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§ 4.3  The Division Algorithm: Prime Numbers

Ex 4.26 :  ∵乘法為“連加”，故考慮以“連減”來計算除法.

See Fig 4.10, 連減並用 Ex 4.25 (d)

Ex 4.27 :  利用上述Algorithm 計算“改進位制”：
Write 6137 in the octal system (base 8)

i.e. find r0, r1, r2, …, rk with rk  0  s.t. (rk…r1r0)8=6137

Sol. ∵ 6137 = r0+r18+r28
2+…+rk 8

k = r0+8(r1+8(r2+…+8(rk)…))

and 6137 =1+8767  r0=1

=1+8[7+8(95)]  r1=7 

=1+8[7+8(7+811)]  r2=7

=1+8{7+8[7+8(3+81)]}  r3=3

r4=1

i.e. 6137=184+383+782+781+1=(13771)8

8  6137 Remainders

8  767       1(r0)

8  95       7(r1)

8  11       7(r2)

8  1       3(r3)

0       1(r4)
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§ 4.3  The Division Algorithm: Prime Numbers

Ex 4.28 : (1/3)

 2位進:  see book, Table 4.3

four bits:  0~15 = 0~24 – 1

leading 1:  8~15 = 23~24 – 1

six bits:    0~63 = 0~26 – 1

n bits:       0~2n – 1

leading 0:  0~2n–1 – 1

leading 1:  2n–1~2n – 1

 eight bits = one bytes

one bytes:   0 ~ 28 – 1  = 0 ~ 255

two bytes:   0 ~ 216 – 1 = 0 ~ 65535

four bytes:  0 ~ 232 – 1 = 0 ~ 4294967295
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§ 4.3  The Division Algorithm: Prime Numbers

Ex 4.28 : (2/3) (base - 16)

 Table 4.4:

Represent the integer 13874945 in the hexadecimal system:
16  13874945 Remainders

16  867184 1 (r0)
16  54199 0 (r1)
16  3387 7 (r2)

16  211 11=B (r3)
16  13 3 (r4)

0 13=D (r5)  ∴ 13874945=(D3B701)16

Base 10 Base2 Base 16

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F
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§ 4.3  The Division Algorithm: Prime Numbers

Ex 4.28 : (3/3)

 Converting between base 2 and base 16.

(i) Convert the binary integer 01001101 to its base-16 

counterpart

01001101

4 D ∴(01001101)2=(4D)16

(ii) Convert the two-byte number (A13F)16 in base 2

A 1 3 F

1010 0001 0011 1111

∴(A13F)16=(1010000100111111)2
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§ 4.3  The Division Algorithm: Prime Numbers

Ex 4.29 :

負數如何表示： n  0: two’s complement method.

 First consider the binary representation of |n|,

 Replace each 0 by 1, 1 by 0; the result is called the one’s 

complement of |n|.

Add 1 to ; the result is called the two’s complement of |n|.

ex: – 6: 6 → 0110

 0110  1001

 1001 + 0001 = 1010

Note:   See Table 4.5 (p. 225):  7 ~ – 8 need four-bit patterns

 Other obtained: – 8  n  – 1   7  nc  0

 nonnegative integer start with 0, negative integer start 

with 1 (first bit).



(c) Fall 2023, Justie Su-Tzu Juan 7

§ 4.3  The Division Algorithm: Prime Numbers

Ex 4.30 :  (1/2)

 Perform 33 – 15 in base 2, using the two’s complement of 8 

bits.

Sol.

∵ 33 –15 = 33 + ( –15);

33 = (00100001)2

15 = (00001111)2

→ –15 = (11110000+00000001)2 = (11110001)2

33 00100001

– 15 +  11110001

100010010

discarded Answer = (00010010)2 = 18

nonnegative
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§ 4.3  The Division Algorithm: Prime Numbers

Ex 4.30 :  (2/2)

 15 – 33=?  15+(– 33)

