
Computer Science and Information Engineering
National Chi Nan University

Discrete Mathematics
Dr.  Justie Su-Tzu Juan

Chap 5 Relations and Functions
§ 5.4 Special Functions (2)

(c) Fall 2023, Justie Su-Tzu Juan

Slides for a Course Based on the Text
Discrete & Combinatorial Mathematics (5th Edition)

by Ralph P. Grimaldi

1



§ 5.4 Special Functions

Def 5.12 : Let f : A ´ A ® B, (i.e. f is a binary operation on A)
ⓐ f is said to be commutative º

" (a, b) Î A ´ A, f(a, b) = f(b, a).
ⓑ B Í A, f is said to be associative º

" a, b, c Î A, f(f(a, b), c) = f(a, f(b, c)).
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§ 5.4 Special Functions

EX 5.32 : ⓑ h : Z ´ Z® Z, where h(a, b) = a |b|.
(i) h(3, – 2) = 3 |– 2| = 3 (2) = 6

h(– 2, 3) = – 2 |3| = – 2 × 3 = – 6 
(ii) " a, b, c Î Z, h(h(a, b), c) = h(a, b) |c| = a |b| |c|,

h(a, h(b, c)) = a |h(b, c)| = a |b |c|| = a |b| |c|
Þ h is associative

EX 5.33 : If A = {a, b, c, d}, then |A ´ A| = 16.
① $ 416 function f : A ´ A ® A (closed binary operation)
② $ ? Commutative closed binary operations g on A?
∵ " a ¹ b, g(a, b) = g(b, a), and (4 ´ 4) – 4 = 12, 12 / 2 = 6
∴ the number of commutative closed binary operations g on A

= 44 × 46 = 410.
(c) Fall 2023, Justie Su-Tzu Juan
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§ 5.4 Special Functions

Def 5.13 : Let f : A ´ A ® B be a binary operation on A.
An element x Î A is called an identity (or identity element) 
for f º " a Î A, f(a, x) = f(x, a) = a. 

EX 5.34 : (a) Let f : Z ´ Z® Z, where f(a, b) = a + b,
0 is the identity since 
f(a, 0) = a + 0 = a = 0 + a = f(0, a), " a Î Z.

(b) Let f : Z ´ Z® Z, defined by f(a, b) = a – b. ∄ identity.
If f had an identity x, then
" a Î Z, f(a, x) = a Þ a – x = a Þ x = 0
But f(x, a) = f(0, a) = 0 – a ¹ a, unless a = 0 ®¬
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§ 5.4 Special Functions

(c) Let A ={1, 2, 3, 4, 5, 6, 7}, let g = A ´ A ® A be defined by
g(a, b) = min{a, b} º the minimum (or smallest) of a, b.

(i) g(a, b) = min{a, b} = min{b, a} = g(b, a) 
Hence, g is commutative.

(ii) g(g(a, b), c) = min{min{a, b}, c} = min{a, b, c}
= min{a, min{b, c}} = g(a, g(b, c))

Hence, g is associative.
(iii) " a Î A, g(a, 7) = min{a, 7} = a = min{7, a} = g(7, a)

∴ 7 is an identity element for g.
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§ 5.4 Special Functions

Thm 5.4 : Let f : A ´ A ® B be a binary operation.
If f has an identity, then that identity is unique.

Proof. 
Let x1, x2 Î A are identities of A :
∴① f(a, x1) = a = f(x1, a), "a Î A and 
② f(a, x2) = a = f(x2, a), "a Î A.

∵ x1 Î A, by ② : f(x1, x2) = x1;
∵ x2 Î A, by ① : f(x1, x2) = x2,
Þ x1 = x2 

∴ f has at most one identity.
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§ 5.4 Special Functions

EX 5.35 : If A = {x, a, b, c, d}, how many closed binary 
operations on A as

Sol.
① closed binary operations on A 

where x is the identity : 516.
Let f : A ´ A ® A with f(x, y) = y = f(y, x), " y Î A.

② and commutative : 
510 = 54 × 5(42 – 4) / 2.

