.
$$\mathcal{R}_{1} \circ (\mathcal{R}_{2} \circ \mathcal{R}_{3}) \subseteq A \times D, (\mathcal{R}_{1} \circ \mathcal{R}_{2}) \circ \mathcal{R}_{3} \subseteq A \times D.$$

2. $\forall (a, d) \in \mathcal{R}_{1} \circ (\mathcal{R}_{2} \circ \mathcal{R}_{3})$
 $\Rightarrow \exists b \in B \text{ s.t. } (a, b) \in \mathcal{R}_{1} \wedge (b, d) \in \mathcal{R}_{2} \circ \mathcal{R}_{3}$
 $\Rightarrow \exists c \in C \text{ s.t. } (b, c) \in \mathcal{R}_{2} \wedge (c, d) \in \mathcal{R}_{3}$
 $\because (a, b) \in \mathcal{R}_{1} \wedge (b, c) \in \mathcal{R}_{2} \Rightarrow (a, c) \in \mathcal{R}_{1} \circ \mathcal{R}_{2}$
 $\because (a, c) \in \mathcal{R}_{1} \circ \mathcal{R}_{2} \wedge (c, d) \in \mathcal{R}_{3}$
 $\Rightarrow (a, d) \in (\mathcal{R}_{1} \circ \mathcal{R}_{2}) \circ \mathcal{R}_{3}$
 $\therefore \mathcal{R}_{1} \circ (\mathcal{R}_{2} \circ \mathcal{R}_{3}) \subseteq (\mathcal{R}_{1} \circ \mathcal{R}_{2}) \circ \mathcal{R}_{3}$
Similar, $(\mathcal{R}_{1} \circ \mathcal{R}_{2}) \circ \mathcal{R}_{3} \subseteq \mathcal{R}_{1} \circ (\mathcal{R}_{2} \circ \mathcal{R}_{3})$
 $\Rightarrow \mathcal{R}_{1} \circ (\mathcal{R}_{2} \circ \mathcal{R}_{3}) = (\mathcal{R}_{1} \circ \mathcal{R}_{2}) \circ \mathcal{R}_{3}$
 $(c) \text{ Spring 2024, Justie Su-Tzu Juan} \qquad 6$

$$\begin{array}{l} \underline{\text{Def 7.9}}: A: \text{ sets, } \mathcal{R} \subseteq A \times A. \text{ The } power of \mathcal{R} \text{ defined recursively:} \\ (a) \ \mathcal{R}^1 = \mathcal{R}; \\ (b) \ \mathcal{R}^{n+1} = \mathcal{R} \circ \mathcal{R}^n , \forall n \in Z^+. \end{array}$$

$$\underline{\text{Ex 7.19}}: A = \{1, 2, 3, 4\}, \mathcal{R} = \{(1, 2), (1, 3), (2, 4), (3, 2)\}$$

$$\Rightarrow \mathcal{R}^2 = \{(1, 4), (1, 2), (3, 4)\}$$

$$\Rightarrow \mathcal{R}^3 = \{(1, 4)\}$$

$$\Rightarrow \mathcal{R}^n = \phi, \forall n \ge 4.$$

Def 7.10: 1) An $m \times n$ zero-one matrix $E = (e_{ij})_{m \times n}$, (0, 1)-matrix: $\equiv m$ rows, n columns, each entry is 0 or 1. 2) $e_{ij} \equiv$ the entry in the *i*th row and the *j*th column of E, $\forall 1 \le i \le m$ and $1 \le j \le n$. **Ex 7.20:** $E = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$ is a 3×4 (0, 1)-matrix. 1) $e_{11} = 1$ 2) $e_{23} = 0$ 3) $e_{31} = 1$

Note : Use the standard operations of matrix addition and multiplication with the stipulation that 1 + 1 = 1 (*Boolean addition*).

(c) Spring 2024, Justie Su-Tzu Juan

8

§ 7.2 Computer Recognic Directed Graphs $\mathcal{R}_1 = \{(1, x), (2, x), (3, y), (3, z)\} \subseteq A \times B$ $\mathcal{R}_2 = \{(w, 5), (x, 6)\} \subseteq B \times C$

