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Def 7.8 : A, B, C: sets, R1 Í A ´ B, R2 Í B ´ C. The 
composite relation R1。R2 Í A ´ C defined by 
R1。R2 = {(x, z) | x Î A, z Î C, and $ y Î B with (x, y) 
Î R1, (y, z) Î R2}.

Ex 7.17: A = {1, 2, 3, 4}, B = {w, x, y, z}, C = {5, 6, 7} back
R1 = {(1, x), (2, x), (3, y), (3, z)} Í A ´ B
R2 = {(w, 5), (x, 6)} Í B ´ C
R3 = {(w, 5), (w, 6)} Í B ´ C
R1。R2 ={(1, 6), (2, 6)} R1。R3 = f

§ 7.2 Computer Recognition: Zero-One Matrices and 
Directed Graphs
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Ex 7.18 : A: employees, B: programming languages, 
C = {p1, p2, …, p8}: projects. 
R1 Í A ´ B : (x, y) Î R1 means x is proficient in y, 
R2 Í B ´ C : (y, z) Î R2 means z need y.
Þ R1。R2 has been used to set up a matching 
process between employees and projects on the 
basis of employee knowledge of specific 
programming languages.
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(c) Spring 2024, Justie Su-Tzu Juan 5



Thm 7.1 : A, B, C, D : sets, R1 Í A ´ B, R2 Í B ´ C, R3 Í C ´ D. 
The R1。(R2。R3) = (R1。R2)。R3. 

Proof.
1. R1。(R2。R3) Í A ´ D, (R1。R2)。R3 Í A ´ D.
2. " (a, d) Î R1。(R2。R3) 
Þ $ b Î B s.t. (a, b) Î R1 Ù (b, d) Î R2。R3
Þ $ c Î C s.t. (b, c) Î R2 Ù (c, d) Î R3
∵ (a, b) Î R1 Ù (b, c) Î R2         Þ (a, c) Î R1。R2
∵ (a, c) Î R1。R2 Ù (c, d) Î R3

     Þ (a, d) Î (R1。R2)。R3
∴ R1。(R2。R3) Í (R1。R2)。R3
Similar, (R1。R2)。R3 Í R1。(R2。R3) 
ÞR1。(R2。R3) = (R1。R2)。R3

§ 7.2 Computer Recognition: Zero-One Matrices and 
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Def 7.9 : A: sets, R Í A ´ A. The power of R defined recursively:
(a) R1 = R;
(b) Rn+1 = R。Rn , " n Î Z +.

Ex 7.19: A = {1, 2, 3, 4}, R = {(1, 2), (1, 3), (2, 4), (3, 2)} back
Þ R2 = {(1, 4), (1, 2), (3, 4)}
Þ R3 = {(1, 4)}
Þ Rn = f, " n ³ 4.

§ 7.2 Computer Recognition: Zero-One Matrices and 
Directed Graphs
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Def 7.10: 1) An m´n zero-one matrix E = (eij)m´n, (0, 1)-matrix: 
º m rows, n columns, each entry is 0 or 1.

2) eij º the entry in the ith row and the jth column of E, 
" 1 £ i £ m and 1 £ j £ n.

Ex 7.20 :   is a 3 ´ 4 (0, 1)-matrix.

1) e11 = 1 2) e23 = 0 3) e31 = 1

Note : Use the standard operations of matrix addition and 
multiplication with the stipulation that 1 + 1 = 1 
(Boolean addition).
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Ex 7.21: The relation matrices for R1, R2 of Ex 7.17: see

M(R1) = M(R2) = 

M(R1)×M(R2) = = = M(R1。R2)

Note : M(R1)×M(R2) = M(R1。R2)
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Ex 7.22 : A = {1, 2, 3, 4}, R = {(1, 2), (1, 3), (2, 4), (3, 2)}, 
as in Ex 7.19. see

Define the relation matrix for R: M(R) is the 4´4 (0, 1)-matrix 
whose entries mij, for 1 £ i, j £ 4, are given by mij =   1, if (i, j) Î R,

0, otherwise.