③ close binary operations on A 
have an identity : 517 = (1

5) 516

= (1
5) 552 – [2(5) – 1] = (1

5) 5(5 – 1)2.
④ and commutative : 511 = (1

5) 510

= (1
5) 54 × 5(42 – 4) / 2.
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§ 5.4 Special Functions

Def 5.14 : For sets A, B, if D Í A ´ B, then
① PA: D ® A defined by PA(a, b) = a, is called the 

projection on the first coordinate.
② PB : D ® B defined by PB(a, b) = b, is called the 

projection on the second coordinate.

Note : If D = A ´ B, then PA, PB are both onto.

EX 5.36 : A = {w, x, y}, B = {1, 2, 3, 4}, D = {(x, 1), (x, 2), (x, 3), 
(y, 1), (y, 4)}

① PA : D ® A satisfies  PA(x, 1) = PA(x, 2) = PA(x, 3) = x
PA(y, 1) = PA(y, 4) = y

∵ PA(D) = {x, y} Ì A, ∴ PA is not onto
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§ 5.4 Special Functions

EX 5.36 : A = {w, x, y}, B = {1, 2, 3, 4}, D = {(x, 1), (x, 2), (x, 3), 
(y, 1), (y, 4)}

② PB : D ® B satisfies  PB(x, 1) = PB(y, 1) = 1, PB(x, 2) = 2
PB(x, 3) = 3, PB(y, 4) = 4

∵ PB (D) = {1, 2, 3, 4} = B, ∴ PB is an onto function.

EX 5.37 : Let A = B = R, D Í A ´ B where D = {(x, y) | y = x2}.
ex : (3, 9) Î D, PA(3, 9) = 3, PB(3, 9) = 9.

PA(D) = R = A. ∴ PA is onto. (also one - to - one)
PB(D) = [0, +¥) Ì R, ∴ PB is not onto. (nor one - to - one)

(c) Fall 2023, Justie Su-Tzu Juan 9



§ 5.4 Special Functions

Def : Let A1, A2, …, An be sets, and {i1, i2, …, im} Í {1, 2, …, n}
with i1 < i2 < … < im and m £ n. D Í A1 ´ A2 ´ … ´ An (= ´i=1

n Ai),
① P : D ® Ai

1
´ Ai

2
´ … ´ Ai

m
defined by 

P(a1, a2, …, an) = (ai1, ai2, …, aim) 
is the projection of D on the i1th, i2th, …, imth coordinates.

② The element of D are called (ordered) n-tuples ;
③ An element in P(D) is an (ordered) m-tuples.

EX 5.38 : A1 = the set of course # for courses offered in math.
A2 = the set of course titles offered in math.
A3 = the set of math faculty.
A4 = the set of letters of the alphabet.

Consider the table (or relation D Í A1 ´ A2 ´ A3 ´ A4) given :
Table 5.3
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§ 5.4 Special Functions

Def : ① The sets A1, A2, A3, A4 are called the domains of the 
relational data base.

② Table D is said to have degree 4.
③ Each element of D is often called a list. 
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§ 5.4 Special Functions

Note :
① The projection of D on A1 ´ A3 ´ A4 ; A1 ´ A2 = Table 5.4; 5.5.
② Table 5.4, 5.5 are another way of representing the same data

that appear in Table 5.3.
③ Given Table 5.4; 5.5, one can recapture Table 5.3.
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The pigeonhole Principle : If m pigeons occupy n pigeonholes 
and m > n then ³ 1 pigeonhole has ³ 2 pigeons roosting in it.
Proof.

If not, each pigeonhole has £ 1 pigeons roosting in it.
Þ total £ n pigeons.                              ∵ n < m ®¬

EX 5.39 : An office employs 13 file clerks, ³ 2 of them must 
have birthdays during the same month.
Sol.

13 pigeons and 12 pigeonholes.
(the file clerks)      (the months)

§ 5.5 The Pigeonhole Principle 
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EX 5.40 : Drawing the socks from a bag which contains 12 
pairs of socks (each pair a different color) randomly.

Þ at most 13 of them to get a matched pair.

EX 5.41 : In 500000 “words” of four or fewer lowercase letters. 
Can it be true that the 500000 words are all distinct?
Sol.

the total number of different possible words using £ 4 letter
= 264 + 263 + 262 +26 = 475254 < 500000

(pigeonholes)    (pigeons)
∴ at least one word is repeated.

§ 5.5 The Pigeonhole Principle 
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EX 5.42 : Let S Í Z+, where |S| = 37. Then S contains two 
elements that have the same remainder upon division by 36.
Proof.

