Computer Science and Information Engineering

 National Chi Nan University
Discrete Mathematics Dr. Justie Su-Tzu Juan

Chap 4 Properties the Integers: Mathematical Induction

§ 4.3 The Division Algorithm: Prime Numbers (2)
Slides for a Course Based on the Text
Discrete \& Combinatorial Mathematics (5 ${ }^{\text {th }}$ Edition) by Ralph P. Grimaldi

4．3 The Division Algorithm：Prime Numbers

Ex 4.26 ：\because 乘法為＂連加＂，故考慮以＂連減＂來計算除法． See Fig 4．10，連減並用 Ex 4.25 （d）

Ex 4.27 ：利用上述 Algorithm 計算＂改進位制＂： Write 6137 in the octal system（base 8）
i．e．find $r_{0}, r_{1}, r_{2}, \ldots, r_{k}$ with $r_{k}>0$ s．t．$\left(r_{k} \ldots r_{1} r_{0}\right)_{8}=6137$
Sol．$\because 6137=r_{0}+r_{1} \cdot 8+r_{2} \cdot 8^{2}+\ldots+r_{k} \cdot 8^{k}=r_{0}+8\left(r_{1}+8\left(r_{2}+\ldots+8\left(r_{k}\right) \ldots\right)\right)$

$$
\begin{array}{cc}
\text { and } 6137=1+8 \cdot 767 & \Rightarrow r_{0}=1 \\
=1+8[7+8(95)] & \Rightarrow r_{1}=7 \\
=1+8[7+8(7+8 \cdot 11)] & \Rightarrow r_{2}=7 \\
=1+8\{7+8[7+8(3+8 \cdot 1)]\} & \Rightarrow r_{3}=3 \\
& r_{4}=1
\end{array}
$$

$$
\text { i.e. } 6137=1 \cdot 8^{4}+3 \cdot 8^{3}+7 \cdot 8^{2}+7 \cdot 8^{1}+1=(137 \%)_{8}
$$

（c）Fall 2023，Justie Su－Tzu Juan

4.3 The Division Algorithm: Prime Numbers

Ex 4.28 : (1/3)
(1) 2 位進: see book, Table 4.3
four bits: $0 \sim 15=0 \sim 2^{4}-1$
leading 1: $8 \sim 15=2^{3} \sim 2^{4}-1$
six bits: $\quad 0 \sim 63=0 \sim 2^{6}-1$
n bits: $\quad 0 \sim 2^{n}-1$
\{ leading 0: $0 \sim 2^{n-1}-1$
leading 1: $2^{n-1} \sim 2^{n}-1$
(2) eight bits $=$ one bytes
one bytes: $0 \sim 2^{8}-1=0 \sim 255$
two bytes: $0 \sim 2^{16}-1=0 \sim 65535$
four bytes: $0 \sim 2^{32}-1=0 \sim 4294967295$
(c) Fall 2023, Justie Su-Tzu Juan

4.3 The Division Algorithm: Prime Numbers

Ex 4.28 : (2/3)
(base - 16)
(3) Table 4.4:

Base 10	Base2	Base 16
10	1010	A
11	1011	B
12	1100	C
13	1101	D
14	1110	E
15	1111	F

Represent the integer 13874945 in the hexadecimal system: 1613874945 Remainders

$16 \mid 867184$
$16 \mid 54199$
$16 \mid 3387$
$16 \mid 211$
$16 \mid 13$

1	$\left(r_{0}\right)$
0	$\left(r_{1}\right)$
7	$\left(r_{2}\right)$
$11=\mathrm{B}$	$\left(r_{3}\right)$
3	$\left(r_{4}\right)$
$13=\mathrm{D}$	$\left(r_{5}\right)$

$\therefore 13874945=(\mathrm{D} 3 \mathrm{~B} 701)_{16}$
(c) Fall 2023, Justie Su-Tzu Juan

4.3 The Division Algorithm: Prime Numbers

Ex 4.28 : (3/3)
(4) Converting between base 2 and base 16.
(i) Convert the binary integer 01001101 to its base-16 counterpart

01001101

$$
4 \quad \therefore \quad \therefore(01001101)_{2}=(4 \mathrm{D})_{16}
$$

(ii) Convert the two-byte number (A13F) ${ }_{16}$ in base 2

$$
\underbrace{\mathrm{A}}_{1010} \underbrace{1}_{(\mathrm{A} 13 \mathrm{~F})_{16}=(1010000100111111)_{2}} \underbrace{3}_{0011} \underbrace{\mathrm{~F}}_{1111}
$$

4．3 The Division Algorithm：Prime Numbers

Ex 4.29 ：

負數如何表示：$n<0$ ：two＇s complement method．
（1）First consider the binary representation of $|n|$ ，
（2）Replace each 0 by 1 ， 1 by 0 ；the result is called the one＇s complement of $|n|$ ．
（3）Add 1 to（2）；the result is called the two＇s complement of $|n|$ ． ex：－6：（1） $6 \rightarrow 0110$
（2） $\mathbf{0 1 1 0} \leftrightarrow \mathbf{1 0 0 1}$
（3） $\mathbf{1 0 0 1}+\mathbf{0 0 0 1}=1010$

Note：（1）See Table 4.5 （p．225）： $7 \sim-8$ need four－bit patterns
（2）Other obtained：$-8 \leq n \leq-1 \leftrightarrow 7 \geq n^{c} \geq 0$
（3）nonnegative integer start with 0 ，negative integer start

4.3 The Division Algorithm: Prime Numbers

Ex 4.30 : (1/2)
(1) Perform 33 - 15 in base 2, using the two's complement of 8 bits.
Sol.

