Computer Science and Information Engineering National Chi Nan University

Combinatorial Mathematics

Dr. Justie Su-Tzu Juan
Chapter 7 Relations: The Second Time Around
§ 7.1 Relations Revisited: Properties of

Relations

Slides for a Course Based on the Text
Discrete \& Combinatorial Mathematics ($5^{\text {th }}$ Edition) by Ralph P. Grimaldi

§ 7.1 Relations Revisited: Properties of Relations

$\underline{\text { Def } 7.1}: A, B:$ sets, $\mathscr{R} \subseteq A \times B: \mathcal{R}$ is called a relation from A to $B ;$ $\mathscr{R} \subseteq A \times A: \mathscr{R}$ is called a relation on A.

$$
\begin{aligned}
& \text { e.q. } A=\{1,2\}, B=\{x, y, z\} \\
& A \times B=\{(1, x),(1, y),(1, z),(2, x),(2, y),(2, z)\} \\
& A \times A=\{(1,1),(1,2),(2,1),(2,2)\} \\
& \mathcal{R}_{1}=\{(2, x),(2, y)\} \subseteq A \times B \\
& \mathcal{R}_{2}=\{(1,1),(2,1),(2,2)\} \subseteq A \times A
\end{aligned}
$$

Ex 7.5 : If $|A|=n,|A \times A|=n^{2}$, there are $2^{n^{2}}$ relations on A.

Ex 7.1 ：

a）Defined \mathscr{R} on Z by $a \mathfrak{R} b$ or $(a, b) \in \mathscr{R}$ ，if $a \leq b$ ：
\mathscr{R} is the ordinary＂less than or equal to＂relation on \mathbb{Z} ．
（Z 可改成 Q ，R，but not on C ）
b）Let $n \in Z^{+}$，Define \mathscr{R} on \mathbb{Z} by $x \mathscr{R} y$ ，if $n \mid(x-y)$ ：
\mathscr{R} is the modulo n relation on \mathbb{Z} ． ex．$n=7: 9 \Re 2,-3 \mathscr{R} 11,(14,0) \in \mathscr{R}, 3 \mathscr{R} 7$（ 3 is not related to 7）．
c）Let $U=\{1,2,3,4,5,6,7\}, C \subseteq U, C=\{1,2,3,6\}$
Define \mathscr{R} on $\mathscr{P}(\boldsymbol{U})$ by $\boldsymbol{A} \mathscr{R} \boldsymbol{B}$ ，if $\boldsymbol{A} \cap \boldsymbol{C}=\boldsymbol{B} \cap \boldsymbol{C}$ ex：$\{1,2,4,5\}$ and $\{1,2,5,7\}$ are related，
$X=\{4,5\}$ and $Y=\{7\}$ are related；
$S=\{1,2,3,4,5\}$ and $T=\{1,2,3,6,7\}$ are notirelated $(S \mathscr{R} T)$
（c）Spring 2024，Justie Su－Tzu Juan

§ 7.1 Relations Revisited: Properties of Relations

Def 7.2: A relation \mathscr{R} on A is called reflexive \equiv $\forall x \in A,(x, x) \in \mathcal{R}$.

Ex 7.5: If $|A|=n,|A \times A|=n^{2}$, there are $2^{n^{2}}$ relations on A. How many of these are reflexive? $2^{\left(n^{2}-n\right)}$

Def 7.3: A relation \mathfrak{R} on A is called symmetric

$$
\equiv \forall x, y \in A,(x, y) \in \mathscr{R} \Rightarrow(y, x) \in \mathcal{R}
$$

Note : Let $|\boldsymbol{A}|=n$

1) How many relations on \boldsymbol{A} are symmetric? $2^{\left(n^{2}+n\right) / 2}$
2) Both reflexive and symmetric? $2^{\left(n^{2}-n\right) / 2}$

§ 7.1 Relations Revisited: Properties of Relations

Def 7.4 : A relation \mathcal{R} on \boldsymbol{A} is called transitive

$$
\equiv \forall x, y, z \in A,(x, y),(y, z) \in \mathscr{R} \Rightarrow(x, z) \in \mathfrak{R} .
$$

Def 7.5: A relation \mathfrak{R} on A is called antisymmetric

$$
\equiv \forall a, b \in A,(a \mathcal{R} b \text { and } b \mathcal{R} a) \Rightarrow a=b .
$$

Note : How many relations of A are antisymmetric? $(|A|=n)$? $\left(2^{n}\right)\left(3^{\left(n^{2}-n\right) / 2}\right)$

Discussion (5 min):

§ 7.1 Relations Revisited: Properties of Relations

Def 7.6: A relation \mathscr{R} on \boldsymbol{A} is called a partial order or a partial ordering relation, if \mathscr{R} is reflexive, antisymmetric, and transitive.