By division algorithm : " n Î Z+, $ ! q, r Î Z+ such that
n = 36 × q + r, 0 £ r < 36.

r : 36 possible values   : pigeonholes
n : 37 positive integers : pigeons

∴ By the pigeonhole principle, $ ³ 2 elements in S that
have the same remainder upon division by 36.

§ 5.5 The Pigeonhole Principle 
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EX 5.43 : Prove : 101 integers from S Í {1, 2, 3, …, 200}, 
$ a, b Î S such that a | b or b | a.

Proof.
By the Fundamental Theorem of Arithmetic:
" x Î S, x = 2k y, with k ³ 0 and gcd(2, y) = 1

Þ y Î T = {1, 3, 5, …, 199}
|T| = 100. (pigeonholes)

∵ 101 integers are selected from S. (pigeons)
By the pigeonhole principle, 

$ a ¹ b Î S s.t. a = 2m y, b = 2n y for some y Î T.
If m <  n, then a | b (∵ 2m y | 2n y),
else m > n, then b | a (∵ 2n y | 2m y).

§ 5.5 The Pigeonhole Principle 
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EX 5.44 : Any subsets of size 6 from S = {1, 2, 3, …, 9} must 
contain two elements whose sum is 10.
Sol.

Let T = {{1, 9}, {2, 8}, {3, 7}, {4, 6}, {5}}, |T| = 5 (pigeonholes)
∵ 6 element are selected from S (pigeons)
By the pigeonhole Principle :

$ At least one of the two-element subsets of T whose sum 
to 10 be complete selected.

i.e. $ two elements whose sum is 10.

§ 5.5 The Pigeonhole Principle 
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EX 5.45 : ∆ACE is equilateral with |AC| = 1.
If 5 points are selected from the interior of ∆ ACE, 
then $ ³ 2 of them whose distance < ½.

Proof.
We break up the interior of ∆ACE into the following 4 regions,

which are mutually disjoint in pairs with |AB| = ½ : 
R1 : the interior of ∆BCD ∪ BD – {B, D}
R2 : the interior of ∆ABF
R3 : the interior of ∆BDF ∪ BF ∪ DF – {B, D, F}
R4 : the interior of ∆FDE

∴ By the pigeonhole principle, 
five points (the pigeons) in the interior of ∆ACE must be s. t.    
at least 2 of them are in one of the four regions Ri (pigeonholes)
1 £ i £ 4, where any two points are separated by a distance less 
than ½.

§ 5.5 The Pigeonhole Principle 
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EX 5.46 : Let S be a set of six positive integers whose maximum 
is at most 14. Show that the sums of the elements in all the 
nonempty subsets of S cannot all be distinct.
Proof.

Let S = {x1, x2, x3, x4, x5, x6}, 1 £ xi £ 14, xi Î Z+, " i = 1, …, 6.
" A Í S, let the sum of the element in A = SA,

then 1 £ SA £ 9 + 10 + … + 14 = 69
∴ there are 69 possible sums : pigeonholes
$ 26 – 1 = 63 nonempty subsets of S : pigeons (< 69, wrong !!)

" A Í S, s.t. |A| £ 5, 1 £ SA £ 10 + 11 + … + 14 = 60 (pigeonholes)
$ 26 – 2 = 62 possible subset A Í S, s.t. A ¹ f, A ¹ S. (pigeons)
By the pigeonhole principle : the elements of at least two of the

62 subsets must yield the same sum.

§ 5.5 The Pigeonhole Principle 
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EX 5.47 : Let m Î Z+ with m is odd.
Prove : $ n Î Z+ such that m | (2n – 1).

Proof.
Let T = {2i – 1 | i = 1, 2, …, m + 1}, |T| = m + 1 (Pigeon)
By the division algorithm and the pigeonhole principle :

$ s, t Î Z+ with 1 £ s < t £ m + 1, where $ q1, q2 Î N
such that 2s – 1 = q1 m + r, 2t – 1 = q2 m + r.

Þ (2t – 1) – (2s – 1) = (q2 m + r) – (q1 m + r) = (q2 – q1) m
but (2t – 1) – (2s – 1 ) = 2t – 2s = 2s (2t–s – 1)
i.e. (q2 – q1) m = 2s (2t–s – 1)
Þm | 2s (2t–s – 1)
∵ gcd (m, 2s) = 1
∴ m | (2t–s – 1)

Þ Let n = t – s Î Z+, m | (2n – 1).