Ex 7.21: The *relation matrices* for $\mathcal{R}_1, \mathcal{R}_2$ of Ex 7.17: see $M(\mathcal{R}_{1}) = \begin{pmatrix} (w) & (x) & (y) & (z) \leftarrow B & (5) & (6) & (7) \\ (1) & 0 & 1 & 0 & 0 \\ (2) & 0 & 1 & 0 & 0 \\ (3) & 0 & 0 & 1 & 1 \\ (4) & 0 & 0 & 0 & 0 \end{bmatrix} \qquad M(\mathcal{R}_{2}) = \begin{pmatrix} (x) & 0 & 1 & 0 \\ (y) & 0 & 0 & 0 \\ (z) & 0 & 0 & 0 \\ (z) & 0 & 0 & 0 \\ \end{pmatrix}$ $M(\mathcal{R}_1) \cdot M(\mathcal{R}_2) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = M(\mathcal{R}_1 \circ \mathcal{R}_2)$ Note : $M(\mathcal{R}_1) \cdot M(\mathcal{R}_2) = M(\mathcal{R}_1 \circ \mathcal{R}_2)$

9

Ex 7.22 : $A = \{1, 2, 3, 4\}, \mathcal{R} = \{(1, 2), (1, 3), (2, 4), (3, 2)\},\$ as in Ex 7.19. see Define the *relation matrix* for \mathcal{R} : $M(\mathcal{R})$ is the 4×4 (0, 1)-matrix whose entries m_{ij} , for $1 \le i, j \le 4$, are given by $m_{ij} = \begin{cases} 1, \text{ if } (i, j) \in \mathcal{R}, \\ 0, \text{ otherwise.} \end{cases}$ $M(\mathcal{R}) = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad (M(\mathcal{R}))^2 = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = M(\mathcal{R}^2)$ (c) Spring 2024, Justie Su-Tzu Juan 10

<u>In general</u> : A: set, |A| = n, $\mathcal{R} \subseteq A \times A$, $M(\mathcal{R})$ is the relation matrix for \mathcal{R} :

(a)
$$M(\mathcal{R}) = 0$$
 (all 0's) iff $\mathcal{R} = \phi$
(b) $M(\mathcal{R}) = 1$ (all 1's) iff $\mathcal{R} = A \times A$
(c) $M(\mathcal{R}^m) = [M(\mathcal{R})]^m$, for $m \in Z^+$.

 $\underline{\text{Def 7.11}} : E = (e_{ij})_{m \times n}, F = (f_{ij})_{m \times n} : 2 \text{ } m \times n \text{ (0, 1)-matrices.}$ $E \text{ precedes (or is less than)} F, E \leq F,$ $\equiv e_{ij} \leq f_{ij}, \forall 1 \leq i \leq m, 1 \leq j \leq n.$ $\underline{\text{Ex 7.23}} : E = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, F = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \implies E \leq F$ $\implies \exists 8 \text{ (0, 1)-matrices } G \text{ for which } E \leq G.$

(c) Spring 2024, Justie Su-Tzu Juan

11

<u>Def 7.12</u>: For $n \in \mathbb{Z}^+$, $I_n = (\delta_{ij})_{n \times n}$ is the $n \times n$ (0, 1)-matrix, where $\delta_{ij} = \begin{cases} 1, \text{ if } i = j; \\ 0, \text{ if } i \neq j. \end{cases}$

 $\underline{\text{Def 7.13}}: \text{Let } A = (a_{ij})_{m \times n}. \text{ The transpose of } A, A^{tr} = (a^*_{ji})_{n \times m},$ where $a^*_{ji} = a_{ij}$, for all $1 \le j \le n, 1 \le i \le m$. $\underline{\text{Ex 7.24}}: A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 1 & 1 \end{bmatrix}, A^{tr} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$

Def : 1) $0 \cap 0 = 0 \cap 1 = 1 \cap 0 = 0$, $1 \cap 1 = 1$ (usual multiplication) 2) $E \cap F = (x_{ij})_{m \times n}$, where $x_{ij} = e_{ij} \cap f_{ij}$.

(c) Spring 2024, Justie Su-Tzu Juan

<u>Thm 7.2</u>: A: set, |A| = n, $\mathcal{R} \subseteq A \times A$, let M denote the relation matrix for \mathcal{R} . Then

- (a) \mathcal{R} is reflexive iff
- (b) \mathcal{R} is symmetric iff
- (c) *R* is transitive iff
- (d) \mathcal{R} is antisymmetric iff

Kahoot!: https://play.kahoot.it/v2/?quizId=2e4a70da-637b-4ab9-8fec-fa99c7679b8f&hostId=e3b5c5c7-c22d-4353-a580-53c46d132332

Discussion (5+5 min):

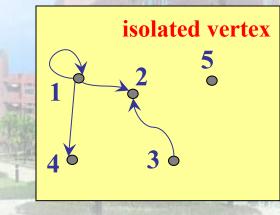
Thm 7.2 : A: set, |A| = n, $\mathcal{R} \subseteq A \times A$, let M denote the relation matrix for *R*. Then (c) \mathcal{R} is transitive iff $M \cdot M = M^2 \leq M$. **Proof.** (1/2)Let $M = (a_{ii})_{n \times n}$. (c) (\Leftarrow) Let $M^2 \leq M$. If $(x, y), (y, z) \in \mathcal{R}$. $\Rightarrow m_{xy} = m_{yz} = 1$ $(m_{xy} \text{ means the entry of } M \text{ in row } (x), \text{ column } (y))$ $\Rightarrow s_{xz} = 1$ (s_{xz} means the entry of M^2 in row (x), column (z)) $\therefore M^2 \leq M \quad \therefore m_{xz} = 1$ \Rightarrow (x, z) $\in \mathcal{R}$ and \mathcal{R} is transitive.