15 = (00001111)2

33 = (00100001)2

→ – 33 = (11011110+00000001)2 = (11011111)2

15 00001111

– 33 +  11011111

11101110 → (00010001)2

→ (00010010)2 = 18

∴Answer = – 18

 [overflow  error]  ex: 117+88

117 01110101

+  88 +  01011000

11001101

negative

 Take the one’s complement

Add 1

Negative!! →



(c) Fall 2023, Justie Su-Tzu Juan 9

§ 4.3  The Division Algorithm: Prime Numbers

Remark :  In general, let x, y  + with x  y, 2n–2  x < 2n–1

Then the binary rep. for x is made up of n – 1 bits → n bits

The one’s complement of y = (2n – 1) – y = 11…1 – y

The two’s complement of y = (2n – 1) – y + 1

∴ x – y = x + [(2n – 1) – y + 1] – 2n

n個1

removal of the extra bit
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§ 4.3  The Division Algorithm: Prime Numbers

Ex 4.31 :  If n   + and n is composite, then  p: a prime 
s.t. p | n and p  .

Proof.  
∵ n is composite 
∴We can write n = n1n2, where 1  n1  n, 1  n2  n.
If (n1  ) and (n2  ), 

then n = n1 n2  ( ) ( ) = n →
∴ n1  or n2  ,  W.L.O.G. say n1  .

(without loss of generality)
 If n1 is a prime:        the result follows.

If n1 is not a prime:  by Lemma 4.1, 
 a prime p  n1 s.t. p | n1,
∵ p | n1  n1 | n, 
∴ p | n and p  .

n

n n

n n

n n n

n



Computer Science and Information Engineering

National Chi Nan University

Discrete Mathematics
Dr.  Justie Su-Tzu Juan

Chap 4 Properties the Integers: 
Mathematical Induction

§ 4.4 The Greatest Common Divisor : The 
Euclidean Algorithm

(c) Fall 2023, Justie Su-Tzu Juan 11

Slides for a Course Based on the Text
Discrete & Combinatorial Mathematics (5th Edition)

by Ralph P. Grimaldi



§ 4.4 The Greatest Common Divisor : The 

Euclidean Algorithm

Def4.2  For a, b ∈ Z, c ∈ Z+ is said to be a common divisor of a 

and b  c | a  c | b. 

EX4.32  The common divisors of 42 and 70 = 1, 2, 7, 14

Def4.3  Let a, b ∈ Z, either a  0 or b  0. c ∈ Z+ is called a

greatest common divisor (G. C. D.) of a and b 

a) c | a and c | b,

b)  common divisor d of a and b, d | c.

Question : ① A G. C. D. always exist? If so, how to find?

② How many G. C. D. can a pair of integers have?
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§ 4.4 The Greatest Common Divisor : The 

Euclidean Algorithm

Thm4.6   a, b ∈ Z+, ! c ∈ Z+ is the greatest common divisor

of a, b. (denoted by gcd(a, b).)

Proof.(1/2)        

: Let S = {as + bt | s, t ∈ Z, as + bt > 0}.

∵ S   , 

∴ by the Well-Ordering Principle, S has a least element c.

b) ∵ c ∈ S,  x, y ∈ Z s.t. c = ax + by.

 d ∈ Z with d | a and d | b, by Thm4.3(f), d | ax + by, i.e. d | c.

a) If c ∤ a, then  g, r ∈ Z+ and 0 < r < c s.t. a = gc + r.

∴ r = a – gc = a – g(ax + by)

= (1 – gx) a + (– gy) b. 

∴ r  S.   → (∵ 0 < r < c). ∴ c | a.

In the same way, c | b.
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§ 4.4 The Greatest Common Divisor : The 

Euclidean Algorithm

Proof.(2/2)        

!: If c1, c2 ∈ Z+ both satisfy Def 4.3 (a), (b), 

then c1, c2 both are common divisor of a, b.
by (b), ∵ c1 as a greatest common divisor, ∴ c2 | c1; 

and, ∵ c2 as a greatest common divisor, ∴ c1 | c2.

 By Thm4.3(b), c1 = c2 ∵ c1, c2  Z+.

Note   a, b  Z+ 

① gcd(a, b) = gcd(b, a).

② gcd(a, 0) = |a|, if a  0.

③ gcd(–a, b) = gcd(a, –b) = gcd(–a, –b) = gcd(a, b).

④ gcd(0, 0) is not defined.