M(R) = (M(R))2 =      = M(R2)

(M(R))4 = Þ R4 = f
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In general : A: set, |A| = n, R Í A ´ A, M(R) is the relation 
matrix for R :

(a) M(R) = 0 (all 0’s) iff R = f
(b) M(R) = 1 (all 1’s) iff R = A ´ A
(c) M(Rm) = [M(R)]m, for m ÎZ+.

Def 7.11 : E = (eij)m´n, F = (fij)m´n : 2 m´n (0, 1)-matrices. 
E precedes (or is less than) F, E £ F,
º eij £ fij, " 1 £ i £ m, 1 £ j £ n.

Ex 7.23 :   , Þ E £ F

Þ $ 8 (0, 1)-matrices G for which E £ G.
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Def 7.12 : For n ÎZ+, In = (dij)n´n is the n´n (0, 1)-matrix, where 
 dij =    1, if i = j; 

0, if i ¹ j.

Def 7.13 : Let A = (aij)m´n. The transpose of A, Atr = (a*
ji)n´m, 

where a*
ji = aij, for all 1 £ j £ n, 1 £ i £ m.

Ex 7.24 :                     ,

Def : 1) 0Ç0 = 0Ç1 = 1Ç0 = 0, 1Ç1 = 1 (usual multiplication)
2) EÇF = (xij)m´n, where xij = eijÇfij.
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Thm 7.2 : A: set, |A| = n, R Í A ´ A, let M denote the relation 
matrix for R. Then
(a) R is reflexive iff In £ M.
(b) R is symmetric iff M = Mtr.
(c) R is transitive iff M×M = M2 £ M.
(d) R is antisymmetric iff MÇMtr £ In.

Kahoot!: https://play.kahoot.it/v2/?quizId=2e4a70da-637b-
4ab9-8fec-fa99c7679b8f&hostId=e3b5c5c7-c22d-
4353-a580-53c46d132332

Discussion (5+5 min):

§ 7.2 Computer Recognition: Zero-One Matrices and 
Directed Graphs
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Thm 7.2 : A: set, |A| = n, R Í A ´ A, let M denote the relation 
matrix for R. Then
(c) R is transitive iff M×M = M2 £ M.

Proof. (1/2) 
Let M = (aij)n´n.
(c) (Ü) Let M 2 £ M. If (x, y), (y, z) Î R.

Þ mxy = myz = 1 
(mxy means the entry of M in row (x), column (y))

Þ sxz = 1            
(sxz means the entry of M2 in row (x), column (z))

∵ M2 £ M ∴ mxz = 1 
Þ (x, z) Î R and R is transitive. 

§ 7.2 Computer Recognition: Zero-One Matrices and 
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Thm 7.2 : A: set, |A| = n, R Í A ´ A, let M denote the relation 
matrix for R. Then
(c) R is transitive iff  M×M = M2 £ M.

Proof.  (2/2)
(c) (Þ) If R is transitive 

Let sxz º the entry in row (x) and column (z) of 
M2 = 1

  ∵ sxz = 1 ∴ $ y Î A s.t. mxy = myz = 1 
  Þ (x, y) Î R Ù (y, z) Î R
  Þ (x, z) Î R (∵ R is transitive)
  Þ mxz = 1 
  ∴ M2 £ M.

§ 7.2 Computer Recognition: Zero-One Matrices and 
Directed Graphs
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Def 7.14 : V: finite nonempty. A directed graph (or digraph) G º
l G = (V, E), where V is called the vertex set, E Í V ´ V is called 

the edge set.
l v Î V is called the vertices or nodes of G
l (a, b) Î E is called the (directed) edges or arcs of G
l a is called the origin or source of (a, b)
l b is called the terminus or terminating vertex of (a, b)
l a is adjacent to b; b is adjacent from a
l (a, a) is called a loop at a

Ex 7.25 : V = {1, 2, 3, 4, 5}, 
E = {(1, 1), (1, 2), (1, 4), (3, 2)}

1 2

34

5
isolated vertex

§ 7.2 Computer Recognition: Zero-One Matrices and 
Directed Graphs



(c) Spring 2024, Justie Su-Tzu Juan 17

Def : If (a, b), (b, a) Î E, (a ¹ b), then use {a, b} = {b, a} to 
represent. a and b are called adjacent vertices.

