Computer Science and Information Engineering National Chi Nan University **Discrete Mathematics** Dr. Justie Su-Tzu Juan

Chap 4 Properties the Integers: Mathematical Induction

§ 4.3 The Division Algorithm: Prime Numbers (2)

Slides for a Course Based on the Text Discrete & Combinatorial Mathematics (5th Edition) by Ralph P. Grimaldi

Ex 4.26: : : : 乘法為"連加",故考慮以"連減"來計算除法. See Fig 4.10,連減並用 Ex 4.25 (d)

Ex 4.27:利用上述 Algorithm 計算"改進位制": Write 6137 in the octal system (base 8) i.e. find $r_0, r_1, r_2, ..., r_k$ with $r_k > 0$ s.t. $(r_k...r_1r_0)_8 = 6137$ **Sol.** : $6137 = r_0 + r_1 \cdot 8 + r_2 \cdot 8^2 + \ldots + r_k \cdot 8^k = r_0 + 8(r_1 + 8(r_2 + \ldots + 8(r_k) \ldots))$ $\Rightarrow r_0 = 1$ 8 6137 Remainders and 6137 = 1 + 8.767 $=1+8[7+8(95)] \qquad \Rightarrow r_1=7 \qquad 8 \underline{767} \qquad 1(r_0)$ $=1+8[7+8(7+8\cdot11)] \implies r_2=7 \qquad 8 \ 95 \qquad 7(r_1)$ $8 | 11 - 7(r_2)$ $=1+8{7+8[7+8(3+8\cdot1)]}$ $\Rightarrow r_3=3$ $8 | 1 - 3(r_3)$ $r_4=1$ 0 $1(r_4)$ i.e. $6137 = 1 \cdot 8^4 + 3 \cdot 8^3 + 7 \cdot 8^2 + 7 \cdot 8^1 + 1 = (13771)_8$

Ex 4.28: (1/3)① 2位進: see book, Table 4.3
four bits: $0 \sim 15 = 0 \sim 2^4 - 1$
leading 1: $8 \sim 15 = 2^3 \sim 2^4 - 1$
six bits: $0 \sim 63 = 0 \sim 2^6 - 1$
n bits: $0 \sim 2^n - 1$
{
leading 0: $0 \sim 2^{n-1} - 1$
|eading 1: $2^{n-1} \sim 2^n - 1$

② eight bits = one bytes one bytes: 0 ~ 2⁸ - 1 = 0 ~ 255 two bytes: 0 ~ 2¹⁶ - 1 = 0 ~ 65535 four bytes: 0 ~ 2³² - 1 = 0 ~ 4294967295

Ex 4.28 : (2/3)	(base - 16)		
3 Table 4.4 .	Base 10	Base2	Base 16
	10	1010	Α
	11	1011	B
	12	1100	С
	13	1101	D
	14	1110	E
	15	1111	\mathbf{F}

Represent the integer 13874945 in the hexadecimal system:16 | 13874945Remainders16 | 8671841 (r_0) 16 | 541990 (r_1) 16 | 33877 (r_2) 16 | 211 $11=B(r_3)$ 16 | 133 (r_4) 0 $13=D(r_5)$ \therefore $13874945=(D3B701)_{16}$

(c) Fall 2023, Justie Su-Tzu Juan

Ex 4.28 : (3/3)**④** Converting between base 2 and base 16. (i) Convert the binary integer 01001101 to its base-16 counterpart 01001101 D **Å** $(01001101)_2 = (4D)_{16}$ (ii) Convert the two-byte number (A13F)₁₆ in base 2 $\begin{array}{c|c} A & 1 & 3 & F \\ \hline 1010 & 0001 & 0011 & 1111 \end{array}$ $(A13F)_{16} = (1010000100111111)_2$

Ex 4.29 :