§ 5.5 The Pigeonhole Principle 
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EX 5.48 : On a 4-week vacation : ³ 1 set of tennis each day,
£ 40 set total during this time.

Prove : $ consecutive days which play 15 sets.
Proof.

Let xi = the total number of sets from the first day, 1 £ i £ 28.
Þ 1 £ x1 < x2 < … < x28 £ 40

∴ x1 + 15 < x2 + 15 < … < x28 + 15 £ 55
Let T = {x1, x2, …, x28, x1 + 15, x2 + 15, …, x28 + 15}, 

|T| = 56  (pigeons)
And " x Î T, 1 £ x £ 55 : 55 possible values (pigeonholes)
∴ By the Pigeonhole Principle : $ x, y Î T are equal.
∵ x1, x2, …, x28 are distinct, x1+15, x2+15, …, x28+15 are distinct
Þ $ 1 £ j < i < 28 with x = xi = xj + 15 = y
i.e. from the start of day j + 1 to the end of day i, Herbert will

play exactly 15 sets of tennis.

§ 5.5 The Pigeonhole Principle 
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EX 5.49 : (1935. Paul Erdős and George Szekeres)
① 6, 5, 8, 3, 7 contains the decreasing subsequence 6, 5, 3
② 11, 8, 7, 1, 9, 6, 5, 10, 3, 12 (length 10) contains the 

increasing subsequence 8, 9, 10, 12 (length 4)

Thm : For each n Î Z+, a sequence of n2 + 1 distinct real numbers 
contains a decreasing or increasing subsequence of length n + 1.
Proof.(1/2)
Let a1, a2, …, an2+1 be a sequence of n2 + 1 distinct real numbers
" 1 £ k £ n2 + 1, let
xk = the max. length of a decreasing subsequence that ends with ak
yk = the max. length of a increasing subsequence that ends with ak
ex: EX 5.49 ② :

§ 5.5 The Pigeonhole Principle 
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Proof.(2/2)
k     1   2   3   4   5   6   7   8   9   10
ak     11  8   7   1   9   6   5  10  3   12
xk        1   2   3   4   2   4   5   2   6    1
yk        1   1   1   1   2   2   2   3   2    4

If ∄ decreasing or increasing subsequence of length n + 1, 
then 1 £ xk £ n and 1 £ yk £ n " 1 £ k £ n2 + 1.

∵ $ £ n2 distinct ordered pairs (xk, yk),
but ∵ 1 £ k £ n2 + 1, we have n2 + 1 ordered pairs (xk, yk).
∴ by the Pigeonhole Principle,
$ i ¹ j Î N with 1 £ i < j £ n2 + 1, s.t. (xi, yi) = (xj, yj).

But a1, a2, …, an2+1 are distinct :
If ai < aj then yi < yj; else if ai > aj then xi < xj ®¬

∴ xk = n + 1 or yk = n + 1 for some n + 1 £ k £ n2 + 1

§ 5.5 The Pigeonhole Principle 
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§ 5.6 Function Composition and Inverse 
Functions 

Recall :① " c Î Z, $ d Î Z s.t. c + d = d + c = 0
we call d the additive inverse of c

② " t Î R, t ¹ 0, $ u Î R s.t. tu = ut = 1
we call u the multiplicative inverse of t

Def 5.15 : If f : A ® B, then f is said to be bijective, (or to be a 
one - to - one correspondence) º f is one - to - one and onto.

EX 5.50 : A = {1, 2, 3, 4}, B = {w, x, y, z}
① f = {(1, w), (2, x), (3, y), (4, z)} is a 1 - 1 

correspondence from A onto B.
② g = {(w, 1), (x, 2), (y, 3), (z, 4)} is a 1 - 1 

correspondence from B onto A.
(c) Fall 2023, Justie Su-Tzu Juan 26



§ 5.6 Function Composition and Inverse 
Functions 

Def 5.16 : The function 1A : A ® A, defined by 1A (a) = a, 
" a Î A, is called the identity function for A.

Def 5.17 : If f, g : A ® B, f and g are equal, write f = g º
f(a) = g(a), " a Î A.

EX 5.51 : Let f : Z® Z and
g : Z®Q where f(x) = x = g(x), " x Î Z.