Def 7.7: An equivalence relation \mathcal{R} on a set A is a relation that is reflexive, symmetric, and transitive.

Quiz:
https://play.kahoot.it/v2/?quizId=6585b9dd-9928-4ad2-ab9b-
24ed182a3eb2\&hostId=e3b5c5c7-c22d-4353
53c46d132332
Q2:
(c) Spring 2024, Justie Su-Tzu Juan

§ 7.1 Relations Revisited: Properties of Relations

b) Let $A=\{1,2,3\}$, then

$$
\begin{aligned}
& \mathscr{R}_{1}=\{(\mathbf{1}, \mathbf{1}),(\mathbf{2}, \mathbf{2}),(\mathbf{3}, \mathbf{3})\} \\
& \mathscr{R}_{2}=\{(\mathbf{1}, \mathbf{1}),(\mathbf{2}, \mathbf{2}),(\mathbf{2}, \mathbf{3}),(\mathbf{3}, \mathbf{2}),(\mathbf{3}, \mathbf{3})\} \\
& \mathscr{R}_{3}=\{(\mathbf{1}, \mathbf{1})(\mathbf{1}, \mathbf{3}),(\mathbf{2}, \mathbf{2}),(\mathbf{3}, \mathbf{1}),(\mathbf{3}, \mathbf{3})\} \\
& \mathscr{R}_{4}=\{(\mathbf{1}, \mathbf{1}),(\mathbf{1}, \mathbf{2}),(\mathbf{1}, \mathbf{3}),(\mathbf{2}, \mathbf{1}),(\mathbf{2}, \mathbf{2}),(\mathbf{2}, \mathbf{3}),(\mathbf{3}, \mathbf{1}),(\mathbf{3}, \mathbf{2}),(\mathbf{3}, \mathbf{3})\}
\end{aligned}
$$

$$
\text { are all equivalence relations on } A \text { ? }
$$

c) For a given finite set $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$,
$A \times A$: the largest equivalence relation on A.
$\mathfrak{R}=\left\{\left(a_{i}, a_{i}\right) \mid \mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}\right\}$: the smallest equivalence relation on A. (equality relation)
e) If \mathscr{R} is a relation on A, then \mathscr{R} is both an equivalent relation and a partial order on A if and only if \mathscr{R} is the relation on \boldsymbol{A}.

§ 7.1 Relations Revisited: Properties of Relations

Discussion (10 min): Exercises 7.1
5. For each of the following relations, determine whether the relation is reflexive, symmetric, antisymmetric, or transitive. (d) On the set \boldsymbol{A} of all lines in R^{2}, define the relation \mathscr{R} for two lines l_{1}, l_{2} by $l_{1} \mathscr{R} l_{2}$ if l_{1} is perpendicular to l_{2}.
(f) \mathcal{R} is the relation on Z where $x \mathscr{R} y$ if $x-y$ is even.
10. If $A=\{w, x, y, z\}$, determine the number of relations on A that are (a) reflexive; (b) symmetric; (c) reflexive and symmetric; (d) reflexive and contain (x, y); (e) symmetric and contain (x, y); (f) antisymmetric; (g) antisymmetricand contain (x, y); (h) symmetric and antisymmetric; aina reflexive, symmetric, and antisymmetric.
(c) Spring 2024, Justie Su-Tzu Juan

Computer Science and Information Engineering National Chi Nan University

Discrete Mathematics

Dr. Justie Su-Tzu Juan

Chapter 7 Relations: The Second Time Around

§ 7.2 Computer Recognition: Zero-One
Matrices and Directed Graphs (1) Slides for a Course Based on the Text
Discrete \& Combinatorial Mathematics ($5^{\text {th }}$ Edition) by Ralph P. Grimaldi
§ 7.2 Computer Recognition: Zero-One Matrices and Directed Graphs