- 負數如何表示: n < 0: two's complement method.
- **①** First consider the binary representation of |n|,
- **②** Replace each 0 by 1, 1 by 0; the result is called the one's complement of |n|.
- **③** Add 1 to **②**; the result is called the two's complement of |n|.
- $\underline{\text{ex}:} \quad -6: \textcircled{0} \quad 6 \rightarrow 0110$
 - $\textcircled{0}0110 \leftrightarrow 1001$
 - 31001 + 0001 = 1010
- <u>Note</u>: ① See <u>Table 4.5</u> (p. 225): 7 ~ − 8 need four-bit patterns ② Other obtained: $-8 \le n \le -1 \iff 7 \ge n^c \ge 0$
 - ③ nonnegative integer start with 0, negative integer start with 1 (first bit).
 (c) Fall 2023, Justie Su-Tzu Juan
 6

Ex 4.30 : (1/2)**①** Perform 33 – 15 in base 2, using the two's complement of 8 bits. Sol. : 33 - 15 = 33 + (-15); $33 = (00100001)_2$ $15 = (00001111)_{2}$ $\rightarrow -15 = (11110000 + 00000001)_2 = (11110001)_2$ 00100001 33 11110001 -15 nonnegative 100010010 discarded Answer = $(00010010)_2 = 18$

```
Ex 4.30 : (2/2)
215 - 33 = ?15 + (-33)
           15 = (00001111)_{2}
           33 = (00100001)_{2}
                \rightarrow -33 = (11011110 + 0000001)_2 = (11011111)_2
                                   00001111
              15
            -33
                                + 11011111
                                                   ① Take the one's complement
                                  11101110 \rightarrow (00010001)_{2}
                               negative \rightarrow (00010010)_2 = 18
                 \therefore Answer = -18
                                                    2 Add 1
③ [overflow error] ex: 117+88
                                 01110101
           117
                                                    Negative!! \rightarrow \leftarrow
                              + 01011000
          + 88
                         (c) Fall 2023. Justie Su-Tzu Juan
                                                                       8
```

Remark : In general, let $x, y \in Z^+$ with $x > y, 2^{n-2} \le x < 2^{n-1}$ Then the binary rep. for x is made up of n-1 bits $\rightarrow n$ bitsThe one's complement of $y = (2^n - 1) - y = 11...1 - y$ The two's complement of $y = (2^n - 1) - y + 1$ $\therefore x - y = x + [(2^n - 1) - y + 1] - 2^n$ removal of the extra bit

Ex 4.31 : If $n \in \mathbb{Z}^+$ and *n* is composite, then $\exists p$: a prime s.t. $p \mid n$ and $p \leq \sqrt{n}$.

Proof.

① : *n* is composite

: We can write $n = n_1 n_2$, where $1 < n_1 < n, 1 < n_2 < n$. If $(n_1 > \sqrt{n})$ and $(n_2 > \sqrt{n})$,

then $n = n_1 n_2 > (\sqrt{n}) (\sqrt{n}) = n \rightarrow \leftarrow$

 $\therefore n_1 \le \sqrt{n} \text{ or } n_2 \le \sqrt{n} \text{ , W.L.O.G. say } n_1 \le \sqrt{n} \text{ .}$

(without loss of generality)

(2) If n_1 is a prime: the result follows.

If n_1 is not a prime: by Lemma 4.1,

$$\exists a \text{ prime } p < n_1 \text{ s.t. } p \mid n_1,$$

$$\therefore p \mid n_1 \wedge n_1 \mid n,$$

$$\therefore p \mid n \text{ and } p \leq \sqrt{n}.$$

Computer Science and Information Engineering National Chi Nan University **Discrete Mathematics** Dr. Justie Su-Tzu Juan

Chap 4 Properties the Integers: Mathematical Induction § 4.4 The Greatest Common Divisor : The Euclidean Algorithm Slides for a Course Based on the Text Discrete & Combinatorial Mathematics (5th Edition) by Ralph P. Grimaldi

Def4.2 : For $a, b \in \mathbb{Z}, c \in \mathbb{Z}^+$ is said to be a *common divisor* of a and $b \equiv c \mid a \land c \mid b$.

EX4.32 : The common divisors of 42 and 70 = 1, 2, 7, 14

<u>Def4.3</u> : Let *a*, *b* ∈ Z, either $a \neq 0$ or $b \neq 0$. $c \in Z^+$ is called a greatest common divisor (G. C. D.) of *a* and *b* ≡

a) $c \mid a$ and $c \mid b$,

b) \forall common divisor *d* of *a* and *b*, *d* | *c*.