" a Î Z,    f(a) = g(a)     but f ¹ g !
∵ f is 1 - 1 correspondence ; 

g is 1 - 1 but not onto! 
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§ 5.6 Function Composition and Inverse 
Functions 

EX 5.52 : f, g : R® Z defined by :
f(x) =  x         , if x Î Z ;           g (x) = éxù, " x Î R

ëxû + 1, if x Î R – Z . 
Sol.

" x Î Z, f(x) = x = éxù = g (x).
" x Î R – Z, let x = n + r, where n Î Z and 0 < r < 1.
Then f (x) = ëxû + 1 = n + 1 = éxù = g (x).
∴ f (x) = g (x), " x Î R (the domain). 
∴ f = g, are the same function.

Def 5.18 : f : A ® B and g : B ® C, the composite function, 
g◦f : A ® C º (g◦f) (a) = g (f (a)), " a Î A.

(c) Fall 2023, Justie Su-Tzu Juan 28



§ 5.6 Function Composition and Inverse 
Functions 

EX 5.53 : Let A = {1, 2, 3, 4}, B = {a, b, c}, C = {w, x, y, z} with
f : A ® B, g : B ® C given by f = {(1, a), (2, a), (3, b), (4, c)},
g = {(a, x), (b, y), (c, z)}. g◦f = ?

Sol. 
" element of A : (g◦f) (1) = g(f(1)) = g(a) = x,

(g◦f) (2) = g(f(2)) = g(a) = x,
(g◦f) (3) = g(f(3)) = g(b) = y,
(g◦f) (4) = g(f(4)) = g(c) = z.

∴ g◦f = {(1, x), (2, x), (3, y), (4, z)}.

EX 5.54 : Let f : R® R, g : R® R be defined by f(x) = x2, 
g(x) = x + 5, g◦f = ? f◦g = ?

Sol.      (g◦f) (x) = g(f x)) = g(x2) = x2 + 5,
(f◦g) (x) = f(g(x)) = f(x + 5) = (x + 5)2 = x2 + 10 x + 25.
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§ 5.6 Function Composition and Inverse 
Functions 

Note :① f◦g 不一定 = g◦f, i.e. the composition of function is 
not a commutative operation, in general. 

② If g◦f $, then “the range of f”  Í “the domain of g”.
③ f : A ® B, f◦1A = f = 1B◦f.

Thm 5.15 : f : A ® B, g : B ® C
(a) If f, g are 1 - 1 , then g◦f is 1 - 1, 
(b) If f, g are onto, then g◦f is onto.

Proof.(1/2)
(a) Let a1, a2 Î A, (g◦f) (a1) = (g◦f) (a2)

Þ g(f(a1)) = g(f(a2))
∵ g is 1 - 1, ∴ f(a1) = f(a2)
∵ f is 1 - 1, ∴ a1 = a2 Þ g◦f is 1 - 1 
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§ 5.6 Function Composition and Inverse 
Functions 

Proof.(2/2)
(b) g◦f : A ® C, let z Î C

∵ g is onto, ∴ $ y Î B s.t. g(y) = z,
∵ f is onto, ∴ $ x Î A s.t. f(x) = y,
Þ " z Î C, $ x Î A s.t. (g◦f )(x) = g(f(x)) = g(y) = z .                
∴ g◦f is onto.

EX 5.55 : Let f, g, h : R® R, where f(x) = x2, g(x) = x + 5, 
h(x) =                  (h◦g)◦f = h◦(g◦f) ?

Sol. ((h◦g)◦f)(x) = (h◦g)(f(x)) = (h◦g)(x2) = h(g(x2)) = h(x2 + 5)
=                    = 

(h◦(g◦f))(x) = h((g◦f)(x)) = h(g(f(x))) = h(g(x2)) = h(x2 + 5)
=                    =

∴ ((h◦g)◦f)(x) = (h◦(g◦f))(x), " x Î R with the same domain
and codomain.                       ∴ (h◦g)◦f = h◦(g◦f). 