Thm 7.2 : A: set, |A| = n, $\mathcal{R} \subseteq A \times A$, let M denote the relation matrix for *R*. Then (c) \mathcal{R} is transitive iff $M \cdot M = M^2 \leq M$. **Proof.** (2/2)(c) (\Rightarrow) If \mathcal{R} is transitive Let $s_{xz} \equiv$ the entry in row (x) and column (z) of $M^2 = 1$ $\therefore s_{xz} = 1$ $\therefore \exists y \in A \text{ s.t. } m_{xy} = m_{yz} = 1$ \Rightarrow (*x*, *y*) \in $\mathscr{R} \land$ (*y*, *z*) \in \mathscr{R} \Rightarrow (x, z) $\in \mathcal{R}$ (: \mathcal{R} is transitive) $\Rightarrow m_{xz} = 1$ $\therefore M^2 \leq M.$

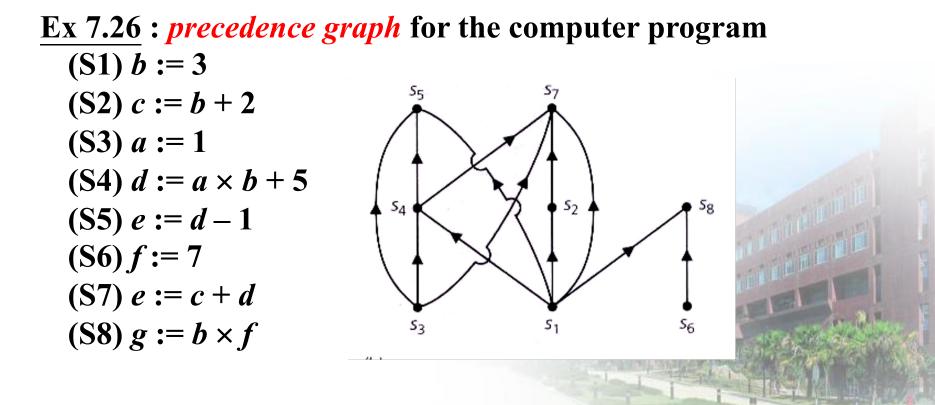
Def 7.14 : *V*: finite nonempty. *A directed graph* (or *digraph*) $G \equiv$

- G = (V, E), where V is called the *vertex set*, $E \subseteq V \times V$ is called the *edge set*.
- $v \in V$ is called the *vertices* or *nodes* of G
- $(a, b) \in E$ is called the (*directed*) *edges* or *arcs* of G
- *a* is called the *origin* or *source* of (*a*, *b*)
- b is called the *terminus* or *terminating vertex* of (a, b)
- a is adjacent to b; b is adjacent from a
- (*a*, *a*) is called a *loop* at *a*

 $\frac{\text{Ex } 7.25}{E} : V = \{1, 2, 3, 4, 5\},\$ $E = \{(1, 1), (1, 2), (1, 4), (3, 2)\}$

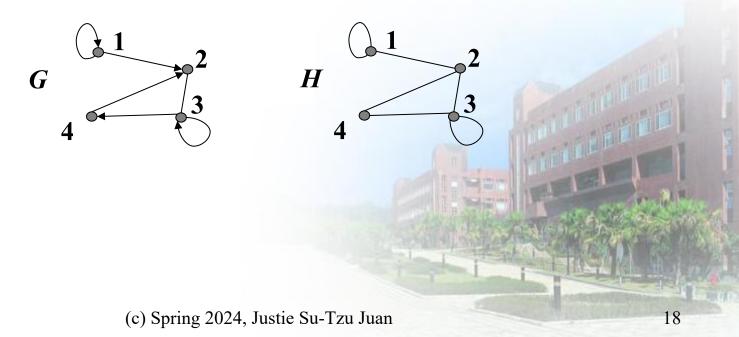


Def : If $(a, b), (b, a) \in E, (a \neq b)$, then use $\{a, b\} = \{b, a\}$ to represent. *a* and *b* are called *adjacent* vertices.