⑤ gcd(a, b) is the smallest positive integer we can 

write a linear combination of a and b.
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§ 4.4 The Greatest Common Divisor : The 

Euclidean Algorithm

Def   a, b  Z, a, b are called relatively prime when gcd(a, b) = 1. 

i.e.  x, y  Z such that ax + by = 1.

EX4.33 ① gcd(42, 70) = 14 : 

 x, y  Z such that 42 x + 70 y = 14,

  x, y  Z such that 3 x + 5 y = 1.

let x0 = 2, y0 = – 1 : 3(2) + 5 (– 1) = 1.

but k  Z : 3 (2 – 5 k) + 5 (– 1 + 3 k) = 1,

k  Z : 42 (2 – 5 k) + 70 (– 1 + 3 k) = 14.

∴ the solution for x, y are not unique!
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§ 4.4 The Greatest Common Divisor : The 

Euclidean Algorithm

EX4.33 ② In general, if gcd(a, b) = d : 

 x, y  Z s.t. ax + by = d,

  x, y  Z s.t. (a/d)x + (b/d)y = 1, 

 gcd(a/d, b/d) = 1.

let x0, y0 be a solution, i.e. (a/d)x0 + (b/d)y0 = 1.

then  k  Z : (a/d)(x0 – (b/d)k) + (b/d)(y0 + (a/d)k) = 1,

 k  Z : a(x0 – (b/d)k) + b(y0 + (a/d)k) = d.

∴  infinitely many solution for ax + by = d.

Remark ① If a | b, then gcd(a, b) = a.

② If b | a, then gcd(a, b) = b.

③ Otherwise?

Solution: use Euclidean Algorithm.
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§ 4.4 The Greatest Common Divisor : The 

Euclidean Algorithm

Thm 4.7  Euclidean Algorithm :
If a, b  Z+, then apply the division algorithm : 

a =  q1 b + r1,          0 < r1 < b.
b =  q2 r1 + r2,         0 < r2 < r1.
r1 =  q3 r2 + r3,         0 < r3 < r2.

⋮
rk – 2 =  qk rk – 1 + rk,      0 < rk < rk – 1 

rk – 1 =  qk + 1 rk.
Then rk, the last nonzero remainder, = gcd (a, b).

Proof.(1/2) 
ⓑ  c  Z+ with c | a and c | b,
∵ a = q1 b + r1, ∴ c | r1 ;
∵ b = q1 r1 + r2, ∴ c | r2 ;

⋮
∵ rk – 2 =  qk rk – 1 + rk, ∴ c | rk .
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§ 4.4 The Greatest Common Divisor : The 

Euclidean Algorithm

Proof.(2/2) 
ⓐ∵ rk – 1 =  qk + 1 rk,          ∴ rk | rk – 1 

∵ rk – 2 =  qk rk – 1 + rk,   ∴ rk | rk – 2 

⋮
∵ r1 =  q3 r2 + r3,           ∴ rk | r1;
∵ b = q2 r1 + r2,            ∴ rk | b;
∵ a = q1 b + r1,             ∴ rk | a.

i.e. (rk | a)  (rk | b).
By ⓐ, ⓑ, hence rk = gcd(a, b).

Note ① Algorithm : precise instruction, not just for one special 
case, input, output, same result, unambiguous manner, cannot 
go on indefinitely (finite instruction).

② Thm 4.5 : 基於傳統才稱之為 algorithm, ∵其不具有 “precise
instructions”. ∴以 EX 4.36 中Fig 4.9 之procedure補足此缺點.
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§ 4.4 The Greatest Common Divisor : The 

Euclidean Algorithm

EX 4.34 ① Find the greatest common divisor of 250 and 111. 
② Express the result as a linear combination of 250 and 111.
Sol.

① 250 = 2 (111) + 28,      0 < 28 < 111
111 = 3 (28) + 27,       0 < 27 < 28
28 = 1 (27) + 1,         0 <   1 < 27
27 = 27 (1).     ( the last nonzero remainder is 1)

∴ 1 = gcd(250, 111).  i.e. 250, 111 are relatively prime.
② 1 = 28 – 1 (27)            = 28 – 1 [111 – 3 (28)]

= (– 1) 111 + 4 (28) = (– 1) 111 + 4 [250 – 2 (111)]
= 4 (250) – 9 (111)  = 250 (4) + 111 (– 9),

 1 = 250 (4 – 111 k) + 111 (– 9 + 250 k), k  Z.
note: gcd(– 250, 111) = gcd(250, – 111) = gcd(– 250, – 111)

= gcd(250, 111) = 1.               
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§ 4.4 The Greatest Common Divisor : The 

Euclidean Algorithm

EX 4.35   n  Z+, prove 8n + 3 and 5n + 2 are relatively prime.