(c) Fall 2023, Justie Su-Tzu Juan 31
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§ 5.6 Function Composition and Inverse 
Functions 

Thm 5.6 : If f : A ® B, g : B ® C, and h = C ® D, 
then (h◦g)◦f = h◦(g◦f) 

Proof.       
① (h◦g)◦f, h◦(g◦f) have the same domain A, and codomain D
② " x Î A, ((h◦g)◦f )(x) = (h◦g)(f(x)) = h(g(f(x)))

(h◦(g◦f))(x) = h((g◦f)(x)) = h(g(f(x)))
∴ the composition of function is an associative operation.

Note : h◦g◦f = (h◦g)◦f = h◦(g◦f) 

Def 5.19 : If f : A ® A, we define f 1 = f, 
and " n Î Z+, f n+1 = f◦(f n).
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§ 5.6 Function Composition and Inverse 
Functions 

EX 5.56 : A = {1, 2, 3, 4}, f : A ® A
defined by f = {(1, 2), (2, 2), (3, 1), (4, 3)}.

f 2 = f◦f = {(1, 2), (2, 2), (3, 2), (4, 1)},
f 3 = f◦f 2 = f◦f◦f = {(1, 2), (2, 2), (3, 2), (4, 2)},
f 4 = ?   f 5 = ?

Def 5.20 : " A, B Í U. R is a relation from A to B, that the 
converse of R, denoted R c º the relation from B to 
A = {(b, a) | (a, b) Î R}. 

EX 5.57 : ① A ={1, 2, 3}, B = {w, x, y}, f : A ® B be given by
f = {(1, w), (2, x), (3, y)} then
f c ={(w, 1), (x, 2), (y, 3)} is a function from B to A,        
and f c◦f = 1A and f◦f c = 1B
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§ 5.6 Function Composition and Inverse 
Functions 

EX 5.57 : ② A = {1, 2, 3, 4}, B = {w, x, y}, f : A ® B where
f = {(1, w), (2, x), (3, y), (4, x)}
f c = {(w, 1), (x, 2), (y, 3), (x, 4)} is not a function.

Def 5.21 : If f : A ® B, then f is said to be invertible if $ g: B ® A 
is a function s.t. g◦f = 1A and f◦g = 1B.

EX 5.58 : Let f, g : R® R be defined by f(x) = 2x + 5, 
g(x) = ½(x – 5)

(g◦f)(x) = g(f(x)) = g(2x + 5) = ½ [(2x + 5) – 5] = x
(f◦g)(x) = f(g(x)) = f( ½ (x – 5)) = 2 [ ½ (x – 5)] + 5 = x
∴ g◦f = 1R, f◦g = 1R

∴ f and g are invertible functions.
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§ 5.6 Function Composition and Inverse 
Functions 

Thm 5.7 : If a function f : A ® B is invertible and a function 
g : B ® A satisfy g◦f = 1A and f◦g = 1B, then this 
function g is unique.

Proof.       
If g is not unique, then let h : B ® A with h◦f = 1A
and f◦h = 1B
∵ h = h◦1B = h◦(f◦g) = (h◦f)◦g = 1A◦g = g
∴ g is unique.

Def : In Def 5.21, g is called the inverse of f, and g = f- –1 = f c.

Note : If f is invertible, then f –1 is invertible and (f –1)–1 = f.
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§ 5.6 Function Composition and Inverse 
Functions 

Thm 5.8 : A function f : A ® B is invertible Û f is 1 - 1 and onto.
Proof. (1/2)      

(Þ) Assume f : A ® B is invertible,
$ ! g : B ® A s.t. g◦f = 1A and f◦g = 1B
① " a1, a2 Î A with f(a1) = f(a2)

Þ g(f(a1)) = g(f(a2))
Þ (g◦f)(a1) = (g◦f)(a2)
Þ 1A(a1) = 1A(a2)
Þ a1 = a2 ∴ f is 1 – 1.

② " b Î B, take g(b) Î A :
f(g(b)) = (f◦g)(b) = 1B(b) = b.
∴ f is onto.
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§ 5.6 Function Composition and Inverse 
Functions 

Proof. (2/2)      
(Ü) Suppose f : A ® B is bijective,

∵ f is onto : " b Î B, $ a Î A with f(a) = b.
∴ Define the function g : B ® A by g(b) = a where f(a) = b.  
∵ f is one - to - one : " b Î B, $ ! a Î A, with f(a)  = b
∴ " b Î B, $ ! a Î A, g(b)  = a
i.e. g is a unique function.
And g ◦ f = 1A and f ◦ g = 1B. ∴ f is invertible with g = f –1 .