$$
\begin{aligned}
& \because 33-15=33+(-15) \text {; } \\
& 33=(00100001)_{2} \\
& 15=(00001111)_{2} \\
& \rightarrow-15=(11110000+00000001)_{2}=(11110001)_{2} \\
& 33 \\
& 00100001 \\
& -15 \longrightarrow+11110001 \\
& \text { discarded } \xlongequal[\text { Answer }=(00010010)_{2}=18]{100010010}
\end{aligned}
$$

4.3 The Division Algorithm: Prime Numbers

Ex 4.30 : (2/2)
(2) 15-33=? 15+(-33) $15=(00001111)_{2}$ $33=(00100001)_{2}$ $\rightarrow-33=(11011110+00000001)_{2}=(11011111)_{2}$
15 00001111
$-33 \longrightarrow 11011111$ (1) Take the one's complement $111101110 \rightarrow(00010001)_{2}$ negative $\rightarrow(00010010)_{2}=18$
\therefore Answer $=-18$
(2) Add 1
(3) [overflow error] ex: 117+88

$$
\begin{array}{r}
117 \\
+\quad 88 \\
\hline
\end{array}
$$

01110101
+01011000 Negative!! $\rightarrow \leftarrow$
11001101
(c) Fall 2023, Justie Su-Tzu Juan

4.3 The Division Algorithm: Prime Numbers

Remark : In general, let $x, y \in \mathrm{Z}^{+}$with $x>y, 2^{n-2} \leq x<2^{n-1}$ Then the binary rep. for x is made up of $n-1$ bits $\rightarrow n$ bits The one's complement of $y=\left(2^{n}-1\right)-y=11 \ldots 1-y$
The two's complement of $y=\left(2^{n}-1\right)-y+1 n$ 個 1
$\therefore x-y=x+\left[\left(2^{n}-1\right)-y+1\right]-2^{n}$
\rightarrow removal of the extra bit

4.3 The Division Algorithm: Prime Numbers

Ex 4.31: If $n \in Z^{+}$and n is composite, then $\exists p$: a prime s.t. $\boldsymbol{p} \mid \boldsymbol{n}$ and $\boldsymbol{p} \leq \sqrt{n}$.

Proof.
(1) $\because n$ is composite
\therefore We can write $n=n_{1} n_{2}$, where $1<n_{1}<n, 1<n_{2}<n$.
If $\left(\boldsymbol{n}_{1}>\sqrt{n}\right)$ and $\left(\boldsymbol{n}_{2}>\sqrt{n}\right)$,
then $\boldsymbol{n}=\boldsymbol{n}_{1} \boldsymbol{n}_{2}>(\sqrt{n})(\sqrt{n})=\boldsymbol{n} \rightarrow \leftarrow$
$\therefore \boldsymbol{n}_{1} \leq \sqrt{n}$ or $\boldsymbol{n}_{2} \leq \sqrt{n}$, W.L.O.G. say $\boldsymbol{n}_{1} \leq \sqrt{n}$. (without loss of generality)
(2) If n_{1} is a prime: the result follows. If n_{1} is not a prime: by Lemma 4.1,
\exists a prime $p<n_{1}$ s.t. $p \mid n_{1}$,
$\because p\left|n_{1} \wedge n_{1}\right| n$,
$\therefore p \mid n$ and $p \leq \sqrt{n}$.

Computer Science and Information Engineering National Chi Nan University

Discrete Mathematics

Dr. Justie Su-Tzu Juan

Chap 4 Properties the Integers: Mathematical Induction

§ 4.4 The Greatest Common Divisor : The Euclidean Algorithm
Slides for a Course Based on the Text
Discrete \& Combinatorial Mathematics (5 ${ }^{\text {th }}$ Edition) by Ralph P. Grimaldi

§ 4.4 The Greatest Common Divisor : The Euclidean Algorithm

Def4.2 : For $a, b \in \mathbf{Z}, \boldsymbol{c} \in \mathbf{Z}^{+}$is said to be a common divisor of \boldsymbol{a} and $b \equiv c|a \wedge c| b$.

EX4.32 : The common divisors of 42 and $70=1,2,7,14$,

Def4.3 : Let $a, b \in \mathbb{Z}$, either $a \neq 0$ or $b \neq 0 . c \in \mathbb{Z}^{+}$is called a greatest common divisor (G. C. D.) of a and $b \equiv$
a) $c \mid a$ and $c \mid b$,
b) \forall common divisor d of a and $b, d \mid c$.

Question : (1) A G. C. D. always exist? If so, how to find?
(2) How many G. C. D. can a pair of integers have?

§4.4 The Greatest Common Divisor : The Euclidean Algorithm

Thm4.6 : $\forall a, b \in \mathbb{Z}^{+}, \exists!c \in \mathbf{Z}^{+}$is the greatest common divisor of a, b. (denoted by $\operatorname{gcd}(a, b)$.)
Proof.(1/2)
\exists Let $S=\{a s+b t \mid s, t \in \mathbb{Z}, a s+b t>0\}$ 。
$\because S \neq \phi$,
\therefore by the Well-Ordering Principle, S has a least element c.
b) $\because c \in S, \exists x, y \in \mathbb{Z}$ s.t. $c=a x+b y$.
$\forall d \in \mathbb{Z}$ with $d \mid a$ and $d \mid b$, by Thm4.3(f), $d \mid a x+b y$, i.e. $d \mid c$.
a) If $c \nmid a$, then $\exists g, r \in \mathbb{Z}^{+}$and $0<r<c$ s.t. $a=g c+r$.
$\therefore r=a-g c=a-g(a x+b y)$

$$
=(1-g x) a+(-g y) b
$$

$\therefore r \in S . \rightarrow \leftarrow(\because 0<r<c) . \quad \therefore c \mid a$.
In the same way, $c \mid b$.