<u>Ex 7.27</u>: $A = \{1, 2, 3, 4\}, \mathcal{R} = \{(1, 1), (1, 2), (2, 3), (3, 2), (3, 3), (3, 4), (4, 2)\}.$ The directed graph associated with \mathcal{R} is $G = (A, \mathcal{R})$, where undirected edge $\{x, y\} = (x, y)$ and (y, x).

The *associated undirected graph* : replace all edges (x, y) by undirected edges $\{x, y\}$. <u>back</u>



- **<u>Def</u>**: For an undirected graph G = (V, E):
 - A x-y path starting at x and ending at y =
 a finite sequence of undirected edges with no repeat vertex.
 - 2) The *length* of a path = the edge on the path
 - 3) A path is *closed* $\equiv x = y$
 - 4) A closed path \equiv *cycle* (\geq 3 edges)

(a finite sequence of undirected edges with no repeat vertex except x = y.)

5) A undirected graph is *connected* $\equiv \forall x \neq y \in V, \exists x - y \text{ path}$

<u>Def</u>: For an directed graph G = (V, E):

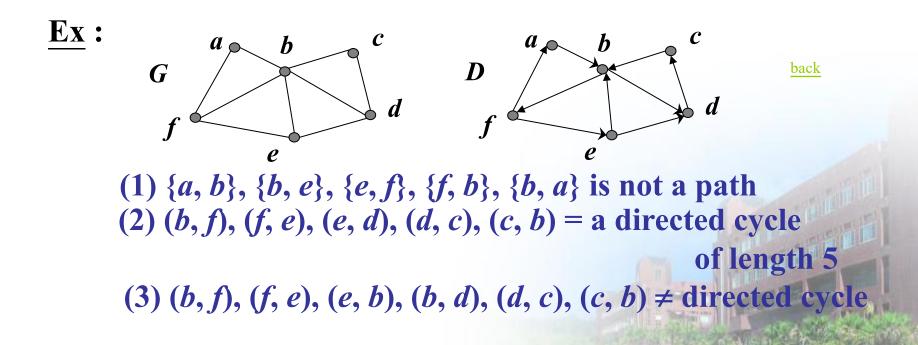
A directed x-y path starting at x and ending at y =

 a finite sequence of directed edges with no repeat vertex.

 A closed directed path = directed *cycle* (≥ 3 edges)

 (a finite sequence of directed edges with no repeat
 vertex except x = y.)

Note : (1) loops ⊈ cycles; (2) loops have no bearing on graph connectivity



<u>Def 7.15</u> : A directed graph G = (V, E) is called *strongly connected* $\equiv \forall x, y \in V$, where $x \neq y, \exists x-y$ directed path i.e. $(x, y) \in E$ or $\exists v_1, v_2, ..., v_n \in V$ s.t. $(x, v_1), (v_1, v_2), ..., (v_n, y) \in E$

Ex : In Ex 7.27, G is not strongly connected.

<u>Def</u> : *loop-free* = no loop

(: no 3-1 directed path) see G

<u>Ex</u>: 1) 上上<u>Ex</u>中, D為strongly connected and loop-free.
2) G is strongly connected and loop-free.

Ex 7.29 :

• Complete graphs on *n* vertices, $K_n \equiv$ an undirected graph that are loop-free and have an edge for every pair of distinct vertices.

 $K_1 \qquad K_2 \qquad K_3 \qquad K_4 \qquad K_5 \qquad K_5 \qquad K_6 \qquad K_7 \qquad K_7 \qquad K_8 \qquad K_8$

• The *adjacency matrix* for *G* = (*A*, *R*) ≡ the relation matrix for *R*.

Quiz:

https://play.kahoot.it/v2/?quizId=a3ca3070-b05f-438e-ac 67f34fb55991&hostId=e3b5c5c7-c22d-4353-a580-53c

(c) Spring 2024, Justie Su-Tzu Juan

<u>Note</u> : \mathcal{R} is reflexive \Leftrightarrow in $G = (A, \mathcal{R}) : \forall x \in V(G), \exists \text{ loop at } x$.

- $\underline{\text{Note}} : \mathcal{R} \text{ is symmetric} \Leftrightarrow \text{ in } G = (A, \mathcal{R}) :$ $E(G) = \text{loops} \cup \text{undirected edges}$
- **<u>Note</u>** : \mathcal{R} is antisymmetric \Leftrightarrow For the associated graph $G = (A, \mathcal{R}), E(G) = \text{loops} \cup \text{directed edges}$
- <u>Note</u> : \mathcal{R} is transitive \Leftrightarrow For the associated graph $G = (A, \mathcal{R})$, $\forall x, y \in A, \exists x - y \text{ directed path in } G \Rightarrow \exists (x, y) \in \mathcal{R}.$

<u>Note</u> : \mathcal{R} is equivalence relation \Leftrightarrow

in its associated graph $G = (A, \mathcal{R}), G = (A, \{(a, a) \mid a \in A\} \cup \bigcup_{j=1}^{k} E(K_{i_j}), \text{ where } \sum_{j=1}^{k} i_j = |A|, i_j \in Z^+, \forall 1 \le j \le k.$ i.e. *G* is one complete graph augmented by loops at every vertex or consists of the disjoint union of complete graphs augmented by loops at every vertex.

