Computer Science and Information Engineering National Chi Nan University

Combinatorial Mathematics

Dr. Justie Su-Tzu Juan

Chapter 7 Relations: The Second Time Around

§ 7.1 Relations Revisited: Properties of Relations

Slides for a Course Based on the Text

Discrete & Combinatorial Mathematics (5th Edition)

by Ralph P. Grimaldi

 $\frac{\text{Def 7.1}}{\mathcal{R}} : A, B : \text{ sets,}$ $\mathcal{R} \subseteq A \times B : \mathcal{R} \text{ is called a relation from } A \text{ to } B;$ $\mathcal{R} \subseteq A \times A : \mathcal{R} \text{ is called a relation on } A.$

e.q.
$$A = \{1, 2\}, B = \{x, y, z\}$$

 $A \times B = \{(1, x), (1, y), (1, z), (2, x), (2, y), (2, z)\}$
 $A \times A = \{(1, 1), (1, 2), (2, 1), (2, 2)\}$
 $\mathcal{R}_1 = \{(2, x), (2, y)\} \subseteq A \times B$
 $\mathcal{R}_2 = \{(1, 1), (2, 1), (2, 2)\} \subseteq A \times A$

Ex 7.5: If |A| = n, $|A \times A| = n^2$, there are 2^{n^2} relations on A. Q1: If |A| = n, |B| = m, $|A \times B| = (1)$, and there are (2) relations from A to B.

(c) Spring 2024, Justie Su-Tzu Juan

Ex 7.1:

- a) Defined \mathcal{R} on \mathbb{Z} by $a \mathcal{R} b$ or $(a, b) \in \mathcal{R}$, if $a \leq b$: \mathcal{R} is the ordinary "less than or equal to" relation on \mathbb{Z} . (\mathbb{Z} 可改成 \mathbb{Q} , \mathbb{R} , but not on \mathbb{C})
- b) Let $n \in \mathbb{Z}^+$, Define \mathcal{R} on \mathbb{Z} by $x \, \mathcal{R} \, y$, if $n \mid (x y)$: \mathcal{R} is the modulo n relation on \mathbb{Z} .

 ex. n = 7: $9\mathcal{R} \, 2, -3\mathcal{R} \, 11, (14, 0) \in \mathcal{R}, 3\mathcal{R} \, 7$ (3 is not related to 7).
- c) Let $U = \{1, 2, 3, 4, 5, 6, 7\}$, $C \subseteq U$, $C = \{1, 2, 3, 6\}$ Define \mathcal{R} on $\mathcal{P}(U)$ by $A \mathcal{R} B$, if $A \cap C = B \cap C$ ex: $\{1, 2, 4, 5\}$ and $\{1, 2, 5, 7\}$ are related, $X = \{4, 5\}$ and $Y = \{7\}$ are related; $S = \{1, 2, 3, 4, 5\}$ and $T = \{1, 2, 3, 6, 7\}$ are not related (S $\mathcal{R} T$)

Def 7.2: A relation
$$\mathcal{R}$$
 on A is called **reflexive** $\equiv \forall x \in A, (x, x) \in \mathcal{R}$.

Ex 7.5: If |A| = n, $|A \times A| = n^2$, there are 2^{n^2} relations on A. How many of these are reflexive? $2^{(n^2-n)}$

Def 7.3: A relation
$$\mathcal{R}$$
 on A is called symmetric $\equiv \forall x, y \in A, (x, y) \in \mathcal{R} \Rightarrow (y, x) \in \mathcal{R}$.

Note: Let |A| = n

- 1) How many relations on A are symmetric? $2^{(n^2+n)/2}$
- 2) Both reflexive and symmetric? $2^{(n^2-n)/2}$

Def 7.4: A relation \mathcal{R} on A is called **transitive** $\equiv \forall x, y, z \in A, (x, y), (y, z) \in \mathcal{R} \Rightarrow (x, z) \in \mathcal{R}$.