Ex 7.26 : precedence graph for the computer program
(S1) b := 3
(S2) c := b + 2
(S3) a := 1
(S4) d := a ´ b + 5
(S5) e := d – 1
(S6) f := 7
(S7) e := c + d
(S8) g := b ´ f

a b a b

§ 7.2 Computer Recognition: Zero-One Matrices and 
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Ex 7.27 : A = {1, 2, 3, 4}, R = {(1, 1), (1, 2), (2, 3), (3, 2), (3, 3), 
(3, 4), (4, 2)}. The directed graph associated with R is G = 
(A, R), where undirected edge {x, y} = (x, y) and (y, x). 

The associated undirected graph：replace all edges (x, y) by 
undirected edges {x, y}. back

G
1 2

4
3

H
1

2

4
3
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Def : For an undirected graph G = (V, E):
1) A x-y path starting at x and ending at y º

a finite sequence of undirected edges with no repeat     
vertex.

2) The length of a path º the edge on the path
3) A path is closed º x = y
4) A closed path º cycle (³ 3 edges)

(a finite sequence of undirected edges with no repeat     
vertex except x = y.)

5) A undirected graph is connected º " x ¹ y Î V, $ x-y path

§ 7.2 Computer Recognition: Zero-One Matrices and 
Directed Graphs
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Def : For an directed graph G = (V, E):
1) A directed x-y path starting at x and ending at y º

a finite sequence of directed edges with no repeat vertex.
2) A closed directed path º directed cycle (³ 3 edges)

(a finite sequence of directed edges with no repeat     
vertex except x = y.)

§ 7.2 Computer Recognition: Zero-One Matrices and 
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Note : (1) loops Í cycles;
   (2) loops have no bearing on graph connectivity

Ex : a b c

f
e

d
G

a b c

f
e

d
D

(1) {a, b}, {b, e}, {e, f}, {f, b}, {b, a} is not a path
(2) (b, f), (f, e), (e, d), (d, c), (c, b) = a directed cycle 

of length 5
(3) (b, f), (f, e), (e, b), (b, d), (d, c), (c, b) ¹ directed cycle

back

§ 7.2 Computer Recognition: Zero-One Matrices and 
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Def 7.15 : A directed graph G = (V, E) is called strongly connected
º " x, y Î V, where x ¹ y, $ x-y directed path 
i.e. (x, y) Î E or $ v1, v2, …, vn Î V

s.t. (x, v1), (v1, v2), …, (vn, y) Î E

Ex : In Ex 7.27, G is not strongly connected.  
(∵ no 3-1 directed path) see

Def : loop-free º no loop

Ex : 1) 上上Ex中，D為strongly connected and loop-free. see
2) G is strongly connected and loop-free.

1 2

4 3

G

§ 7.2 Computer Recognition: Zero-One Matrices and 
Directed Graphs



(c) Spring 2024, Justie Su-Tzu Juan 23

Ex 7.29 :
l Complete graphs on n vertices, Kn º an undirected graph that 

are loop-free and have an edge for every pair of distinct 
vertices.

l The adjacency matrix for G = (A, R) 
º the relation matrix for R.

Quiz:
https://play.kahoot.it/v2/?quizId=a3ca3070-b05f-438e-a69c-

67f34fb55991&hostId=e3b5c5c7-c22d-4353-a580-53c46d132332 

K1 K2 K3 K4 K5

§ 7.2 Computer Recognition: Zero-One Matrices and 
Directed Graphs
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Note : R is reflexive Û in G = (A, R) : " x Î V(G), $ loop at x.