Proof.
① when n = 1, gcd(8n + 3, 5n + 2) = gcd(11, 7) = 1.

when n  2, ∵ 8n + 3 > 5n + 2 :

8n + 3 = 1(5n + 2) + (3n + 1),     0 < 3n + 1 < 5n + 2

5n + 2 = 1(3n + 1) + (2n + 1),     0 < 2n + 1 < 3n + 1

3n + 1 = 1(2n + 1) + n,                0 < n < 2n + 1

2n + 1 = 2(n) + 1,                        0 < 1 < n

n = n(1).                  ( the last nonzero remainder is 1)
∴ gcd(8n + 3, 5n + 2) = 1, n  1.

②另解: ∵ (8n + 3)(– 5) + (5n + 2)8 = – 15 + 16 = 1,

∴ 1 is expressed as a linear combination of  8n + 3, 5n + 2.

and no smaller positive integer can have this property,
∴ the G. C. D. of 8n + 3 and 5n + 2 is 1,  n  Z+ .
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§ 4.4 The Greatest Common Divisor : The 

Euclidean Algorithm

EX 4.36  Def :  x, y  Z+, x mod y = the remainder after x is 

divided by y. ex : 7 mod 3 = 1;   18 mod 5 = 3.
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ex : a = 168,   b = 456:
r0 = 168 and
d0 = 456.
∵ r > 0  
∴ c1 = 456, d1 = 168, 

r1 = 456 mod 168 = 120 > 0;
c2 = 168, d2 = 120, 
r2 = 168 mod 120 =  48  > 0;
c3 = 120, d3 = 48,   
r3 = 120 mod 48   =  24  > 0;
c4 =   48, d4 = 24,   
r4 =   48 mod 24   = 0. 
STOP.

∴ gcd(a, b) = 24 (= d4 ).



§ 4.4 The Greatest Common Divisor : The 

Euclidean Algorithm

EX 4.37  2 containers : 17 ounces and 55 ounces. How to 

use this two containers to measure exactly one 

ounce?

(一盎司= 0.283494 kg   17 → 4.8 kg   55 → 15.6 kg )

Sol. 

55 = 3 (17) + 4,    0 < 4 < 17

17 = 4 (4) + 1,      0 < 1 < 4

 1 = 17 – 4 (4) = 17 – 4 [55 – 3 (17)]

= 13 (17) – 4 (55).

∴小的裝13次,逐次倒至大的;

清掉大的4次,最後會只剩 1 ounce.
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§ 4.4 The Greatest Common Divisor : The 

Euclidean Algorithm

EX 4.38  Debug a Pascal program in 6 minutes. Debug a C++ 
program in 10 minutes. Work 104 minutes and doesn’t waste 
any time. How many programs can he debug in each language?
Sol.

Let x, y  N, 6 x + 10 y = 104  3 x + 5 y = 52
∵ gcd(3, 5) = 1,   and   3(2) + 5(– 1) = 1
∴ 3 (104) + 5 (– 52) = 52

 3 (104 – 5 k) + 5 (– 52 + 3 k) = 52,  k  Z
x = 104 – 5 k  0 and y = – 52 + 3 k  0

 17 + 1/3 = 52/3  k  104/5 = 20 + 4/5       
∴  3 possible solution:
a) (k = 18) : x = 14, y = 2.
b) (k = 19) : x =   9, y = 5.
c) (k = 20) : x =   4, y = 8 .
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§ 4.4 The Greatest Common Divisor : The 

Euclidean Algorithm

Thm 4.8  If a, b, c  Z+, the Diophantine equation ax + by = c 

has an integer solution x = x0, y = y0  gcd(a, b) | c.

Def 4.4   a, b, c  Z+, 

① c is called a common multiple of a, b  a | c and b | c. 