Question : ① A G. C. D. always exist? If so, how to find? ② How many G. C. D. can a pair of integers have?

G.C.D.

Thm4.6 : $\forall a, b \in \mathbb{Z}^+, \exists ! c \in \mathbb{Z}^+$ is the greatest common divisor of a, b. (denoted by gcd(a, b).) **Proof.**(1/2) \exists : Let $S = \{as + bt \mid s, t \in \mathbb{Z}, as + bt > 0\}.$ $\therefore S \neq \phi$, : by the Well-Ordering Principle, S has a least element c. b) $\therefore c \in S, \exists x, y \in \mathbb{Z}$ s.t. c = ax + by. $\forall d \in \mathbb{Z}$ with $d \mid a$ and $d \mid b$, by <u>Thm4.3(f)</u>, $d \mid ax + by$, i.e. $d \mid c$. a) If $c \nmid a$, then $\exists g, r \in \mathbb{Z}^+$ and 0 < r < c s.t. a = gc + r. $\therefore r = a - gc = a - g(ax + by)$ = (1 - gx) a + (-gy) b. $\therefore r \in S. \rightarrow \leftarrow (:: 0 < r < c).$ $\therefore c \mid a.$ In the same way, c | b.

Proof.(2/2) !: If $c_1, c_2 \in \mathbb{Z}^+$ both satisfy Def 4.3 (a), (b), then c_1, c_2 both are common divisor of a, b. by (b), ∵ c_1 as a greatest common divisor, ∴ $c_2 | c_1$; and, ∵ c_2 as a greatest common divisor, ∴ $c_1 | c_2$. ⇒ By Thm4.3(b), $c_1 = c_2 ∵ c_1, c_2 \in \mathbb{Z}^+$.

Note : ∀ a, b ∈ Z⁺:
1 gcd(a, b) = gcd(b, a).
2 gcd(a, 0) = |a|, if a ≠ 0.
3 gcd(-a, b) = gcd(a, -b) = gcd(-a, -b) = gcd(a, b).
4 gcd(0, 0) is not defined.
5 gcd(a, b) is the smallest positive integer we can write a linear combination of a and b.

<u>Def</u> : $\forall a, b \in \mathbb{Z}, a, b$ are called *relatively prime* when gcd(*a*, *b*) = 1. i.e. $\exists x, y \in \mathbb{Z}$ such that ax + by = 1.

EX4.33 : (1) gcd(42, 70) = 14 :

 $\exists x, y \in \mathbb{Z} \text{ such that } 42 \ x + 70 \ y = 14,$ $\Leftrightarrow \exists x, y \in \mathbb{Z} \text{ such that } 3 \ x + 5 \ y = 1.$ $\det x_0 = 2, y_0 = -1 : 3(2) + 5 \ (-1) = 1.$ $\det \forall k \in \mathbb{Z} : 3 \ (2 - 5 \ k) + 5 \ (-1 + 3 \ k) = 1,$ $\Leftrightarrow \forall k \in \mathbb{Z} : 42 \ (2 - 5 \ k) + 70 \ (-1 + 3 \ k) = 14.$

... the solution for *x*, *y* are not unique!

EX4.33: (2) In general, if gcd(a, b) = d: $\exists x, y \in Z \text{ s.t. } ax + by = d$, $\Leftrightarrow \exists x, y \in Z \text{ s.t. } (a/d)x + (b/d)y = 1$, $\Leftrightarrow gcd(a/d, b/d) = 1$. let x_0, y_0 be a solution, i.e. $(a/d)x_0 + (b/d)y_0 = 1$. then $\forall k \in Z : (a/d)(x_0 - (b/d)k) + (b/d)(y_0 + (a/d)k) = 1$, $\Leftrightarrow \forall k \in Z : a(x_0 - (b/d)k) + b(y_0 + (a/d)k) = d$. $\therefore \exists$ infinitely many solution for ax + by = d.

Remark: ① If $a \mid b$, then gcd(a, b) = a.② If $b \mid a$, then gcd(a, b) = b.③ Otherwise?

Solution: use *Euclidean Algorithm*.