Note : R is symmetric Û in G = (A, R) : 
E(G) = loops È undirected edges

Note : R is antisymmetric Û For the associated graph G = (A, 
R), E(G) = loops È directed edges

Note : R is transitive Û For the associated graph G = (A, R), 
" x, y Î A, $ x-y directed path in G Þ $ (x, y) Î R. 

§ 7.2 Computer Recognition: Zero-One Matrices and 
Directed Graphs
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Note : R is equivalence relation Û

in its associated graph G = (A, R), G = (A, {(a, a) | a Î

A} È   , where   , ij Î Z+, " 1 £ j £ k.
i.e. G is one complete graph augmented by loops at 
every vertex or consists of the disjoint union of 
complete graphs augmented by loops at every vertex.
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p The power of R

2. Relation Matrix
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p Thm 7.2: Use the relation matrix to find the properties of the 

relation.

3. The Directed Graph Associated with a Relation
p Definitions
p Use the associated digraph to find the properties of the relation.
p Find a equivalence relation quickly by its associated digraph. 
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Def: 1) (A, R) is called a poset (partially ordered set) 
º A relation R on A is a partial order.

2) A is called a poset º $ a relation R on A
s.t. (A, R) is a poset.

§ 7.3 Partial Orders: Hasse Diagrams

N Z Q R C
closed under +, ×
but not –

x + 5 = 2?

2x + 3 = 4? x2 – 2 = 0 x2 + 1 = 0

"r1 ¹ r2 Þ either  
r1 < r2 or r1 > r2 ? ´
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EX 7.34: Let A = {x | x is a course offered at a college}
Define R on A by xRy if x, y are the same course or 

if x is a prerequisite for y.
Þ R makes A into a poset.

Ex 7.35: Let A = {1, 2, 3, 4}
Define R = {(x, y) | x, y Î A, x | y}
R = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (1, 3), (1, 4), (2, 4)} 

is a partial orders.
\ (A, R) is a poset.

§ 7.3 Partial Orders: Hasse Diagrams
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Ex 7.36: 
A =  a set of tasks that must be performed in building a house
R on A by xRy if x, y denote the same task or

    if task x must be performed before the start of task y.
Þ A is a poset

ex: (a) (b) 

§ 7.3 Partial Orders: Hasse Diagrams

1
2

1
2 3

∵ (1, 2), (2, 1) Î R
with 1 ¹ 2 : A

∵ (1, 2), (2, 3) Î RÞ (1, 3) Î R
but (3, 1) Î R and 1 ¹ 3 : A
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Note:  In a digraph G = (A, R),  when
(1) $ a ¹ b Î A, (a, b), (b, a) Î R, or
(2) $ a directed cycle
then R cannot be transitive and antisymmetric.

\ (A, R) is not a poset.

Ex 7.37: Hasse diagram for R : Give G = (A, R)
step 1: eliminate the loops at x, " x Î A.
step 2: eliminate the edges is enough to in sure the existence 

by transitive. (if $ (x, y), (y, z) Î R, eliminate (x, z))
step 3: eliminate the directions : the directions are assumed 

to go from the bottom to the top.

ex:

§ 7.3 Partial Orders: Hasse Diagrams

4
32

1

4

3
2

1



(c) Spring 2024, Justie Su-Tzu Juan 33

Ex 7.38: (a) U = {1, 2, 3} (b) A = {1, 2, 4, 8}
 A = P(U), R = Í  R = {(x, y) | x, y Î A, x | y}