Checklist

- 1. Composite Relation
 - □ Associativity
 - **The** *power of R*
- 2. Relation Matrix
 - **D** Definitions
 - □ Thm 7.2: Use the relation matrix to find the properties of the relation.
- 3. The Directed Graph Associated with a Relation
 - **D** Definitions
 - □ Use the associated digraph to find the properties of the relation.
 - □ Find a equivalence relation quickly by its associated digraph.

Computer Science and Information Engineering National Chi Nan University

Combinatorial Mathematics

Dr. Justie Su-Tzu Juan

Chapter 7 Relations: The Second Time Around

§ 7.3 Partial Orders: Hasse Diagrams Slides for a Course Based on the Text Discrete & Combinatorial Mathematics (5th Edition) by Ralph P. Grimaldi

Outline

- 1. Hasse diagram
- 2. Topological Sorting Algorithm
- 3. Special Elements
- 4. Special Poset

$$N \longrightarrow Z \longrightarrow Q \longrightarrow R \longrightarrow C$$
closed under +, · $2x + 3 = 4$? $x^2 - 2 = 0$
but not -
 $x + 5 = 2$? $\forall r_1 \neq r_2 \Rightarrow \text{either}$
 $r_1 < r_2 \text{ or } r_1 > r_2$ \leftrightarrow ?×

<u>Def</u>: 1) (A, \mathcal{R}) is called a poset (partially ordered set) \equiv A relation \mathcal{R} on A is a partial order. 2) A is called a poset $\equiv \exists$ a relation \mathcal{R} on As.t. (A, \mathcal{R}) is a poset.

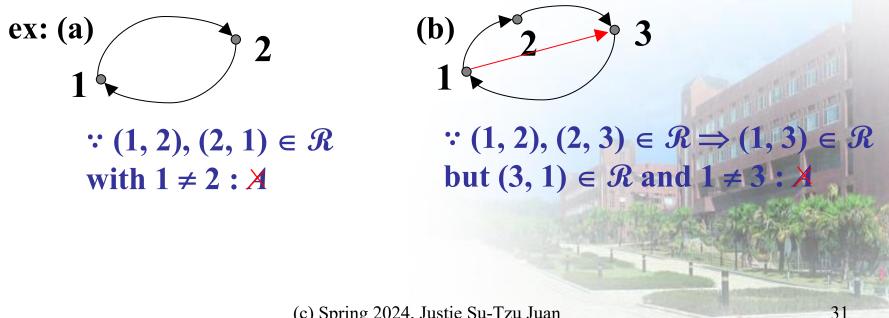
EX 7.34: Let $A = \{x \mid x \text{ is a course offered at a college}\}$ Define \mathcal{R} on A by $x\mathcal{R}y$ if x, y are the same course or if x is a prerequisite for y.

 $\Rightarrow \mathcal{R}$ makes A into a poset.

Ex 7.35: Let $A = \{1, 2, 3, 4\}$ **Define** $\Re = \{(x, y) | x, y \in A, x | y\}$ $\Re = \{(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (1, 3), (1, 4), (2, 4)\}$ is a partial orders. ∴ (A, \Re) is a poset.

Ex 7.36:

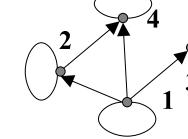
A = a set of tasks that must be performed in building a house \mathcal{R} on A by $x\mathcal{R}y$ if x, y denote the same task or if task x must be performed before the start of task y. \Rightarrow A is a poset