(c) Fall 2023, Justie Su-Tzu Juan

Thm 4.7 : *Euclidean Algorithm* : If $a, b \in \mathbb{Z}^+$, then apply the division algorithm : $a = q_1 b + r_1, \qquad 0 < r_1 < b.$ $b = q_2 r_1 + r_2, \qquad 0 < r_2 < r_1.$ $r_1 = q_3 r_2 + r_3, \qquad 0 < r_3 < r_2.$ $r_{k-2} = q_k r_{k-1} + r_k, \quad 0 < r_k < r_{k-1}$ $r_{k-1} = q_{k+1} r_{k}$ Then r_k , the last nonzero remainder, = gcd (a, b). **Proof.**(1/2)(b) $\forall c \in \mathbb{Z}^+$ with $c \mid a$ and $c \mid b$, $a = q_1 b + r_1, c | r_1;$ $b = q_1 r_1 + r_2, c \mid r_2;$ $r_{k-2} = q_k r_{k-1} + r_k, \ c \mid r_k.$ (c) Fall 2023, Justie Su-Tzu Juan 17

Proof.(2/2) (a) $r_{k-1} = q_{k+1}r_k$, $r_k | r_{k-1}$ $r_{k-2} = q_k r_{k-1} + r_k$, $r_k | r_{k-2}$ $r_1 = q_3 r_2 + r_3$, $r_k | r_1$; $b = q_2 r_1 + r_2$, $r_k | b$; $a = q_1 b + r_1$, $r_k | a$. i.e. $(r_k | a) \land (r_k | b)$. By (a), (b), hence $r_k = \gcd(a, b)$.

Note : ① **Algorithm** : precise instruction, not just for one special case, input, output, same result, unambiguous manner, cannot go on indefinitely (finite instruction).

② Thm 4.5: 基於傳統才稱之為 algorithm, 二 其不具有 "precise instructions". 二 以 EX 4.36 中Fig 4.9 之procedure補足此缺點.

(c) Fall 2023, Justie Su-Tzu Juan

EX 4.34 : ① Find the greatest common divisor of 250 and 111. ② Express the result as a linear combination of 250 and 111. Sol.

(1) 250 = 2(111) + 28, 0 < 28 < 111 $111 = 3 (28) + 27, \quad 0 < 27 < 28$ $28 = 1 (27) + 1, \quad 0 < 1 < 27$ 27 = 27 (1). (the last nonzero remainder is 1) \therefore 1 = gcd(250, 111). i.e. 250, 111 are relatively prime. (2) 1 = 28 - 1 (27) = 28 - 1 [111 - 3 (28)] = (-1) 111 + 4 (28) = (-1) 111 + 4 [250 - 2 (111)]= 4 (250) - 9 (111) = 250 (4) + 111 (-9), $\Rightarrow 1 = 250 (4 - 111 k) + 111 (-9 + 250 k), \forall k \in \mathbb{Z}.$ **<u>note</u>**: gcd(-250, 111) = gcd(250, -111) = gcd(-250, -111)= gcd(250, 111) = 1.

EX 4.35 : $\forall n \in \mathbb{Z}^+$, prove 8n + 3 and 5n + 2 are relatively prime. **Proof.**

(1) when n = 1, gcd(8n + 3, 5n + 2) = gcd(11, 7) = 1. when $n \ge 2$, $\therefore 8n + 3 > 5n + 2$: 0 < 3n + 1 < 5n + 28n + 3 = 1(5n + 2) + (3n + 1), $5n + 2 = 1(3n + 1) + (2n + 1), \quad 0 < 2n + 1 < 3n + 1$ 3n + 1 = 1(2n + 1) + n, 0 < n < 2n + 12n + 1 = 2(n) + 1, 0 < 1 < nn = n(1). (the last nonzero remainder is 1) \therefore gcd(8*n* + 3, 5*n* + 2) = 1, $\forall n \ge 1$. ② 另解: (8n+3)(-5) + (5n+2)8 = -15 + 16 = 1, \therefore 1 is expressed as a linear combination of 8n + 3, 5n + 2. and no smaller positive integer can have this property, \therefore the G. C. D. of 8n + 3 and 5n + 2 is $1, \forall n \in \mathbb{Z}^+$.