② c is the least common multiple of a, b lcm(a, b)  the 

smallest of all common multiple of a, b.

EX 4.39  a) 12 = 3  4, ∴ lcm(3, 4) = 12 = lcm (4, 3).

90 = 6  15, but lcm(6, 15)  90, lcm (6, 15) = 30.
b)  n  Z+, lcm(1, n) = lcm(n, 1) = n.

c)  a, n  Z+, lcm(a, na) = na.

d)  a, m, n  Z+, with m  n, lcm(am, an) = an, 

gcd(am, an) = am.
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§ 4.4 The Greatest Common Divisor : The 

Euclidean Algorithm

Thm 4.9  Let a, b, c  Z+, with c = lcm(a, b).
If d is a common multiple of a and b, then c | d.

Proof.
If not, then by division algorithm, d = qc + r, where 0 < r < c.
∵ c = lcm(a, b), ∴  m  Z+ s.t. c = ma,
∵ d is a common multiple of a and b, ∴  n  Z+ s.t. d = na.

 na = d = qc + r = qma + r 
 (n – qm) a = r > 0
∴ a | r.
In a similar way, b | r.
∴ (a | r and b | r)  r is a common multiple of a and b.

but 0 < r < c   → (∵ c is the least common multiple of a, b) 
Hence c | d.
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§ 4.4 The Greatest Common Divisor : The 

Euclidean Algorithm

Thm 4.10   a, b  Z+, ab = lcm(a, b)  gcd(a, b) 

Proof. (reader)

EX 4.40  a)  a, b  Z+, of a, b are relatively prime, then   

lcm(a, b) = ab.

b) ∵ gcd(168, 456) = 24 (by EX 4.36)

∴ lcm(168, 456) = (168) (456) / 24 = 3192.
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§ 4.5 The Fundamental Theorem of Arithmetic

Lemma 4.2  If a, b ∈ Z+ and p is a prime, p | ab  p | a or p | b.

Proof. 

If p | a, then we are finished.
If p ∤ a: ∵ p is prime, 

∴ gcd(p, a) = 1. i.e.  x, y ∈ Z s.t. px + ay = 1.

Then for p(bx) + (ab)y = b : 
∵ p | p  p | ab, 

∴ p | p(bx)  p | (ab)y.  (by Thm 4.3(d)) 

∵ [ p(bx) + (ab)y = b ]  p | p(bx)  p | (ab)y, 

∴ p | b.  (by Thm 4.3(e))

Lemma 4.3  Let ai ∈ Z+,  i ∈ {1, 2, …, n}.

[(p is prime)  (p | a1 a2 … an)]   i ∈ {1, 2, …, n}, p | ai.

Proof. (reader)
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§ 4.5 The Fundamental Theorem of Arithmetic

EX 4.38  Show that      is irrational. (Aristotle (384 – 322 B. C.)) 
Proof. 
Suppose       is not irrational. say     =     , 

where a, b ∈ Z+, gcd (a, b) = 1.                           
∵ =     , ∴ 2 =        2 b2 = a2  2 | a2  2 | a (by Lemma 4.2)

Let a = 2 c for some c ∈ Z+. 
∵ 2 b2 = a2, ∴ 2 b2 = 4 c2  2 c2 = b2  2 | b2  2 | b (by Lemma 4.2)

∴ 2 | a  2 | b  2 | gcd(a, b), i.e. gcd(a, b)  2 →
∴ is irrational.

Note  is irrational for every prime p (exercise)

Thm 4.11  The Fundamental Theorem of Arithmetic
 n > 1, n ∈ Z+, n can be written as a product of primes uniquely, 
up to the order of the primes.
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§ 4.5 The Fundamental Theorem of Arithmetic

Proof. (1/3)

: If not exist such product :

Let m > 1 be the smallest integer 

not expressible as a product of primes.

∵ m is not a prime, (o.w. prime is a product of one factor →)

∴ Let m = m1 m2, where 1 < m1  m2 < m. 

∵ m1 < m, m2 < m,

∴ m1, m2 can be written as product of primes.

∵ m = m1 m2

∴ we can obtain a prime factorization of m. →
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n > 1, n ∈ Z+, n can be written as a product of primes uniquely, 

up to the order of the primes.