EX 5.59 : ① f1 : R® R defined by f1 (x) = x2 is not invertible
∵ neither 1 - 1 nor onto.

② f2 : [0, + ¥) ® [0, + ¥) defined by f2 (x) = x2 is
invertible with f2

–1 (x) = 
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A function f : A ® B is invertible Û f is 1 - 1 and onto.



§ 5.6 Function Composition and Inverse 
Functions 

Thm 5.9 : If f : A ® B, g : B ® C are both invertible functions, 
then g◦f : A ® C is invertible and (g◦f) –1 = f –1◦g –1.

EX 5.60 : " m, b Î R, m ¹ 0, f : R® R defined by f = {(x, y) | y = 
mx + b} is an invertible function (∵ it is 1 - 1 and onto). f –1 = ?

Sol.          f –1 = {(x, y) | y = mx + b}c = {(y, x) | y = mx + b}
= {(x, y) | x = my + b} = {(x, y) | y = (1 / m) (x – b)}

∴ f (x) = mx + b; f –1 (x) = (x – b) / m.

EX 5.61 : Let f : R® R be defined by f (x) = ex (f : 1 - 1 and 
onto). f –1 = ?

Sol. f –1 = {(x, y) | y = ex}c = {(x, y) | x = ey} = {(x, y) | y = ln x}.
∴ f –1 (x) = ln x .

Note : The graphs of f and f –1 are symmetric about y = x.
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§ 5.6 Function Composition and Inverse 
Functions 

Def 5.22 : If f : A ® B and B1 Í B, then f –1(B1) = {x | f(x) Î B1}
The set f –1(B1) is called the preimage of B1 under f.

Note : We cannot assume the existence of an inverse for a function 
f just because we find the symbol f –1 being used.

EX 5.62 : Let A, B Í Z+ where 
A = {1, 2, 3, 4, 5, 6}, B = {6, 7, 8, 9, 10}.

f = A ® B with f = {(1, 7), (2, 7), (3, 8), (4, 6), (5, 9), (6, 9)}
(a) B1 = {6, 8} Í B, f –1(B1) = {3, 4}

(note : |f –1(B1)| = 2 = |B1|)
(b) B2 = {7, 8} Í B, f –1(B2) = {1, 2, 3}

(note : |f –1(B2)| = 3 > 2 = |B2|)
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§ 5.6 Function Composition and Inverse 
Functions 

(c) B3 = {8, 9} Í B. f –1(B3) = {3, 5, 6}.
(note : |f –1(B3)| = 3 > 2 = |B3|)

(d) B4 = {8, 9, 10} Í B. f –1(B4) = {3, 5, 6} = f –1(B3). 
(B4 É B3)
(∵ f –1({10}) = f)

(e) B5 = {8, 10} Í B. f –1(B5) = {3}.
(note : |f –1(B5)| = 1< 2 = |B5|)

Remark : Write f –1(b) instead of f –1({b})
ex :  上EX中 : f –1(6) = {4}, f –1(7) = {1, 2}, f –1(8) = {3}, …
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§ 5.6 Function Composition and Inverse 
Functions 

EX 5.63 : Let f : R® R be defined by f(x) =    3x – 5,     x > 0
– 3x + 1,  x £ 0.

ⓐ Determine f(0), f(1), f(– 1), f(5/3), f(– 5/3)
Sol. f(0) = – 3(0) + 1 = 1 ;       f(1) = 3(1) – 5 = – 2 

f(– 1) = – 3(– 1) + 1 = 4 ; f(5/3) = 3(5/3) – 5 = 0
f(– 5/3) = – 3(– 5/3) + 1 = 6

ⓑ Find  f –1(0), f –1(1), f –1(– 1), f –1(3), f –1(– 3), f –1(– 6)
Sol. (1/2)  f –1(0) = {x Î R | f(x) Î {0}} = {x Î R | f(x) = 0}

= {x Î R | x > 0 and 3x – 5 = 0} ∪
{x Î R | x £ 0 and – 3x + 1 = 0}

= {5/3} ∪ f = {5/3}.
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Functions 