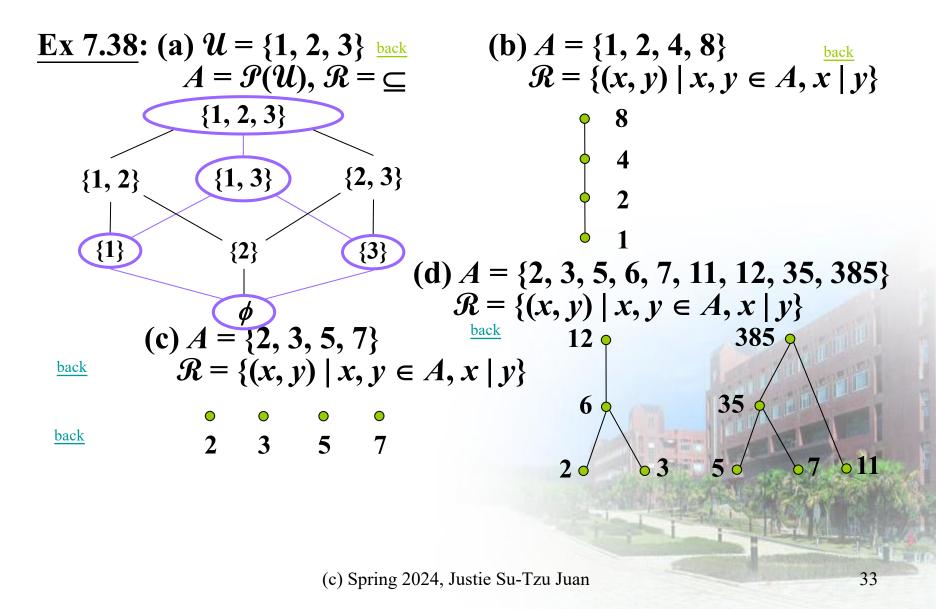
(c) Spring 2024, Justie Su-Tzu Juan

Note: In a digraph $G = (A, \mathcal{R})$, when (1) $\exists a \neq b \in A$, (a, b), $(b, a) \in \mathcal{R}$, or (2) \exists a directed cycle then \mathcal{R} cannot be transitive and antisymmetric. $\therefore (A, \mathcal{R})$ is not a poset.

Ex 7.37: Hasse diagram for \mathcal{R} : Give $G = (A, \mathcal{R})$ step 1: eliminate the loops at $x, \forall x \in A$. step 2: eliminate the edges is enough to in sure the existence by transitive. (if $\exists (x, y), (y, z) \in \mathcal{R}$, eliminate (x, z)) step 3: eliminate the directions : the directions are assumed to go from the bottom to the top.



(c) Spring 2024, Justie Su-Tzu Juan



Ex 7.39: Let $A = \{1, 2, 3, 4, 5\}$, \mathcal{R} on A defined by $x\mathcal{R}y$ if $x \le y$ A is a poset, denoted by (A, \le) . $B = \{1, 2, 4\} \subset A; B \times B \cap \mathcal{R}$ is a partial order on B $= \{(1, 1), (2, 2), (4, 4), (1, 2), (1, 4), (2, 4)\}$

<u>Note</u>: If \mathcal{R} is a partial order on A, then $\forall B \subset A$, $(B, (B \times B) \cap \mathcal{R})$ is a poset.

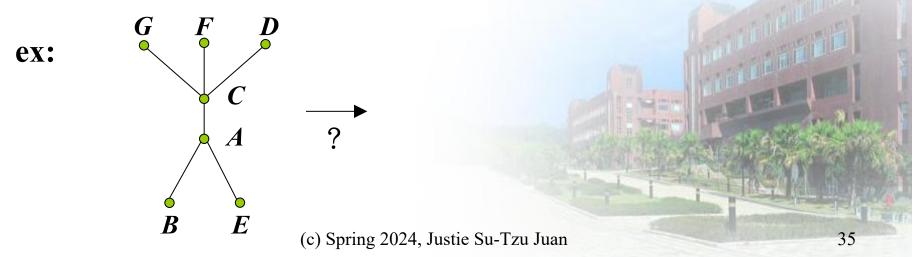
ex: $\{\phi, \{1\}, \{3\}, \{1, 3\}, \{1, 2, 3\}\} = B$. see

<u>Def 7.16</u>: 1) A partial order R on A is called a total order if ∀ x, y ∈ A, either xRy or yRx.
2) R is a total order on A, then A is called totally ordered.

Ex 7.40: (a) (N, ≤) is a total order. (b) $\mathcal{U} = \{1, 2, 3\}, (\mathcal{P}(\mathcal{U})), \subseteq$) is not a total order. $\because \{1, 2\}, \{1, 3\} \in \mathcal{P}(\mathcal{U}), \text{ but } \{1, 2\}\mathcal{R}\{1, 3\}, \{1, 3\}\mathcal{R}\{1, 2\}.$ (c) **Ex 7.38** (b) shows a total order. <u>see</u>

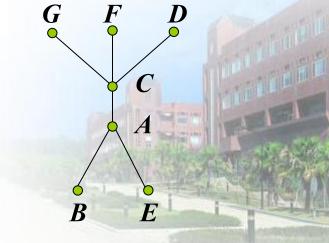
Ex 7.41: 請自己看!

Q: Whether we can take the partial order \mathcal{R} , given by the Hasse diagram, and fine a total order \mathcal{T} on these tasks for which $\mathcal{R} \subseteq \mathcal{T}$?