Def 7.8 : A, B, C : sets, $\mathscr{R}_{1} \subseteq A \times B, \mathscr{R}_{2} \subseteq B \times C$. The composite relation $\mathscr{R}_{1} \circ \mathscr{R}_{2} \subseteq A \times C$ defined by $\mathscr{R}_{1} \circ \mathscr{R}_{2}=\{(x, z) \mid x \in A, z \in C$, and $\exists y \in B$ with (x, y) $\left.\in \mathscr{R}_{1},(y, z) \in \mathscr{R}_{2}\right\}$.

$$
\begin{aligned}
\text { Ex 7.17: } A & =\{1,2,3,4\}, B=\{w, x, y, z\}, C=\{5,6,7\}_{\text {back }} \\
\mathscr{R}_{1} & =\{(1, x),(2, x),(3, y),(3, z)\} \subseteq A \times B \\
\mathscr{R}_{2} & =\{(w, 5),(x, 6)\} \subseteq B \times C \\
\mathscr{R}_{3} & =\{(w, 5),(w, 6)\} \subseteq B \times C \\
\mathscr{R}_{1} & \circ \mathscr{R}_{2}=\{(1,6),(2,6)\} \quad \mathscr{R}_{1} \circ \mathscr{R}_{3}=\phi
\end{aligned}
$$

§ 7.2 Computer Recognition: Zero-One Matrices and Directed Graphs

Ex 7.18 : A : employees, B : programming languages, $C=\left\{p_{1}, p_{2}, \ldots, p_{8}\right\}:$ projects. $\mathscr{R}_{1} \subseteq A \times B:(x, y) \in \mathscr{R}_{1}$ means x is proficient in y, $\mathscr{R}_{2} \subseteq B \times C:(y, z) \in \mathscr{R}_{2}$ means z need y.
$\Rightarrow \mathscr{R}_{1} \circ \mathscr{R}_{2}$ has been used to set up a matching process between employees and projects on the basis of employee knowledge of specific programming languages.
§ 7.2 Computer Recognition: Zero-One Matrices and Directed Graphs

Chm 7.1 : A, B, C, D : sets, $\mathscr{R}_{1} \subseteq A \times B, \mathscr{R}_{2} \subseteq B \times C, \mathscr{R}_{3} \subseteq C \times D$.
The $\mathscr{R}_{1} \circ\left(\mathcal{R}_{2} \circ \mathscr{R}_{3}\right)=\left(\mathscr{R}_{1} \circ \mathcal{R}_{2}\right) \circ \mathscr{R}_{3}$.
Proof.

$$
\begin{aligned}
& \text { 1. } \mathscr{R}_{1} \circ\left(\mathscr{R}_{2} \circ \mathscr{R}_{3}\right) \subseteq A \times D,\left(\mathcal{R}_{1} \circ \mathscr{R}_{2}\right) \circ \mathscr{R}_{3} \subseteq A \times D . \\
& \text { 2. } \forall(a, d) \in \mathscr{R}_{1} \circ\left(\mathcal{R}_{2} \circ \mathscr{R}_{3}\right) \\
& \Rightarrow \exists b \in B \text { sit. }(a, b) \in \mathscr{R}_{1} \wedge(b, d) \in \mathscr{R}_{2} \circ \mathscr{R}_{3} \\
& \Rightarrow \exists c \in C \text { s.t. }(b, c) \in \mathscr{R}_{2} \wedge(c, d) \in \mathscr{R}_{3} \\
& \because(a, b) \in \mathscr{R}_{1} \wedge(b, c) \in \mathscr{R}_{2} \quad \Rightarrow(a, c) \in \mathscr{R}_{1} \circ \mathscr{R}_{2} \\
& \because(a, c) \in \mathscr{R}_{1} \circ \mathscr{R}_{2} \wedge(c, d) \in \mathscr{R}_{3} \\
& \quad \Rightarrow(a, d) \in\left(\mathcal{R}_{1} \circ \mathscr{R}_{2}\right) \circ \mathscr{R}_{3}
\end{aligned}
$$

$\therefore \mathscr{R}_{1} \circ\left(\mathscr{R}_{2} \circ \mathscr{R}_{3}\right) \subseteq\left(\mathscr{R}_{1} \circ \mathscr{R}_{2}\right) \circ \mathscr{R}_{3}$
Similar, $\left(\mathscr{R}_{1} \circ \mathscr{R}_{2}\right) \circ \mathscr{R}_{3} \subseteq \mathscr{R}_{1} \circ\left(\mathscr{R}_{2} \circ \mathscr{R}_{3}\right)$
$\Rightarrow \mathscr{R}_{1} \circ\left(\mathscr{R}_{2} \circ \mathscr{R}_{3}\right)=\left(\mathscr{R}_{1} \circ \mathscr{R}_{2}\right) \circ \mathscr{R}_{3}$
§ 7.2 Computer Recognition: Zero-One Matrices and Directed Graphs