§4.4 The Greatest Common Divisor : The Euclidean Algorithm

Proof.(2/2)
!: If $c_{1}, c_{2} \in \mathbf{Z}^{+}$both satisfy Def 4.3 (a), (b),
then c_{1}, c_{2} both are common divisor of a, b.
by $(b), \because c_{1}$ as a greatest common divisor, $\therefore c_{2} \mid c_{1}$;
and, $\because c_{2}$ as a greatest common divisor, $\therefore c_{1} \mid c_{2}$.
\Rightarrow By Thm4.3(b), $c_{1}=c_{2} \because c_{1}, c_{2} \in \mathbf{Z}^{+}$.
Note : $\forall a, b \in \mathbf{Z}^{+}$:
(1) $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a)$.
(2) $\operatorname{gcd}(a, 0)=|a|$, if $a \neq 0$.
(3) $\operatorname{gcd}(-a, b)=\operatorname{gcd}(a,-b)=\operatorname{gcd}(-a,-b)=\operatorname{gcd}(a, b)$.
(4) $\operatorname{gcd}(0,0)$ is not defined.
(5) $\operatorname{gcd}(a, b)$ is the smallest positive integer we can write a linear combination of \boldsymbol{a} and \boldsymbol{b}.

§4.4 The Greatest Common Divisor: The Euclidean Algorithm

Def : $\forall a, b \in \mathbb{Z}, a, b$ are called relatively prime when $\operatorname{gcd}(a, b)=1$. i.e. $\exists x, y \in \mathbb{Z}$ such that $a x+b y=1$.

EX4.33: (1) $\operatorname{gcd}(42,70)=14$:
$\exists x, y \in \mathbb{Z}$ such that $42 x+70 y=14$,
$\Leftrightarrow \exists x, y \in \mathbb{Z}$ such that $3 x+5 y=1$.
let $x_{0}=2, y_{0}=-1: 3(2)+5(-1)=1$.
but $\forall k \in \mathbb{Z}: 3(2-5 k)+5(-1+3 k)=1$,
$\Leftrightarrow \forall k \in \mathbb{Z}: 42(2-5 k)+70(-1+3 k)=14$.
\therefore the solution for x, y are not unique!

§4.4 The Greatest Common Divisor: The Euclidean Algorithm

EX4.33 : (2) In general, if $\operatorname{gcd}(a, b)=d$:

$$
\begin{aligned}
& \exists x, y \in \mathbb{Z} \text { s.t. } a x+b y=d, \\
\Leftrightarrow & \exists x, y \in \mathbb{Z} \text { s.t. }(a / d) x+(b / d) y=1, \\
\Leftrightarrow & \operatorname{gcd}(a / d, b / d)=1 .
\end{aligned}
$$

let x_{0}, y_{0} be a solution, i.e. $(a / d) x_{0}+(b / d) y_{0}=1$. then $\forall k \in \mathbb{Z}:(a / d)\left(x_{0}-(b / d) k\right)+(b / d)\left(y_{0}+(a / d) k\right)=1$, $\Leftrightarrow \forall k \in \mathbb{Z}: a\left(x_{0}-(b / d) k\right)+b\left(y_{0}+(a / d) k\right)=d$.
$\therefore \exists$ infinitely many solution for $a x+b y=d$.
Remark : (1) If $a \mid b$, then $\operatorname{gcd}(a, b)=a$.
(2) If $b \mid a$, then $\operatorname{gcd}(a, b)=b$.
(3) Otherwise?

Solution: use Euclidean Algorithm.
(c) Fall 2023, Justie Su-Tzu Juan

§ 4.4 The Greatest Common Divisor : The Euclidean Algorithm

Thm 4.7 : Euclidean Algorithm :
If $a, b \in \mathbf{Z}^{+}$, then apply the division algorithm :

$$
\begin{array}{rlrl}
a & =q_{1} b+r_{1}, & & 0<r_{1}<b . \\
b & =q_{2} r_{1}+r_{2}, & & 0<r_{2}<r_{1} . \\
r_{1} & =q_{3} r_{2}+r_{3}, & & 0<r_{3}<r_{2} . \\
& \vdots \\
r_{k-2} & =q_{k} r_{k-1}+r_{k}, & & 0<r_{k}<r_{k-1} \\
r_{k-1} & =q_{k+1} r_{k} . & & .
\end{array}
$$

Then r_{k}, the last nonzero remainder, $=\operatorname{gcd}(a, b)$.
Proof.(1/2)
(b) $\forall c \in \mathbb{Z}^{+}$with $c \mid a$ and $c \mid b$,
$\because a=q_{1} b+r_{1}, \therefore c \mid r_{1}$;
$\because b=q_{1} r_{1}+r_{2}, \therefore c \mid r_{2} ;$
$\because r_{k-2}=q_{k} r_{k-1}+r_{k}, \therefore c \mid r_{k}$.
(c) Fall 2023, Justie Su-Tzu Juan