Sol. (2/2)
f –1(1) = {x Î R | f(x) Î {1}} = {x Î R | f(x) = 1}

= {x Î R | x > 0 and 3x – 5 = 1} ∪
{x Î R | x £ 0 and – 3x + 1 = 1}

= {2} ∪ {0} = {0, 2}
In the same : f –1(– 1) = {4/3}, f –1(– 6) = f, 

f –1(3) = {– 2/3, 8/3}, f –1(– 3) = {2/3}.
see Fig 5.11 :
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Functions 

ⓒWhat are f –1([– 5, 5])  and f –1([– 6, 5]) ?
Sol. 

f –1([– 5, 5]) = {x | f(x) Î [– 5, 5]} = {x | – 5 £ f(x) £ 5}
Case 1 x > 0 : – 5 £ 3x – 5 £ 5 Þ 0 £ 3x £ 10 Þ 0 £ x £ 10/3

Þ 0 < x £ 10/3
Case 2 x £ 0 : – 5 £ 3x + 1 £ 5 Þ – 6 £ – 3x £ 4 Þ 2 ³ x ³ – 4/3

Þ – 4/3 £ x £ 0
Hence f –1([– 5, 5]) = {x | – 4/3 £ x £ 0 or 0 < x £ 10/3}

= [– 4/3, 10/3]
In the same way, f –1([– 6, 5]) = f –1([– 5, 5]) = [– 4/3, 10/3].      

(see Fig 5.11)
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§ 5.6 Function Composition and Inverse 
Functions 

EX 5.64 : (a) Let f : Z® R be defined by f(x) = x2 + 5,
f –1(B) for B Î R :

(b) Let g : R® R is defined by g(x) = x2 + 5, g–1(B) = ?
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B f –1(B)
{6} {– 1, 1}
[6, 7] {– 1, 1}
[6, 10] {– 2, – 1, 1, 2}
[– 4, 5) f
[– 4, 5] {0}
[5, +¥) Z

B g –1(B)
{6} {– 1, 1} 
[6, 7] [– , – 1] È[1,      ]
[6, 10] [– , – 1] È[1,      ]
[– 4, 5) f
[– 4, 5] {0}
[5, +¥) R

2 2
5 5



§ 5.6 Function Composition and Inverse 
Functions 

Thm 5.10 : If f : A ® B and B1, B2 Í B, then
(a) f –1(B1 ∩B2) = f –1(B1) ∩ f –1(B2) 
(b) f –1(B1 ∪B2) = f –1(B1) ∪ f –1(B2) 
(c) f –1(B1) = f –1(B1)

Proof.
(b) " a Î A, a Î f –1(B1 ∪ B2) Û f(a) Î B1 ∪ B2

Û f(a) Î B1 or f (a) Î B2 
Û a Î f –1(B1) or a Î f –1(B2)
Û a Î f –1(B1) ∪ f –1(B2). 

Note : f : A ® B is 1 – 1 Û | f –1(b)| £ 1 " b Î B.
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§ 5.6 Function Composition and Inverse 
Functions 

Thm 5.11 : Let f : A ® B for finite sets A, B where |A| = |B|. 
TFSAE : (a) f is 1 – 1     (b) f is onto     (c) f is invertible.

Proof.
(c) Þ (a), (c) Þ (b) : Thm 5.8, (a) and (b) Þ (c) : Thm 5.8,
only need to prove (a) Û (b):
(b) Þ (a) : Assume f is onto, if f is not 1 – 1, then

$ a1 , a2 Î A1 , with a1 ¹ a2, but f(a1) = f(a2) 
Then |A| > |f(A)| = |B| ®¬

(b) Ü (a) : Assume f is 1 – 1, if f is not onto, then
$ b Î B with " a Î A, f(a) ¹ b. Þ |f(A)| < |B|
∵ |A| = |B| > |f (A)|
By the Pigeonhole Principle. f is not 1 – 1 
®¬
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§ 5.6 Function Composition and Inverse 
Functions 

Note : ① If |A| = |B| = n Î Z+, then there are n ! one-to-one 
function from A to B and ∑n

k=0 (– 1)k (n
n–k) (n – k)n

onto function By Thm 5.11 (a) (b), 
\ n ! = ∑n

k=0 (– 1)k (n
n–k) (n – k)n

② S (n, n) = 1.
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§ 5.7  see textbook : Def 5.23及下面的說明; Table 5.11
§ 5.8  see textbook : EX 5.70及其上說明; Fig 5.17, Table 5.12
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§ 5.7 & 5.8