§ 4.5 The Fundamental Theorem of Arithmetic

Proof. (2/3)

! : Prove by induction on n : 

Let S(n) : n have a unique prime factorization

n = 2 : S(2) is true.

Suppose n = 2, 3, 4, …, h – 1, S(n) is true.

Now, consider n = h : 

Suppose h = p1
s(1) p2

s(2) … pk
s(k) = q1

t(1) q2
t(2) … qr

t(r).

Where pi, qj are primes,  1  i  k, 1  j  r.

and p1 < p2 < … < pk and q1 < q2 < … < qr. 

and s(i)  Z+, t(j)  Z+,  1  i  k, 1  j  r.
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§ 4.5 The Fundamental Theorem of Arithmetic

Proof. (3/3)

∵ p1| h, ∴ p1| q1
t(1) q2

t(2) … qr
t(r).

By Lemma 4.3,  1  j  r, p1 | qj.

∵ p1, qj are primes.            ∴ p1 = qj.

In the same way, ∵ q1 | h   1  e  k, q1 =  pe.

 p1  pe = q1  qj = p1, ∴ e = j = 1, i.e. p1 = q1.

Let n1 = h / p1 = p1
s(1)–1 p2

s(2) … pk
s(k) = q1

t(1)–1 q2
t(2) … qr

t(r).

∵ n1 < h, ∴ by I. H.: 

k = r, pi = qi  1  i  k, 

s(1) – 1 = t(1) – 1, and s(i) = t(i)  2  i  k = r.

∵ s(1) – 1 = t(1) – 1  s(1) = t(1).

 The prime factorization of h is unique. 
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§ 4.5 The Fundamental Theorem of Arithmetic

EX 4.39  Find the prime factorization of 980220.

Sol.

2  980220   = 21 (490110)

2  490110   = 22 (245055)

3  245055   = 22  31 (81685)

5  81685   = 22  31  51 (16337)

17  16337   = 22  31  51  171 (961)

31  961   = 22  31  51  171  312

31
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§ 4.5 The Fundamental Theorem of Arithmetic

EX 4.40  Suppose n  Z+ and 

10  9  8  7  6  5  4  3  2  n = 21  20  19  18  17  16  15  14,

17 | n or not?

Sol. 

∵ 17 | (21  20  19 18  17  16  15  14), 

∴ 17 | (10  9  8  7  6  5  4  3  2  n).

But 17 ∤ 10, 17 ∤ 9, 17 ∤ 8, 17 ∤ 7, 17 ∤ 6, 17 ∤ 5, 

17 ∤ 4, 17 ∤ 3, 17 ∤ 2, 

∴ By Lemma 4.3, 17 | n .

(c) Fall 2023, Justie Su-Tzu Juan 34



§ 4.5 The Fundamental Theorem of Arithmetic

EX 4.41  For n  Z+, Find the number of positive divisors of n.

ex : 2 : 1, 2 ↝ 2

3 : 1, 3 ↝ 2

4 : 1, 2, 4 ↝ 3

Sol.

 n  Z+, by Thm4.11, let n = p1
e(1) p2

e(2) … pk
e(k), 

where pi is prime  1  i  k, e(i) > 0  1  i  k.  

If m | n, then m = p1
f(1) p2

f(2) … pk
f(k)

where 0  f(i) e(i) .  1  i  k. 

∴ the number of positive divisors of n is

(e(1) + 1) (e(2) + 1) … (e(k) + 1).
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§ 4.5 The Fundamental Theorem of Arithmetic

ex : ① 29338848000 = 28 35 53 73 11 :

有(8 + 1) (5 + 1) (3 + 1) (3 + 1) (1 + 1) = 9  6  4  4  2 

= 1728 個 positive divisors.
②其中有多少個為 360 = 23  32  5 的倍數:

it must satisfy : 2t(1) 3t(2) 5t(3) 7t(4) 11t(5) where

3  t(1)  8, 2  t(2)  5, 1  t(3)  3, 0  t(4)  3, 0  t(5)  1 

 [(8 – 3) + 1][(5 – 2) + 1][(3 – 1) + 1][(3 – 0) + 1][(1 – 0) + 1] 

= 6  4  3  4  2 = 576.