§4．4 The Greatest Common Divisor ：The Euclidean Algorithm

Proof．（2／2）

$$
\begin{array}{cc}
\text { (a) } \because r_{k-1}=q_{k+1} r_{k}, & \therefore r_{k} \mid r_{k-1} \\
\because r_{k-2}=q_{k} r_{k-1}+r_{k}, & \therefore r_{k} \mid r_{k-2} \\
\vdots & \therefore r_{k} \mid r_{1} ; \\
\because r_{1}=q_{3} r_{2}+r_{3}, & \therefore r_{k} \mid b ; \\
\because b=q_{2} r_{1}+r_{2}, & \therefore r_{k} \mid a \\
\because a=q_{1} b+r_{1}, & \\
\text { i.e. (r } \mid a) \wedge\left(r_{k} \mid b\right) . & \operatorname{la}, \text { (b), hence } r_{k}=\operatorname{gcd}(a, b) .
\end{array}
$$

Note ：（1）Algorithm ：precise instruction，not just for one special case，input，output，same result，unambiguous manner，cannot go on indefinitely（finite instruction）．
（2）Thm 4.5 ：基於傳統才稱之為 algorithm，\because 其不具有＂precise instructions＂．\therefore 以 EX 4.36 中 Fig 4.9 之procedure補足此缺點．

§4.4 The Greatest Common Divisor : The Euclidean Algorithm

EX 4.34 : (1) Find the greatest common divisor of 250 and 111. (2) Express the result as a linear combination of 250 and 111. Sol.
(1) $250=2(111)+28, \quad 0<28<111$

$$
\begin{aligned}
111 & =3(28)+27, & & 0<27<28 \\
28 & =1(27)+1, & & 0<1<27
\end{aligned}
$$

$27=27$ (1). $\quad($ the last nonzero remainder is 1$)$
$\therefore 1=\operatorname{gcd}(250,111)$. i.e. 250,111 are relatively prime.

$$
\begin{aligned}
(2) & =28-1(27)=28-1[111-3(28)] \\
& =(-1) 111+4(28)=(-1) 111+4[250-2(111)] \\
& =4(250)-9(111)=250(4)+111(-9), \\
\Rightarrow 1 & =250(4-111 k)+111(-9+250 k), \forall k \in \mathrm{Z} .
\end{aligned}
$$

$$
\text { note: } \operatorname{gcd}(-250,111)=\operatorname{gcd}(250,-111)=\operatorname{gcd}(-250,-111)
$$

$$
=\operatorname{gcd}(250,111)=1 .
$$

§4.4 The Greatest Common Divisor : The Euclidean Algorithm

EX 4.35 : $\forall n \in \mathbf{Z}^{+}$, prove $8 n+3$ and $5 n+2$ are relatively prime. Proof.
(1) when $n=1, \operatorname{gcd}(8 n+3,5 n+2)=\operatorname{gcd}(11,7)=1$.
when $n \geq 2, \because 8 n+3>5 n+2$:

$$
\begin{array}{ll}
8 n+3=1(5 n+2)+(3 n+1), & \\
5 n+2<3 n+1<5 n+2 \\
5 n+2=1(3 n+1)+(2 n+1), & \\
3 n+1=1(2 n+1)+n, & 0<n<2 n+1<3 n+1 \\
2 n+1=2(n)+1, & 0<1<n
\end{array}
$$

$$
n=n(1) . \quad(\text { the last nonzero remainder is } 1)
$$

$\therefore \operatorname{gcd}(8 n+3,5 n+2)=1, \forall n \geq 1$.
(2) 另解: $\because(8 n+3)(-5)+(5 n+2) 8=-15+16=1$,
$\therefore 1$ is expressed as a linear combination of $8 n+3,5 n+2$. and no smaller positive integer can have this property,
\therefore the G. C. D. of $8 n+3$ and $5 n+2$ is $1, \forall n \in \mathbb{Z}^{+}$.
(c) Fall 2023, Justie Su-Tzu Juan

§4.4 The Greatest Common Divisor : The Euclidean Algorithm

EX 4.36 : Def : $\forall x, y \in Z^{+}, x \bmod y=$ the remainder after x is divided by $y . \quad$ ex $: 7 \bmod 3=1 ; 18 \bmod 5=3$. ex : $a=168, \quad b=456$:
procedure gcd (a, b : positive integers)
begin
$r:=a \bmod b$
$d:=b$
while $r>0$ do
begin
$c:=d$
$d:=r$
$r:=c \bmod d$
end
end $\{\operatorname{gcd}(a, b)$ is d, the last nonzero remainder $\}$

Figure 4.9
$r_{0}=168$ and
$d_{0}=456$.
$\because r>0$
$\therefore c_{1}=456, d_{1}=168$,
$r_{1}=456 \bmod 168=120>0 ;$
$c_{2}=168, d_{2}=120$,
$r_{2}=168 \bmod 120=48>0 ;$
$c_{3}=120, d_{3}=48$,
$r_{3}=120 \bmod 48=24>0 ;$
$c_{4}=48, d_{4}=24$,
$r_{4}=48 \bmod 24=0$.
STOP.
(c) Fall 2023, Justie Su-Tzu Juan $\therefore \operatorname{gcd}(a, b)=24\left(=d_{4}\right) .{ }^{21}$

§4．4 The Greatest Common Divisor ：The Euclidean Algorithm

EX 4.37 ： 2 containers ： 17 ounces and 55 ounces．How to use this two containers to measure exactly one ounce？

$$
\text { (一盖司= } 0.283494 \mathrm{~kg} 17 \rightarrow 4.8 \mathrm{~kg} \quad 55 \rightarrow 15.6 \mathrm{~kg} \text {) }
$$