<u>Def 7.5</u>: A relation \mathcal{R} on A is called <u>antisymmetric</u> ≡ $\forall a, b \in A$, $(a \mathcal{R} b \text{ and } b \mathcal{R} a) \Rightarrow a = b$.

Note: How many relations of A are antisymmetric? (|A| = n)? $(2^n)(3^{(n^2-n)/2})$

Discussion (5 min):

- $\underline{\text{Def 7.6}}$: A relation \mathcal{R} on A is called a partial order or a partial ordering relation, if \mathcal{R} is reflexive, antisymmetric, and transitive.
- $\underline{\text{Def 7.7}}$: An *equivalence relation* $\mathcal R$ on a set A is a relation that is reflexive, symmetric, and transitive.

Quiz:

https://play.kahoot.it/v2/?quizId=6585b9dd-9928-4ad2-ab9b-24ed182a3eb2&hostId=e3b5c5c7-c22d-4353-a580-53c46d132332

Q2:

- b) Let $A = \{1, 2, 3\}$, then $\mathcal{R}_1 = \{(1, 1), (2, 2), (3, 3)\}$ $\mathcal{R}_2 = \{(1, 1), (2, 2), (2, 3), (3, 2), (3, 3)\}$ $\mathcal{R}_3 = \{(1, 1), (1, 3), (2, 2), (3, 1), (3, 3)\}$ $\mathcal{R}_4 = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$ are all equivalence relations on A?
- c) For a given finite set $A = \{a_1, a_2, ..., a_n\}$, $A \times A$: the largest equivalence relation on A. $\mathcal{R} = \{(a_i, a_i) \mid 1 \le i \le n\}$: the smallest equivalence relation on A. (equality relation)
- e) If \mathcal{R} is a relation on A, then \mathcal{R} is both an equivalent relation and a partial order on A if and only if \mathcal{R} is the equality relation on A.

Discussion (10 min): Exercises 7.1

- 5. For each of the following relations, determine whether the relation is reflexive, symmetric, antisymmetric, or transitive. (d) On the set A of all lines in R^2 , define the relation \mathcal{R} for two lines l_1 , l_2 by l_1 \mathcal{R} l_2 if l_1 is perpendicular to l_2 .
 - (f) \mathcal{R} is the relation on Z where $x \mathcal{R} y$ if x y is even.
- 10. If $A = \{w, x, y, z\}$, determine the number of relations on A that are (a) reflexive; (b) symmetric; (c) reflexive and symmetric; (d) reflexive and contain (x, y); (e) symmetric and contain (x, y); (f) antisymmetric; (g) antisymmetric and contain (x, y); (h) symmetric and antisymmetric; and (i) reflexive, symmetric, and antisymmetric.

Computer Science and Information Engineering National Chi Nan University

Discrete Mathematics

Dr. Justie Su-Tzu Juan

Chapter 7 Relations: The Second Time Around

§ 7.2 Computer Recognition: Zero-One
Matrices and Directed Graphs (1)
Slides for a Course Based on the Text
Discrete & Combinatorial Mathematics (5th Edition)
by Ralph P. Grimaldi

Def 7.8:
$$A, B, C$$
: sets, $\mathcal{R}_1 \subseteq A \times B$, $\mathcal{R}_2 \subseteq B \times C$. The composite relation $\mathcal{R}_1 \circ \mathcal{R}_2 \subseteq A \times C$ defined by $\mathcal{R}_1 \circ \mathcal{R}_2 = \{(x, z) \mid x \in A, z \in C, \text{ and } \exists \ y \in B \text{ with } (x, y) \in \mathcal{R}_1, (y, z) \in \mathcal{R}_2\}.$