(d) A = {2, 3, 5, 6, 7, 11, 12, 35, 385}
R = {(x, y) | x, y Î A, x | y}

(c) A = {2, 3, 5, 7}
R = {(x, y) | x, y Î A, x | y}

§ 7.3 Partial Orders: Hasse Diagrams

{1, 2, 3}

{1, 2} {1, 3} {2, 3}

{1} {2} {3}

f

8
4
2
1

2 3 5 7

12

6

2 3

385

35

5 7 11

back back

back

back

back
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Ex 7.39: Let A = {1, 2, 3, 4, 5}, R on A defined by xRy if x £ y
A is a poset, denoted by (A, £).
B = {1, 2, 4} Ì A; B ´ B Ç R is a partial order on B 
= {(1, 1), (2, 2), (4, 4), (1, 2), (1, 4), (2, 4)}

Note: If R is a partial order on A, then " B Ì A, (B, (B´B)ÇR) 
is a poset.

ex: {f, {1}, {3}, {1, 3}, {1, 2, 3}} = B. see

Def 7.16: 1) A partial order R on A is called a total order
if " x, y Î A, either xRy or yRx.

 2) R is a total order on A, then A is called totally ordered.

§ 7.3 Partial Orders: Hasse Diagrams
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Ex 7.40:  (a) (N, £) is a total order.
(b) U = {1, 2, 3}, (P(U)), Í) is not a total order.

∵ {1, 2}, {1, 3} Î P(U), but {1, 2}R{1, 3}, {1, 3}R{1, 2}.
(c) Ex 7.38 (b) shows a total order. see

Ex 7.41: 請自己看！

Q: Whether we can take the partial order R, given by the Hasse 
diagram, and fine a total order T on these tasks for which R Í T?

ex:

§ 7.3 Partial Orders: Hasse Diagrams

G F D

C
A

B E

？
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Topological Sorting Algorithm (for a poset (A, R) with |A| = n)

ex: E < B < A < C < G < F < D
      Þ 12 possible answers

§ 7.3 Partial Orders: Hasse Diagrams

Step 1: Let k = 1. Let H1 = the Hasse diagram for (A, R)
Step 2: Select vk Î V(Hk) s.t. no edge in Hk starts at vk
Step 3: If k = n, output T: vn < vn–1 < … < v2 < v1 and STOP

 else (k < n) { Hk+1 := Hk – vk; k := k + 1;
      go to Step2.}

G F D

C

B E

A
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Def 7.17: (A, R) is a poset:
1) x Î A is called a maximal element of A
º " a Î A, a ¹ x Þ xRa º " a ÎA, xRa Þ x = a.

2) y Î A is called a minimal element of A
º " b Î A, b ¹ y Þ bRy º " b ÎA, bRy Þ y = b.

Ex 7.42: Let U = {1, 2, 3}, A = P(U)
(a) U is maximal and f is minimal for the poset (A, Í)
(b) " B = A – {{1, 2, 3}},  In (B, Í):

 {1, 2}, {1, 3}, {2, 3} are all maximal elements; 
f is the minimal element.

§ 7.3 Partial Orders: Hasse Diagrams



minimal element maximal element
(b) 1 8
(c) 2, 3, 5, 7 2, 3, 5, 7
(d) 2, 3, 5, 7, 11 12, 385
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Ex 7.43:  1) (Z, £) is a poset: neither a maximal 
nor a minimal element.

 2) (N, £) is a poset: minimal element = 0; 
no maximal element.

Ex 7.44: In Ex 7.38 (b), (c), (d): see
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Thm 7.3: If (A, R) is a poset and A is finite, then A has both a 
maximal and a minimal element.

Proof. maximal: 
Let a1 Î A, If " a Î A, a ¹ a1, a1Ra Þ a1 is maximal

 else $ a2 Î A, a2 ¹ a1, a1Ra2:
If " a Î A, a ¹ a2, a2Ra Þ a2 is maximal
else $ a3 Î A, a3 ¹ a2, a2Ra3:

∵ R is antisymmetric and a1Ra2 \ a3 ¹ a1
∵ a1Ra2 and a2Ra3 \ a1Ra3
If " a Î A, a ¹ a3, a3Ra Þ a3 is maximal
else …

 Continuing in this manner, ∵ A is finite
 \ We get an Î A with " a Î A, a ¹ an, anRa
 Þ an is maximal.

minimal element can be proved in a similar way.
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Note:  In the topological sorting algorithm: Step2 selecting a 
maximal element from (A, R) or (B, R'), where B Í A; 
R' = (B´B)ÇR.
Þ By Thm 7.3, $ at least one such element!