Sol．

$$
\begin{aligned}
55 & =3(17)+4, \quad 0<4<17 \\
17 & =4(4)+1, \quad 0<1<4 \\
\Rightarrow 1 & =17-4(4)=17-4[55-3(17)] \\
& =13(17)-4(55) .
\end{aligned}
$$

\therefore 小的装 13 次，逐次倒至大的；清掉大的4次，最後會只剩 1 ounce．

§4.4 The Greatest Common Divisor : The Euclidean Algorithm

EX 4.38 : Debug a Pascal program in 6 minutes. Debug a C++ program in 10 minutes. Work 104 minutes and doesn't waste any time. How many programs can he debug in each language? Sol.

$$
\begin{aligned}
& \text { Let } x, y \in N, 6 x+10 y=104 \Leftrightarrow 3 x+5 y=52 \\
& \because \operatorname{gcd}(\mathbf{3}, 5)=1, \text { and } 3(2)+5(-1)=1 \\
& \therefore 3(104)+5(-52)=52 \\
& \Rightarrow 3(104-5 k)+5(-52+3 k)=52, \forall k \in Z \\
& \quad x=104-5 k \geq 0 \text { and } y=-52+3 k \geq 0 \\
& \Rightarrow 17+1 / 3=52 / 3 \leq k \leq 104 / 5=20+4 / 5 \\
& \therefore \exists 3 \text { possible solution: } \\
& \text { a) }(k=18: x=14, y=2 . \\
& \text { b) }(k=19): x=9, y=5 . \\
& \text { c) }(k=20): x=4, y=8 .
\end{aligned}
$$

§4.4 The Greatest Common Divisor : The Euclidean Algorithm

Thm 4.8 : If $a, b, c \in \mathbf{Z}^{+}$, the Diophantine equation $a x+b y=c$ has an integer solution $x=x_{0}, y=y_{0} \Leftrightarrow \operatorname{gcd}(a, b) \mid c$.

Def 4.4: $\forall a, b, c \in \mathbf{Z}^{+}$,
(1) c is called a common multiple of $a, b \equiv a \mid c$ and $b \mid c$.
(2) c is the least common multiple of $a, b \operatorname{lcm}(a, b) \equiv$ the smallest of all common multiple of a, b.

EX 4.39 : a) $12=3 \cdot 4, \therefore \operatorname{lcm}(3,4)=12=\operatorname{lcm}(4,3)$. $90=6 \cdot 15$, but $\operatorname{lcm}(6,15) \neq 90, \operatorname{lcm}(6,15)=30$.
b) $\forall n \in \mathbf{Z}^{+}, \operatorname{lcm}(1, n)=\operatorname{lcm}(n, 1)=n$.
c) $\forall a, n \in \mathbf{Z}^{+}, \operatorname{lcm}(a, n a)=n a$.
d) $\forall a, m, n \in \mathbf{Z}^{+}$, with $m \leq n, \operatorname{lcm}\left(a^{m}, a^{n}\right)=a^{n}$, $\operatorname{gcd}\left(a^{m}, a^{n}\right)=a^{m}$.
(c) Fall 2023, Justie Su-Tzu Juan

§4.4 The Greatest Common Divisor : The Euclidean Algorithm

Thm 4.9 : Let $a, b, c \in \mathbf{Z}^{+}$, with $c=\operatorname{lcm}(a, b)$. If d is a common multiple of a and b, then $c \mid d$.
Proof.
If not, then by division algorithm, $d=q c+r$, where $0<r<c$.
$\because c=\operatorname{lcm}(a, b), \therefore \exists m \in Z^{+}$s.t. $c=m a$,
$\because d$ is a common multiple of a and $b, \therefore \exists n \in \mathbb{Z}^{+}$s.t. $d=n a$.
$\Rightarrow n a=d=q c+r=q m a+r$
$\Rightarrow(n-q m) a=r>0$
$\therefore a \mid r$.
In a similar way, $b \mid r$.
$\therefore(a \mid r$ and $b \mid r) \Rightarrow r$ is a common multiple of a and b. but $0<r<c \rightarrow \leftarrow(\because c$ is the least common multiple of $a, b)$ Hence $c \mid d$.

§4.4 The Greatest Common Divisor: The Euclidean Algorithm

Thm 4.10 : $\forall a, b \in \mathbf{Z}^{+}, a b=\operatorname{lcm}(a, b) \cdot \operatorname{gcd}(a, b)$
Proof. (reader)
EX 4.40 : a) $\forall a, b \in \mathbf{Z}^{+}$, of a, b are relatively prime, then $\operatorname{lcm}(a, b)=a b$.
b) $\because \operatorname{gcd}(168,456)=24($ by EX 4.36)
$\therefore \operatorname{lcm}(168,456)=(168)(456) / 24=3192$.

Computer Science and Information Engineering

 National Chi Nan University
Discrete Mathematics

Dr. Justie Su-Tzu Juan

Chap 4 Properties the Integers: Mathematical Induction § 4.5 The Fundamental Theorem of Arithmetic

Slides for a Course Based on the Text
Discrete \& Combinatorial Mathematics (5 ${ }^{\text {th }}$ Edition) by Ralph P. Grimaldi

4.5 The Fundamental Theorem of Arithmetic

Lemma 4.2 : If $a, b \in \mathrm{Z}^{+}$and p is a prime, $p|a b \Rightarrow p| a$ or $p \mid b$. Proof.