Ex 7.17:
$$A = \{1, 2, 3, 4\}, B = \{w, x, y, z\}, C = \{5, 6, 7\}$$
 back $\mathcal{R}_1 = \{(1, x), (2, x), (3, y), (3, z)\} \subseteq A \times B$ $\mathcal{R}_2 = \{(w, 5), (x, 6)\} \subseteq B \times C$ $\mathcal{R}_3 = \{(w, 5), (w, 6)\} \subseteq B \times C$ $\mathcal{R}_1 \circ \mathcal{R}_2 = \{(1, 6), (2, 6)\}$ $\mathcal{R}_1 \circ \mathcal{R}_3 = \phi$

Ex 7.18 : A: employees, B: programming languages,

 $C = \{p_1, p_2, ..., p_8\}$: projects.

 $\mathcal{R}_1 \subseteq A \times B : (x, y) \in \mathcal{R}_1$ means x is proficient in y,

 $\mathcal{R}_2 \subseteq B \times C : (y, z) \in \mathcal{R}_2$ means z need y.

 $\Rightarrow \mathcal{R}_1 \circ \mathcal{R}_2$ has been used to set up a matching process between employees and projects on the basis of employee knowledge of specific programming languages.

$$\underline{\text{Thm 7.1}}: A, B, C, D: \text{sets}, \mathcal{R}_1 \subseteq A \times B, \mathcal{R}_2 \subseteq B \times C, \mathcal{R}_3 \subseteq C \times D.$$

$$\text{The } \mathcal{R}_1 \circ (\mathcal{R}_2 \circ \mathcal{R}_3) = (\mathcal{R}_1 \circ \mathcal{R}_2) \circ \mathcal{R}_3.$$

Proof.

1.
$$\mathcal{R}_1 \circ (\mathcal{R}_2 \circ \mathcal{R}_3) \subseteq A \times D$$
, $(\mathcal{R}_1 \circ \mathcal{R}_2) \circ \mathcal{R}_3 \subseteq A \times D$.

2.
$$\forall$$
 $(a, d) \in \mathcal{R}_1 \circ (\mathcal{R}_2 \circ \mathcal{R}_3)$

$$\Rightarrow \exists b \in B \text{ s.t. } (a,b) \in \mathcal{R}_1 \land (b,d) \in \mathcal{R}_2 \circ \mathcal{R}_3$$

$$\Rightarrow \exists c \in C \text{ s.t. } (b, c) \in \mathcal{R}_2 \land (c, d) \in \mathcal{R}_3$$

$$(a,b) \in \mathcal{R}_1 \land (b,c) \in \mathcal{R}_2 \qquad \Rightarrow (a,c) \in \mathcal{R}_1 \circ \mathcal{R}_2$$

$$\therefore (a,c) \in \mathcal{R}_1 \circ \mathcal{R}_2 \wedge (c,d) \in \mathcal{R}_3$$

$$\Rightarrow$$
 $(a, d) \in (\mathcal{R}_1 \circ \mathcal{R}_2) \circ \mathcal{R}_3$

$$\therefore \mathcal{R}_1 \circ (\mathcal{R}_2 \circ \mathcal{R}_3) \subseteq (\mathcal{R}_1 \circ \mathcal{R}_2) \circ \mathcal{R}_3$$

Similar,
$$(\mathcal{R}_1 \circ \mathcal{R}_2) \circ \mathcal{R}_3 \subseteq \mathcal{R}_1 \circ (\mathcal{R}_2 \circ \mathcal{R}_3)$$

$$\Rightarrow \mathcal{R}_1 \circ (\mathcal{R}_2 \circ \mathcal{R}_3) = (\mathcal{R}_1 \circ \mathcal{R}_2) \circ \mathcal{R}_3$$

<u>Def 7.9</u>: A: sets, $\mathcal{R} \subseteq A \times A$. The *power of* \mathcal{R} defined recursively:
(a) $\mathcal{R}^1 = \mathcal{R}$;
(b) $\mathcal{R}^{n+1} = \mathcal{R} \circ \mathcal{R}^n$, $\forall n \in Z^+$.