Topological Sorting Algorithm (for a poset (A, \mathcal{R}) with |A| = n) $\frac{\text{Step 1: Let } k = 1. \text{ Let } H_1 = \text{the Hasse diagram for } (A, \mathcal{R})$ $\frac{\text{Step 2: Select } v_k \in V(H_k) \text{ s.t. no edge in } H_k \text{ starts at } v_k$ $\frac{\text{Step 3: If } k = n, \text{ output } \mathcal{I}: v_n < v_{n-1} < \dots < v_2 < v_1 \text{ and STOP}$ $\text{else } (k < n) \{ H_{k+1} := H_k - v_k; k := k+1;$ $\text{go to Step 2.} \}$

ex: E < B < A < C < G < F < D \Rightarrow 12 possible answers



(c) Spring 2024, Justie Su-Tzu Juan

Def 7.17:
$$(A, \mathcal{R})$$
 is a poset:
1) $x \in A$ is called a **maximal** element of A
 $\equiv \forall a \in A, a \neq x \Rightarrow x\mathcal{R}a \equiv \forall a \in A, x\mathcal{R}a \Rightarrow x = a.$
2) $y \in A$ is called a **minimal** element of A
 $\equiv \forall b \in A, b \neq y \Rightarrow b\mathcal{R}y \equiv \forall b \in A, b\mathcal{R}y \Rightarrow y = b.$

Ex 7.42: Let
$$\mathcal{U} = \{1, 2, 3\}, A = \mathcal{P}(\mathcal{U})$$

(a) $\frac{\mathcal{U}}{\mathcal{U}}$ is maximal and ϕ is minimal for the poset (A, \subseteq)
(b) $\forall B = A - \{\{1, 2, 3\}\}, \text{ In } (B, \subseteq):$
 $\{1, 2\}, \{1, 3\}, \{2, 3\}$ are all maximal elements;
 ϕ is the minimal element.

Ex 7.43: 1) (Z, ≤) is a poset: neither a maximal nor a minimal element.
2) (N, ≤) is a poset: minimal element = 0; no maximal element.

Ex 7.44: In **Ex 7.38** (b), (c), (d): <u>see</u>

	minimal element	maximal element
(b)	1	8
(c)	2, 3, 5, 7	2, 3, 5, 7
(d)	2, 3, 5, 7, 11	12, 385

<u>Thm 7.3</u>: If (A, \mathcal{R}) is a poset and A is finite, then A has both a maximal and a minimal element.

Proof. maximal:

Let $\overline{a_1} \in A$, If $\forall a \in A, a \neq a_1, a_1 \Re a \Rightarrow a_1$ is maximal else $\exists a_2 \in A, a_2 \neq a_1, a_1 \Re a_2$: If $\forall a \in A, a \neq a_2, a_2 \Re a \implies a_2$ is maximal else $\exists a_3 \in A, a_3 \neq a_2, a_2 \Re a_3$: $\therefore \mathcal{R}$ is antisymmetric and $a_1\mathcal{R}a_2$ $\therefore a_3 \neq a_1$ $a_1 R a_2$ and $a_2 R a_3$ $\therefore a_1 R a_3$ If $\forall a \in A, a \neq a_3, a_3 \Re a \Rightarrow a_3$ is maximal else ... Continuing in this manner, : A is finite \therefore We get $a_n \in A$ with $\forall a \in A, a \neq a_n, a_n \mathcal{R} a$ $\Rightarrow a_n$ is maximal. minimal element can be proved in a similar way.

<u>Note</u>: In the topological sorting algorithm: <u>Step2</u> selecting a maximal element from (A, \mathcal{R}) or (B, \mathcal{R}') , where $B \subseteq A$; $\mathcal{R}' = (B \times B) \cap \mathcal{R}$.

 \Rightarrow By <u>Thm 7.3</u>, \exists at least one such element!

<u>Def 7.18</u>: (A, \mathcal{R}) is a poset: 1) $x \in A$ is called a least element $\equiv \forall a \in A, x\mathcal{R}a$. 2) $y \in A$ is called a greatest element $\equiv \forall a \in A, a\mathcal{R}y$.

Ex 7.45: Let U = {1, 2, 3}, R = ⊆, the subset relation
(a) A = I(U): (A, ⊆): least element = φ; greatest element = U
(b) B = I(U) - {φ}: (B, ⊆): greatest element = U; no least element, but ∃ 3 minimal element.

Ex 7.46: In Ex 7.38: see

	least element	greatest element
(b)	1	8
(c)	no	no
(d)	no	no

<u>Thm 7.4</u>: If the poset (A, \mathcal{R}) has a greatest (least) element, then the element is unique.