Def 7.18: (A, R) is a poset:
1) x Î A is called a least element º " a Î A, xRa.
2) y Î A is called a greatest element º " a Î A, aRy.

Ex 7.45: Let U = {1, 2, 3}, R = Í, the subset relation
(a) A = P(U): (A, Í): least element = f; greatest element = U
(b) B = P(U) – {f}: (B, Í): greatest element = U; no least 

element, but $ 3 minimal element.
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Ex 7.46: In Ex 7.38: see

Thm 7.4: If the poset (A, R) has a greatest (least) element, 
then the element is unique.

Proof. Suppose $ x, y Î A and both are greatest elements
   ∵ x is a greatest element \ yRx
   ∵ y is a greatest element \ xRy
   Þ ∵ R is antisymmetric \ x = y
   The proof for the least element is similar.
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least element greatest element
(b) 1 8
(c) no no
(d) no no
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Def 7.19: Let (A, R) be a poset with B Í A:
1) x Î A is called a lower bound of B º xRb, " b Î B.
2) y Î A is called a upper bound of B º bRy, " b Î B.
3) A lower bound of B, x' ÎA is called a greatest lower bound 

(glb) of B º " lower bounds x'' (¹ x') of B, x''Rx'.
4) A upper bound of B, y' ÎA is called a least upper bound 

(lub) of B º " upper bounds y'' (¹ y') of B, y'Ry''.

Ex 7.47: U = {1, 2, 3, 4}, A = P(U), B = {{1}, {2}, {1, 2}}:
In (B, Í): upper bounds: {1, 2}, {1, 2, 3}, {1, 2, 4}, {1, 2, 3, 4}

lub: {1, 2} (Î B)
glb: f (Ï B)
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Ex 7.48: R = £ (“less than or equal to”)
a) A = R, B = [0, 1]: B has glb: 0 (Î B) lub: 1 (Î B)

 A = R, C = (0, 1]: C has glb: 0 (Ï C) lub: 1 (Î C)
b) A = R, B = {q ÎQ | q2 < 2}: B has glb: – (Ï B) lub: (Ï B)
c) A = Q, B = {q ÎQ | q2 > 2}: B has no glb or lub.

Thm 7.5: If (A, R) is a poset and B Í A, then B has at most one 
lub (glb).

Def 7.20: The poset (A, R) is called a lattice
 º " x, y Î A, lub{x, y} and glb{x, y} both exist in A

($ a, b Î A, which a = lub{x, y}, b = glb{x, y})
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Ex 7.49: A = N, define R on A by xRy if x £ y: (N, £):
lub{x, y} = max{x, y}; glb{x, y} = min{x, y}
Þ (N, £) is a lattice.

Ex 7.50: U = {1, 2, 3} in (P(U), Í): " S, T Î P(U)
lub{S, T} = SÈT (Î P(U)); glb{x, y} = SÇT (Î P(U))
Þ (P(U), Í) is a lattice.

Ex 7.51: In Ex 7.38 (d): see
lub{2, 3} = 6; lub{3, 6} = 6; lub{5, 7} = 35; lub{7, 11} = 385; …
glb{3, 6} = 3; glb{2, 12} = 2; glb{35, 385} = 35; …
but $ glb{2, 3} Î A, $ glb{5, 7} …

Þ this poset is not a lattice.
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Checklist
1. Hasse diagram 
2. Topological Sorting Algorithm 
3. Special Elements
p Maximal, minimal
p Least, greatest
p Lower bound, upper bound
p glb, lub

4. Special Poset
p Total Order
p Lattice
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