Def 7.9 : A : sets, $\mathscr{R} \subseteq A \times A$. The power of \mathfrak{R} defined recursively:
(a) $\mathscr{R}^{1}=\mathfrak{R}$;
(b) $\mathscr{R}^{n+1}=\mathcal{R} \circ \mathscr{R}^{n}, \forall n \in Z^{+}$.

$$
\begin{aligned}
& \text { Ex 7.19: } A=\{1,2,3,4\}, \mathcal{R}=\{(1,2),(1,3),(2,4),(3,2)\}_{\text {back }} \\
& \quad \Rightarrow \mathcal{R}^{2}=\{(1,4),(1,2),(3,4)\} \\
& \Rightarrow \mathcal{R}^{3}=\{(1,4)\} \\
& \Rightarrow \mathcal{R}^{n}=\phi, \forall n \geq 4 .
\end{aligned}
$$

Def 7.10: 1) An $m \times n$ zero-one matrix $E=\left(e_{i j}\right)_{m \times n},(0,1)$-matrix: $\equiv m$ rows, n columns, each entry is 0 or 1 .
2) $e_{i j} \equiv$ the entry in the i th row and the j th column of E,

$$
\forall 1 \leq i \leq m \text { and } 1 \leq j \leq n
$$

§ 7.2 Computer Recognition: Zero-One Matrices and Directed Graphs
$\underline{\text { Ex } 7.20}: E=\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0\end{array}\right]$ is a $3 \times 4(0,1)$-matrix.

1) $e_{11}=1 \quad$ 2) $e_{23}=0 \quad$ 3) $e_{31}=1$

Note : Use the standard operations of matrix addition and multiplication with the stipulation that $1+1=1$ (Boolean addition).
§ 7.2 Computer Recogni

$$
\mathcal{R}_{1}=\{(1, x),(2, x),(3, y),(3, z)\} \subseteq A \times B
$$ Directed Graphs $\mathcal{R}_{2}=\{(w, 5),(x, 6)\} \subseteq B \times C$

Ex 7.21: The relation matrices for $\mathcal{R}_{1}, \mathcal{R}_{2}$ of Ex 7.17:

$$
\begin{aligned}
& \boldsymbol{M}\left(\boldsymbol{R}_{1}\right) \cdot \boldsymbol{M}\left(\boldsymbol{R}_{2}\right)=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\boldsymbol{M}\left(\boldsymbol{R}_{1} \circ \mathfrak{R}_{2}\right)
\end{aligned}
$$

Note : $M\left(\mathscr{R}_{1}\right) \cdot M\left(\mathscr{R}_{2}\right)=M\left(\mathcal{R}_{1} \circ \mathscr{R}_{2}\right)$

§ 7.2 Computer Recognition: Zero-One Matrices and

 Directed GraphsEx $7.22: A=\{1,2,3,4\}, \mathcal{R}=\{(1,2),(1,3),(2,4),(3,2)\}$, as in Ex 7.19. see Define the relation matrix for $\mathfrak{R}: M(\mathcal{R})$ is the $4 \times 4(0,1)$-matrix whose entries $m_{i j}$, for $1 \leq i, j \leq 4$, are given by $m_{i j}=\{1$, if $(i, j) \in \mathscr{R}$, 0 , otherwise.

$$
\begin{aligned}
& \boldsymbol{M}(\boldsymbol{R})=\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad(\boldsymbol{M}(\boldsymbol{R}))^{\mathbf{2}}= \\
& \mathbf{(M (\mathcal { R })) ^ { \mathbf { 4 } } =}\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \Rightarrow \mathscr{R}^{4}=\boldsymbol{\phi} \\
& \text { (c) Spring 2024, Justie Su-Tzu Juan }
\end{aligned}
$$

§ 7.2 Computer Recognition: Zero-One Matrices and Directed Graphs

In general : A : set, $|A|=n, \mathscr{R} \subseteq A \times A, M(\mathscr{R})$ is the relation matrix for \mathfrak{R} :
(a) $M(\mathscr{R})=0$ (all 0 's) iff $\mathscr{R}=\phi$
(b) $M(\mathscr{R})=1$ (all 1 's) iff $\mathscr{R}=A \times A$
(c) $M\left(\mathscr{R}^{m}\right)=[M(\mathscr{R})]^{m}$, for $m \in Z^{+}$.