If $p \mid a$, then we are finished.
If $p \nmid a: ~ \because p$ is prime,

$$
\therefore \operatorname{gcd}(p, a)=1 \text {. i.e. } \exists x, y \in \mathbb{Z} \text { s.t. } p x+a y=1 .
$$

Then for $p(b x)+(a b) y=b$:

$$
\because p|p \wedge p| a b
$$

$$
\therefore p|p(b x) \wedge p|(a b) y . \quad(\text { by Thm } 4.3(\mathrm{~d}))
$$

$$
\because[p(b x)+(a b) y=b] \wedge p|p(b x) \wedge p|(a b) y,
$$

$$
\therefore p \mid b . \quad(\mathrm{by} \text { Thm 4.3(e)) }
$$

Lemma 4.3 : Let $a_{i} \in \mathbf{Z}^{+}, \forall i \in\{1,2, \ldots, n\}$.
$\left[(p\right.$ is prime $\left.) \wedge\left(p \mid a_{1} a_{2} \ldots a_{n}\right)\right] \Rightarrow \exists i \in\{1,2, \ldots, n\}, p \mid a_{i}$.
Proof. (reader)

4.5 The Fundamental Theorem of Arithmetic

EX 4.38 : Show that $\sqrt{2}$ is irrational. (Aristotle ($384-322$ B. C.))
Proof.
Suppose $\sqrt{2}$ is not irrational. say $\sqrt{2}=\frac{G}{Z}$,
$\because \sqrt{2} \quad a^{2}$ where $a, b \in \mathbf{Z}^{+}, \operatorname{gcd}(a, b)=1$.
$\because \sqrt{2}=\frac{c}{z}, \therefore 2=\frac{b^{2}}{b^{2}} \Rightarrow \mathbf{2} b^{2}=a^{2} \Rightarrow \mathbf{2}\left|a^{2} \Rightarrow \mathbf{2}\right| a$ (by Lemma 4.2)
Let $a=\boldsymbol{z} c$ for some $c \in \mathbf{Z}^{+}$.
$\because 2 b^{2}=a^{2}, \therefore 2 b^{2}=4 c^{2} \Rightarrow 2 c^{2}=b^{2} \Rightarrow 2\left|b^{2} \Rightarrow 2\right| b$ (by Lemma 4.2)
$\therefore 2|a \wedge 2| b \Rightarrow 2 \mid \operatorname{gcd}(a, b)$, i.e. $\operatorname{gcd}(a, b) \geq 2 \rightarrow \leftarrow$
$\therefore \sqrt{2}$ is irrational.
Note: \sqrt{p} is irrational for every prime \boldsymbol{p} (exercise)
Thm 4.11 : The Fundamental Theorem of Arithmetic
$\forall n>1, n \in \mathbb{Z}^{+}, n$ can be written as a product of primes uniquely, up to the order of the primes.
(c) Fall 2023, Justie Su-Tzu Juan
$\forall n>1, n \in \mathbb{Z}^{+}, n$ can be written as a product of primes uniquely, 4.5 The up to the order of the primes.

Proof. (1/3)

\exists : If not exist such product :
Let $m>1$ be the smallest integer
not expressible as a product of primes.
$\because m$ is not a prime, (o.w. prime is a product of one factor $\rightarrow \leftarrow$)
\therefore Let $m=m_{1} m_{2}$, where $1<m_{1} \leq m_{2}<m$.
$\because m_{1}<m, m_{2}<m$,
$\therefore m_{1}, m_{2}$ can be written as product of primes.
$\because m=m_{1} m_{2}$
\therefore we can obtain a prime factorization of $m . \rightarrow \leftarrow$
$\forall n>1, n \in \mathbb{Z}+n$ can be written as a product of primes uniquely, 4.5 The up to the order of the primes.

Proof. (2/3)

!: Prove by induction on \boldsymbol{n} :
Let $S(n): n$ have a unique prime factorization $n=2: S(2)$ is true.
Suppose $n=2,3,4, \ldots, h-1, S(n)$ is true.
Now, consider $n=h$:

$$
\begin{aligned}
& \text { Suppose } h=p_{1}{ }^{s(1)} p_{2}{ }^{s(2)} \ldots p_{k}^{s(k)}=q_{1}^{t(1)} q_{2}{ }^{t(2)} \ldots q_{r}^{t(r)} . \\
& \text { Where } p_{i}, q_{j} \text { are primes, } \forall 1 \leq i \leq k, 1 \leq j \leq r . \\
& \text { and } p_{1}<p_{2}<\ldots<p_{k} \text { and } q_{1}<q_{2}<\ldots<q_{r^{\circ}} \\
& \text { and } s(i) \in \mathbb{Z}^{+}, t(j) \in \mathbb{Z}^{+}, \forall 1 \leq i \leq k, 1 \leq j \leq r .
\end{aligned}
$$

4.5 The up to the order of the primes.

Proof. (3/3)

$\because p_{1}\left|h, \therefore p_{1}\right| q_{1}{ }^{t(1)} q_{2}{ }^{t(2)} \ldots q_{r}{ }^{t(r)}$.
By Lemma 4.3, $\exists 1 \leq j \leq r, p_{1} \mid q_{j}$.
$\because p_{1}, q_{j}$ are primes. $\quad \therefore p_{1}=q_{j}$
In the same way, $\because q_{1} \mid h \Rightarrow \exists 1 \leq e \leq k, q_{1}=p_{e}$
$\Rightarrow p_{1} \leq p_{e}=q_{1} \leq q_{j}=p_{1}, \therefore e=j=1$, i.e. $p_{1}=q_{1}$.
Let $n_{1}=h / p_{1}=p_{1}{ }^{s(1)-1} p_{2}^{s(2)} \ldots p_{k}^{s(k)}=q_{1}^{t(1)-1} q_{2}^{t(2)} \ldots q_{r}^{t(r)}$.
$\because n_{1}<h, \therefore$ by I. H.:
$k=r, p_{i}=q_{i} \forall 1 \leq i \leq k$,
$s(1)-1=t(1)-1$, and $s(i)=t(i) \forall 2 \leq i \leq k=r$.
$\because s(1)-1=t(1)-1 \Rightarrow s(1)=t(1)$.
\Rightarrow The prime factorization of h is unique.