Ex 7.19:
$$A = \{1, 2, 3, 4\}, \mathcal{R} = \{(1, 2), (1, 3), (2, 4), (3, 2)\}$$

 $\Rightarrow \mathcal{R}^2 = \{(1, 4), (1, 2), (3, 4)\}$
 $\Rightarrow \mathcal{R}^3 = \{(1, 4)\}$
 $\Rightarrow \mathcal{R}^n = \phi, \forall n \geq 4.$

Def 7.10: 1) An $m \times n$ zero-one matrix $E = (e_{ij})_{m \times n}$, (0, 1)-matrix: $\equiv m$ rows, n columns, each entry is 0 or 1. 2) $e_{ij} \equiv$ the entry in the ith row and the jth column of E, $\forall 1 \le i \le m$ and $1 \le j \le n$.

Directed Graphs
$$Ex 7.20 : E = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \text{ is a } 3 \times 4 \text{ (0, 1)-matrix.}$$

$$1) e_{11} = 1 \qquad 2) e_{23} = 0 \qquad 3) e_{31} = 1$$

Note: Use the standard operations of matrix addition and multiplication with the stipulation that 1 + 1 = 1 (Boolean addition).

§ 7.2 Computer Recogni Directed Graphs

$$\Re_1 = \{(1, x), (2, x), (3, y), (3, z)\} \subseteq A \times B$$

 $\Re_2 = \{(w, 5), (x, 6)\} \subseteq B \times C$

Ex 7.21: The *relation matrices* for \mathcal{R}_1 , \mathcal{R}_2 of Ex 7.17: $\underline{\ }$

$$M(\mathcal{R}_{1}) = \begin{pmatrix} (w) & (x) & (y) & (z) \leftarrow B \\ (1) & 0 & 1 & 0 & 0 \\ (2) & 0 & 1 & 0 & 0 \\ (3) & 0 & 0 & 1 & 1 \\ (4) & 0 & 0 & 0 & 0 \end{pmatrix} M(\mathcal{R}_{2}) = \begin{pmatrix} (x) & 0 & 1 & 0 \\ (y) & 0 & 0 & 0 \\ (z) & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$$

$$M(\mathcal{R}_1) \cdot M(\mathcal{R}_2) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = M(\mathcal{R}_1 \circ \mathcal{R}_2)$$

Note:
$$M(\mathcal{R}_1) \cdot M(\mathcal{R}_2) = M(\mathcal{R}_1 \circ \mathcal{R}_2)$$

 $\underline{\text{Ex 7.22}}: A = \{1, 2, 3, 4\}, \, \mathcal{R} = \{(1, 2), (1, 3), (2, 4), (3, 2)\},$ as in $\underline{\text{Ex 7.19}}$. see

Define the *relation matrix* for \mathcal{R} : $M(\mathcal{R})$ is the 4×4 (0, 1)-matrix whose entries m_{ij} , for $1 \le i, j \le 4$, are given by $m_{ij} = \begin{bmatrix} 1, & \text{if } (i, j) \in \mathcal{R}, \\ 0, & \text{otherwise.} \end{bmatrix}$

$$M(\mathcal{R}) = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad (M(\mathcal{R}))^2 = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = M(\mathcal{R}^2)$$

(c) Spring 2024, Justie Su-Tzu Juan

In general: A: set, |A| = n, $\mathcal{R} \subseteq A \times A$, $M(\mathcal{R})$ is the relation matrix for \mathcal{R} :

(a)
$$M(\mathcal{R}) = 0$$
 (all 0's) iff $\mathcal{R} = \phi$

(b)
$$M(\mathcal{R}) = 1$$
 (all 1's) iff $\mathcal{R} = A \times A$

(c)
$$M(\mathcal{R}^m) = [M(\mathcal{R})]^m$$
, for $m \in \mathbb{Z}^+$.