Proof. Suppose $\exists x, y \in A$ and both are greatest elements

 $\therefore x$ is a greatest element $\therefore y \Re x$

 \therefore y is a greatest element \therefore xRy

 $\Rightarrow :: \mathcal{R} \text{ is antisymmetric } \therefore x = y$

The proof for the least element is similar.

Def 7.19: Let (A, R) be a poset with B ⊆ A:
1) x ∈ A is called a lower bound of B ≡ xRb, ∀ b ∈ B.
2) y ∈ A is called a upper bound of B ≡ bRy, ∀ b ∈ B.
3) A lower bound of B, x' ∈ A is called a greatest lower bound (glb) of B ≡ ∀ lower bounds x'' (≠ x') of B, x''Rx'.

4) A upper bound of $B, y' \in A$ is called a least upper bound (*lub*) of $B \equiv \forall$ upper bounds $y'' (\neq y')$ of $B, y' \Re y''$.

 $\underline{\text{Ex 7.47: }} \mathcal{U} = \{1, 2, 3, 4\}, A = \mathcal{P}(\mathcal{U}), B = \{\{1\}, \{2\}, \{1, 2\}\}: \\ \text{In } (B, \subseteq): \text{ upper bounds: } \{1, 2\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 2, 3, 4\} \\ \text{lub: } \{1, 2\} \ (\in B) \\ \text{glb: } \phi \qquad (\notin B) \end{cases}$

(c) Spring 2024, Justie Su-Tzu Juan

 $\underbrace{\operatorname{Ex} 7.48}_{A}: \mathcal{R} = \leq (\text{``less than or equal to''})$ a) $A = \mathbb{R}, B = [0, 1]: B$ has glb: $\underbrace{0 \ (\in B)}_{A}$ lub: $\underbrace{1 \ (\in B)}_{A} = \mathbb{R}, C = (0, 1]: C$ has glb: $\underbrace{0 \ (\notin C)}_{A}$ lub: $\underbrace{1 \ (\in C)}_{A}$ b) $A = \mathbb{R}, B = \{q \in \mathbb{Q} \mid q^{2} < 2\}: B$ has glb: $-\sqrt{2} \ (\notin B)$ lub: $\sqrt{2} \ (\notin B)$ c) $A = \mathbb{Q}, B = \{q \in \mathbb{Q} \mid q^{2} > 2\}: B$ has <u>no</u> glb or lub.

Thm 7.5: If (A, \mathcal{R}) is a poset and $B \subseteq A$, then B has at most one lub (glb).

Def 7.20: The poset (A, \mathcal{R}) is called a **lattice** $\equiv \forall x, y \in A$, $lub\{x, y\}$ and $glb\{x, y\}$ both exist in A $(\exists a, b \in A, which a = lub\{x, y\}, b = glb\{x, y\})$

(c) Spring 2024, Justie Su-Tzu Juan

Ex 7.49: $A = \mathbb{N}$, define \mathcal{R} on A by $x\mathcal{R}y$ if $x \le y$: (\mathbb{N}, \le) : lub $\{x, y\} = \max\{x, y\}$; glb $\{x, y\} = \min\{x, y\}$ $\Rightarrow (\mathbb{N}, \le)$ is a lattice.

 $\underbrace{\text{Ex 7.50:}}_{\text{lub}\{S, T\}} = \{1, 2, 3\} \text{ in } (\mathcal{P}(\mathcal{U}), \subseteq): \forall S, T \in \mathcal{P}(\mathcal{U}) \\ \underset{S, T}{\text{lub}\{S, T\}} = S \cup T (\in \mathcal{P}(\mathcal{U})); \text{ glb}\{x, y\} = S \cap T (\in \mathcal{P}(\mathcal{U})) \\ \Rightarrow (\mathcal{P}(\mathcal{U}), \subseteq) \text{ is a lattice.}$

 $\frac{\text{Ex 7.51: In } \text{Ex 7.38 (d): }}{\text{lub}\{2, 3\} = 6; \text{lub}\{3, 6\} = 6; \text{lub}\{5, 7\} = 35; \text{lub}\{7, 11\} = 385; \dots} \\ \text{glb}\{3, 6\} = 3; \text{glb}\{2, 12\} = 2; \text{glb}\{35, 385\} = 35; \dots \\ \text{but } \nexists \text{ glb}\{2, 3\} \in A, \nexists \text{ glb}\{5, 7\} \dots \\ \Rightarrow \text{ this poset is not a lattice.} \end{cases}$

Checklist

- 1. Hasse diagram
- 2. Topological Sorting Algorithm
- 3. Special Elements
 - Maximal, minimal
 - □ Least, greatest
 - □ Lower bound, upper bound
 - glb, lub

4. Special Poset

- **D** Total Order
- □ Lattice