4.5 The Fundamental Theorem of Arithmetic

EX 4.39 : Find the prime factorization of 980220. Sol.

$$
\begin{array}{r|rl}
2 \mid 980220 & =2^{1}(490110) \\
2 \mid 490110 & =2^{2}(\mathbf{2 4 5 0 5 5)} \\
3 \mid 245055 & =2^{2} \cdot 3^{1}(\mathbf{8 1 6 8 5}) \\
5 \mid 81685 & =2^{2} \cdot 3^{1} \cdot 5^{1}(\mathbf{1 6 3 3 7)} \\
17 \mid 16337 & =2^{2} \cdot 3^{1} \cdot 5^{1} \cdot \mathbf{1 7}^{1}(961) \\
31 \underline{961} & =2^{2} \cdot 3^{1} \cdot 5^{1} \cdot \mathbf{1 7}^{1} \cdot \mathbf{3 1}^{2}
\end{array}
$$

4.5 The Fundamental Theorem of Arithmetic

EX 4.40 : Suppose $n \in \mathbf{Z}^{+}$and

$$
10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot n=21 \cdot 20 \cdot 19 \cdot 18 \cdot 17 \cdot 16 \cdot 15 \cdot 14,
$$ $17 \mid n$ or not?

Sol.

$$
\begin{aligned}
& \because 17 \mid(21 \cdot 20 \cdot 19 \cdot 18 \cdot 17 \cdot 16 \cdot 15 \cdot 14), \\
& \therefore 17 \mid(10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot n) . \\
& \text { But } 17 \nmid 10,17 \nmid 9,17 \nmid 8,17 \nmid 7,17 ł 6,17 ł 5, \\
& 17 \nmid 4,17 \nmid 3,17 \nmid 2,
\end{aligned}
$$

\therefore By Lemma 4.3, $17 \mid n$.

4.5 The Fundamental Theorem of Arithmetic

EX 4.41: For $n \in \mathbf{Z}^{+}$, Find the number of positive divisors of \boldsymbol{n}.

$$
\begin{array}{r}
\underline{\text { ex }}: 2: 1,2 \sim 2 \\
3: 1,3 \sim 2 \\
4: 1,2,4 \sim 3
\end{array}
$$

Sol.
$\forall n \in \mathbb{Z}^{+}$, by Thm4.11, let $n=p_{1}{ }^{e(1)} p_{2}{ }^{e(2)} \ldots p_{k}{ }^{e(k)}$, where p_{i} is prime $\forall 1 \leq i \leq k, e(i)>0 \forall 1 \leq i \leq k$.
If $m \mid n$, then $m=p_{1}{ }^{f(1)} p_{2}{ }^{f(2)} \ldots p_{k}{ }^{f(k)}$ where $0 \leq f(i) \leq e(i) . \forall 1 \leq i \leq k$.
\therefore the number of positive divisors of \boldsymbol{n} is

$$
(e(1)+1)(e(2)+1) \ldots(e(k)+1)
$$

4．5 The Fundamental Theorem of Arithmetic

ex：（1） $29338848000=2^{8} 3^{5} 5^{3} 7^{3} 11$ ：
有 $(8+1)(5+1)(3+1)(3+1)(1+1)=9 \cdot 6 \cdot 4 \cdot 4 \cdot 2$
$=1728$ 個 positive divisors．
（2）其中有多少個為 $360=2^{3} \cdot 3^{2} \cdot 5$ 的倍數：
it must satisfy ： $2^{t(1)} 3^{t(2)} 5^{t(3)} 7^{t(4)} 11^{t(5)}$ where
$3 \leq t(1) \leq 8,2 \leq t(2) \leq 5,1 \leq t(3) \leq 3,0 \leq t(4) \leq 3,0 \leq t(5) \leq 1$
$\Rightarrow[(8-3)+1][(5-2)+1][(3-1)+1][(3-0)+1][(1-0)+1]$ $=6 \cdot 4 \cdot 3 \cdot 4 \cdot 2=576$ ．
（3）其中有多少個為 perfect square：
it mast satisfy： $2^{s(1)} 3^{s(2)} 5^{s(3)} 7^{s(4)} 11^{s(5)}$ where
$s(1)=0,2,4,6,8 ; s(2)=0,2,4 ; s(3)=0,2 ; s(4)=0,2 ; s(5)=0$ ．
i．e．$\left(2^{2}\right)^{r(1)}\left(3^{2}\right)^{r(2)}\left(5^{2}\right)^{r(3)}\left(7^{2}\right)^{r(4)}$ where
$0 \leq r(1) \leq 4,0 \leq r(2) \leq 2,0 \leq r(3) \leq 1,0 \leq r(4) \leq 1$,
$\Rightarrow 5 \cdot 3 \cdot 2 \cdot 2 \cdot 1=60$ ．
（c）Fall 2023，Justie Su－Tzu Juan

4.5 The Fundamental Theorem of Arithmetic

Def $:\left(\prod_{i=m}^{n}\right)=\prod_{i=m}^{n} x_{i}=x_{m} \cdot x_{m+1} \cdot \ldots \cdot x_{n}$ where $m, n \in \mathbb{Z}$. $n-m+1$ terms.