Def 7.11: $E=\left(e_{i j}\right)_{m \times n}, F=\left(f_{i j}\right)_{m \times n}: 2 m \times n(0,1)$-matrices.
E precedes (or is less than) $F, E \leq F$,
$\equiv e_{i j} \leq f_{i j}, \forall 1 \leq i \leq m, 1 \leq j \leq n$.
$\underline{\operatorname{Ex} 7.23}: E=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 1\end{array}\right], F=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right] \quad \Rightarrow E \leq F$
$\Rightarrow \exists 8(0,1)$-matrices G for which $E \leq G$.

§ 7.2 Computer Recognition: Zero-One Matrices and Directed Graphs

Def 7.12 : For $n \in Z^{+}, I_{n}=\left(\delta_{i j}\right)_{n \times n}$ is the $n \times n(0,1)$-matrix, where

$$
\delta_{i j}=\left\{\begin{array}{l}
\mathbf{1 ,} \text { if } \boldsymbol{i}=\boldsymbol{j} ; \\
\mathbf{0}, \text { if } i \neq \boldsymbol{j} .
\end{array}\right.
$$

Def 7.13: Let $A=\left(a_{i j}\right)_{m \times n}$. The transpose of $A, A^{t r}=\left(a_{j i}^{*}\right)_{n \times m}$, where $a_{j i}^{*}=a_{i j}$, for all $1 \leq j \leq n, 1 \leq i \leq m$.
Ex 7.24 : $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0 \\ 1 & 1\end{array}\right], A^{t r}=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 1\end{array}\right]$
Def : 1) $0 \cap 0=0 \cap 1=1 \cap 0=0,1 \cap 1=1$ (usual multiplication)
2) $E \cap F=\left(x_{i j}\right)_{m \times n}$, where $x_{i j}=e_{i j} \cap f_{i j}$.

§ 7.2 Computer Recognition: Zero-One Matrices and

 Directed GraphsThm 7.2 : A : set, $|A|=n, \mathscr{R} \subseteq A \times A$, let M denote the relation matrix for \mathcal{R}. Then
(a) \mathcal{R} is reflexive iff $I_{n} \leq M$.
(b) \mathcal{R} is symmetric iff $M=M^{t r}$.
(c) \mathcal{R} is transitive iff $M \cdot M=M^{2} \leq M$.
(d) \mathcal{R} is antisymmetric iff $M \cap M^{t r} \leq I_{n}$.

Proof. (1/2)
Let $M=\left(a_{i j}\right)_{n \times n}$.
(c) (\Leftarrow) Let $M^{2} \leq M$. If $(x, y),(y, z) \in \mathfrak{R}$.
$\Rightarrow m_{x y}=m_{y z}=1$
($m_{x y}$ means the entry of M in row (x), column (y))
$\Rightarrow s_{x z}=1$
($s_{x z}$ means the entry of M^{2} in row (x), column (z))
$\because M^{2} \leq M \quad \therefore m_{x z}=1$
$\Rightarrow(x, z) \in \mathscr{R}$ and \mathscr{R} is transitive.

§ 7.2 Computer Recognition: Zero-One Matrices and Directed Graphs

Thm 7.2 : A : set, $|A|=n, \mathcal{R} \subseteq A \times A$, let M denote the relation matrix for \mathfrak{R}. Then
(c) \mathcal{R} is transitive iff $M \cdot M=M^{2} \leq M$.

Proof. (2/2)
(c) (\Rightarrow) If \mathcal{R} is transitive

Let $s_{x z} \equiv$ the entry in row (x) and column (z) of $M^{2}=1$
$\because s_{x z}=1 \quad \therefore \exists y \in A$ s.t. $m_{x y}=m_{y z}=1$
$\Rightarrow(x, y) \in \mathfrak{R} \wedge(y, z) \in \mathscr{R}$
$\Rightarrow(x, z) \in \mathscr{R} \quad(\because \mathscr{R}$ is transitive $)$
$\Rightarrow m_{x z}=1$
$\therefore M^{2} \leq M$.