 $\underline{\text{Def 7.11}}: E = (e_{ij})_{m \times n}, F = (f_{ij})_{m \times n}: 2 \ m \times n \ (0, 1) \text{-matrices.}$ $E \ precedes \ (\text{or is less than}) \ F, E \leq F,$ $\equiv e_{ij} \leq f_{ij}, \ \forall \ 1 \leq i \leq m, \ 1 \leq j \leq n.$

$$\mathbf{Ex 7.23} : E = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, F = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \implies \mathbf{E} \leq \mathbf{F}$$

 $\Rightarrow \exists \ 8 \ (0, 1)$ -matrices G for which $E \leq G$.

Def 7.12: For
$$n \in \mathbb{Z}^+$$
, $I_n = (\delta_{ij})_{n \times n}$ is the $n \times n$ (0, 1)-matrix, where $\delta_{ij} = \begin{cases} 1, & \text{if } i = j; \\ 0, & \text{if } i \neq j. \end{cases}$

<u>Def 7.13</u>: Let $A = (a_{ij})_{m \times n}$. The *transpose* of A, $A^{tr} = (a^*_{ji})_{n \times m}$, where $a^*_{ji} = a_{ij}$, for all $1 \le j \le n$, $1 \le i \le m$.

Ex 7.24:
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 1 & 1 \end{bmatrix}$$
, $A^{tr} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$

Def: 1)
$$0 \cap 0 = 0 \cap 1 = 1 \cap 0 = 0$$
, $1 \cap 1 = 1$ (usual multiplication)
2) $E \cap F = (x_{ij})_{m \times n}$, where $x_{ij} = e_{ij} \cap f_{ij}$.

Thm 7.2 : A: set, |A| = n, $\mathcal{R} \subseteq A \times A$, let M denote the relation matrix for \mathcal{R} . Then

- (a) \mathcal{R} is reflexive iff $I_n \leq M$.
- (b) \mathcal{R} is symmetric iff $M = M^{tr}$.
- (c) \mathcal{R} is transitive iff $M \cdot M = M^2 \le M$.
- (d) \mathcal{R} is antisymmetric iff $M \cap M^{tr} \leq I_n$.

Proof. (1/2)

Let
$$M = (a_{ij})_{n \times n}$$
.
(c) (\Leftarrow) Let $M^2 \leq M$. If (x, y) , $(y, z) \in \mathcal{R}$.
 $\Rightarrow m_{xy} = m_{yz} = 1$
 $(m_{xy} \text{ means the entry of } M \text{ in row } (x), \text{ column } (y))$
 $\Rightarrow s_{xz} = 1$
 $(s_{xz} \text{ means the entry of } M^2 \text{ in row } (x), \text{ column } (z))$
 $\therefore M^2 \leq M \therefore m_{xz} = 1$
 $\Rightarrow (x, z) \in \mathcal{R} \text{ and } \mathcal{R} \text{ is transitive.}$

Thm 7.2 : A: set, |A| = n, $\mathcal{R} \subseteq A \times A$, let M denote the relation matrix for \mathcal{R} . Then

(c) \mathcal{R} is transitive iff $M \cdot M = M^2 \leq M$.

Proof. (2/2)

(c) (\Rightarrow) If \mathcal{R} is transitive

Let $s_{xz} \equiv$ the entry in row (x) and column (z) of $M^2 = 1$

$$\therefore s_{xz} = 1$$
 $\therefore \exists y \in A \text{ s.t. } m_{xy} = m_{yz} = 1$

$$\Rightarrow$$
 $(x, y) \in \mathcal{R} \land (y, z) \in \mathcal{R}$

$$\Rightarrow$$
 $(x, z) \in \mathcal{R}$ (: \mathcal{R} is transitive)

$$\Rightarrow m_{xz} = 1$$

$$\therefore M^2 \leq M.$$