i : index, m : lower limit, $n:$ upper limit.

$$
\begin{aligned}
& \text { ex : (1) } \prod_{i=3}^{7} x_{i}=x_{3} \cdot x_{4} \cdot x_{5} \cdot x_{6} \cdot x_{7}=\Pi_{j=3}^{7} x_{j} \\
& \text { (2) } \Pi_{i=3}^{6} i=3 \cdot 4 \cdot 5 \cdot 6=6!/ 2! \\
& \text { (3) } \Pi_{i=m}^{n} i=m(m+1)(m+2) \ldots(n-1) n=\frac{n!}{(m-1)!} \\
& \forall m, n \in \mathbb{Z}^{+} \text {with } m \leq n .
\end{aligned}
$$

(4) $\prod_{i=7}^{11} x_{i}=x_{7} \cdot x_{8} \cdot x_{9} \cdot x_{10} \cdot x_{11}$

$$
=\Pi_{j=0}^{4} x_{7+j}=\prod_{j=0}^{4} x_{11-j}
$$

4.5 The Fundamental Theorem of Arithmetic

EX 4.42 : $m, n \in \mathrm{Z}^{+}$, let $m=p_{1}{ }^{e(1)} p_{2}{ }^{e(2)} \ldots p_{t}{ }^{e(t)}, n=p_{1}{ }^{f(1)} p_{2}{ }^{f(2)} \ldots$ $p_{t}{ }^{f(t)}$, where p_{i} is prime, $e(i) \geq 0, f(i) \geq 0, \forall 1 \leq i \leq t$. Let $a_{i}=a(i)=\min \{e(i), f(i)\} \equiv$ the smaller of $e(i)$ and $f(i), \forall 1 \leq i \leq t$ $b_{i}=b(i)=\max \{e(i), f(i)\} \equiv$ the larger of $e(i)$ and $f(i), \forall 1 \leq i \leq t$ then (1) $\operatorname{gcd}(m, n)=\Pi_{i=1}^{t} p_{i}^{a(i)}$, (2) $\operatorname{lcm}(m, n)=\prod_{i=1}^{t} p_{i}^{b(i)}$

$$
\begin{aligned}
\underline{\text { ex }:}: & m=491891400=2^{3} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2} \cdot 11^{1} \cdot 13^{2} \\
n & =1138845708=2^{2} \cdot 3^{2} \cdot 7^{1} \cdot 11^{2} \cdot 13^{3} \cdot 17^{1} \\
& \rightarrow p_{1}=2, p_{2}=3, p_{3}=5, p_{4}=7, p_{5}=11, p_{6}=13, p_{7}=17 . \\
& \rightarrow a_{1}=2, a_{2}=2, a_{3}=0, a_{4}=1, a_{5}=1, a_{6}=2, a_{7}=0 \\
\therefore & \operatorname{gcd}(m, n)=2^{2} \cdot 3^{2} \cdot 5^{0} \cdot 7^{1} \cdot 11^{1} \cdot 13^{2} \cdot 17^{0}=468468 . \\
\quad & \rightarrow b_{1}=3, b_{2}=3, b_{3}=2, b_{4}=2, b_{5}=2, b_{6}=3, b_{7}=1 \\
\therefore & \operatorname{lcm}(m, n)=2^{3} 3^{3} \cdot 5^{2} \cdot 7^{2} \cdot 11^{2} \cdot 13^{3} \cdot 17^{1} \\
& =1195787993400 .
\end{aligned}
$$

4.5 The Fundamental Theorem of Arithmetic

Note : Any two consecutive integers are relatively prime. (HW 19. § 4.4)

EX 4.39 : Can we find three consecutive positive integers whose product is a perfect square?
(i.e. $\exists m, n \in \mathbf{Z}^{+}$. s.t. $m(m+1)(m+2)=n^{2}$?)

Sol. (1/2)
Suppose $\exists m, n \in \mathbb{Z}^{+}$, s.t. $m(m+1)(m+2)=n^{2}$.

1. $\because \operatorname{gcd}(m, m+1)=1=\operatorname{gcd}(m+1, m+2)$,
$\therefore \forall$ prime $p_{i}, p_{i} \mid(m+1) \Rightarrow p_{i} \nmid m$ and $p_{i} \nmid(m+2)$.
$\because m(m+1)(m+2)=n^{2}, \therefore p_{i}\left|(m+1) \Rightarrow p_{i}\right| n^{2}$.
$\because n^{2}$ is a perfect square,
\therefore the exponents t_{i} of p_{i} in the prime factorizations of n^{2} must be even.

4.5 The Fundamental Theorem of Arithmetic

EX 4.39 : Can we find three consecutive positive integers whose product is a perfect square?
(i.e. $\exists m, n \in \mathbf{Z}^{+}$. s.t. $m(m+1)(m+2)=n^{2}$?)

Sol. (2/2)
\therefore the exponents t_{i} of p_{i} in the prime factorizations of \boldsymbol{n}^{2} must be even.
$\therefore m+1$ is a perfect square.
2. $\because n^{2}=m(m+1)(m+2)$ and $n^{2}, m+1$ are perfect square, $\Rightarrow m(m+2)$ is a perfect square.
but $m^{2}<m^{2}+2 m=m(m+2)<m^{2}+2 m+1=(m+1)^{2}$
$\therefore m(m+2)$ cannot be a perfect square. $\rightarrow \leftarrow$
\therefore There are no three consecutive positive integer whose product is a perfect square.