③其中有多少個為 perfect square :

it mast satisfy : 2s(1) 3s(2) 5s(3) 7s(4) 11s(5) where

s(1) = 0, 2, 4, 6, 8; s(2) = 0, 2, 4; s(3) = 0, 2; s(4) = 0, 2; s(5) = 0.

i.e. (22)r(1) (32)r(2) (52)r(3) (72)r(4) where

0  r(1)  4, 0  r(2)  2, 0  r(3)  1, 0  r(4)  1,

 5  3  2  2  1 = 60.
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§ 4.5 The Fundamental Theorem of Arithmetic

Def (       ) = i
n
=m xi = xm  xm+1  …  xn where m, n  Z.

n – m + 1 terms.

i : index,  m : lower limit,  n : upper limit.

ex : ① i
7
=3 xi = x3  x4  x5  x6  x7 = j

7
=3 xj

② i
6
=3 i = 3  4  5  6 = 6! / 2! 

③ i
n
=m i = m (m + 1) (m + 2) … (n – 1) n =

 m, n  Z+ with m  n.

④ i
11

=7 xi = x7  x8  x9  x10  x11

= j
4
=0 x7+j = j

4
=0 x11–j
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§ 4.5 The Fundamental Theorem of Arithmetic

EX 4.42  m, n  Z+, let m = p1
e(1) p2

e(2) … pt
e(t), n = p1 

f(1) p2 
f(2) … 

pt
f(t), where pi is prime, e(i)  0, f(i)  0,  1  i  t.

Let ai = a(i) = min{e(i), f(i)}  the smaller of e(i) and f(i), 1it
bi = b(i) = max{e(i), f(i)}  the larger of e(i) and f(i), 1it

then ① gcd(m, n) =  i
t
=1 pi

a(i),  ② lcm(m, n) =  i
t
=1 pi

b(i)

ex : m = 491891400 = 23  33  52  72  111  132

n = 1138845708 = 22  32  71  112  133  171

→ p1 = 2, p2 = 3, p3 = 5, p4 = 7, p5 = 11, p6 = 13, p7 = 17. 
→ a1 = 2, a2 = 2, a3 = 0, a4 = 1, a5 = 1, a6 = 2, a7 = 0

∴ gcd(m, n) = 22  32  50  71  111  132  170 = 468468.

→ b1 = 3, b2 = 3, b3 = 2, b4 = 2, b5 = 2, b6 = 3, b7 = 1
∴ lcm(m, n) = 23  33  52  72  112  133  171

= 1195787993400.
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§ 4.5 The Fundamental Theorem of Arithmetic

Note : Any two consecutive integers are relatively prime. 

(HW 19. § 4.4)

EX 4.39  Can we find three consecutive positive integers whose 

product is a perfect square? 
(i.e.  m, n  Z+. s.t. m(m + 1)(m + 2) = n2 ?)

Sol. (1/2)
Suppose  m, n  Z+, s.t. m(m + 1)(m + 2) = n2.

1. ∵ gcd(m, m + 1) = 1 = gcd(m + 1, m + 2),

∴  prime pi, pi | (m + 1)  pi ∤ m and pi ∤ (m + 2).

∵ m(m + 1)(m + 2) = n2, ∴ pi | (m + 1)  pi | n2.

∵ n2 is a perfect square,

∴ the exponents ti of pi in the prime factorizations of n2

must be even.
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§ 4.5 The Fundamental Theorem of Arithmetic

EX 4.39  Can we find three consecutive positive integers whose 

product is a perfect square? 
(i.e.  m, n  Z+. s.t. m (m + 1)(m + 2) = n2 ?)

Sol. (2/2)
∴ the exponents ti of pi in the prime factorizations of n2

must be even.
∴ m + 1 is a perfect square.

2. ∵ n2 = m(m + 1)(m + 2) and n2, m + 1 are perfect square,

 m(m + 2) is a perfect square.

but m2 < m2 + 2 m = m(m + 2) < m2 + 2 m + 1 = (m + 1)2

∴ m(m + 2) cannot be a perfect square. →

∴ There are no three consecutive positive integer whose 

product is a perfect square. 
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