EX 4.36 : Def : $\forall x, y \in \mathbb{Z}^+$, *x* mod *y* = the remainder after *x* is divided by y. ex: $7 \mod 3 = 1$; $18 \mod 5 = 3$. ex: a = 168, b = 456: $r_0 = 168$ and **procedure** gcd (a, b: positive integers) $d_0 = 456.$ begin $r := a \mod b$ $\therefore r > 0$ d := b $\therefore c_1 = 456, d_1 = 168,$ while r > 0 do $r_1 = 456 \mod 168 = 120 > 0;$ begin $c_2 = 168, d_2 = 120,$ c := d $r_2 = 168 \mod 120 = 48 > 0;$ d := r $c_3 = 120, d_3 = 48,$ $r := c \mod d$ $r_3 = 120 \mod 48 = 24 > 0;$ end **end** {gcd(a, b) is d, the last nonzero remainder} $c_4 = 48, d_4 = 24,$ $r_4 = 48 \mod 24 = 0.$ Figure 4.9 **STOP.**

21

(c) Fall 2023, Justie Su-Tzu Juan \therefore $gcd(a, b) = 24 \ (= d_4)$.

Sol.

EX 4.37 : 2 containers : 17 ounces and 55 ounces. How to use this two containers to measure exactly one ounce?

(一盘司= 0.283494 kg $17 \rightarrow 4.8 \text{ kg}$ $55 \rightarrow 15.6 \text{ kg}$)

55 = 3 (17) + 4, 0 < 4 < 17
17 = 4 (4) + 1, 0 < 1 < 4
⇒ 1 = 17 - 4 (4) = 17 - 4 [55 - 3 (17)]
= 13 (17) - 4 (55).
∴ 小的裝13次,逐次倒至大的;
清掉大的4次,最後會只剩 1 ounce.

EX 4.38 : Debug a Pascal program in 6 minutes. Debug a C++ program in 10 minutes. Work 104 minutes and doesn't waste any time. How many programs can he debug in each language? Sol.

Let $x, y \in N$, $6x + 10y = 104 \Leftrightarrow 3x + 5y = 52$ \therefore gcd(3, 5) = 1, and 3(2) + 5(-1) = 1 $\therefore 3(104) + 5(-52) = 52$ $\Rightarrow 3(104 - 5k) + 5(-52 + 3k) = 52, \forall k \in \mathbb{Z}$ $x = 104 - 5k \ge 0$ and $y = -52 + 3k \ge 0$ $\Rightarrow 17 + 1/3 = 52/3 \le k \le 104/5 = 20 + 4/5$ $\therefore \exists 3 \text{ possible solution:}$ a) (k = 18) : x = 14, y = 2. b) (k = 19) : x = 9, y = 5. c) (k = 20) : x = 4, y = 8.

<u>Thm 4.8</u> : If $a, b, c \in \mathbb{Z}^+$, the *Diophantine equation* ax + by = c has an integer solution $x = x_0, y = y_0 \Leftrightarrow \operatorname{gcd}(a, b) \mid c$.

 $\underline{\text{Def 4.4}}: \forall a, b, c \in \mathbf{Z}^+,$

c is called a *common multiple* of a, b ≡ a | c and b | c.
 c is the *least common multiple* of a, b *lcm(a, b)* ≡ the smallest of all common multiple of a, b.

 $\begin{array}{l} \underline{\text{EX 4.39}}: \text{a}) \ 12 = 3 \cdot 4, \ \therefore \ \operatorname{lcm}(3, 4) = 12 = \operatorname{lcm}(4, 3).\\ 90 = 6 \cdot 15, \ \text{but} \ \operatorname{lcm}(6, 15) \neq 90, \ \operatorname{lcm}(6, 15) = 30.\\ \text{b}) \ \forall \ n \in \mathbb{Z}^+, \ \operatorname{lcm}(1, n) = \operatorname{lcm}(n, 1) = n.\\ \text{c}) \ \forall \ a, n \in \mathbb{Z}^+, \ \operatorname{lcm}(a, na) = na.\\ \text{d}) \ \forall \ a, m, n \in \mathbb{Z}^+, \ \text{with} \ m \leq n, \ \operatorname{lcm}(a^m, a^n) = a^n,\\ \ \operatorname{gcd}(a^m, a^n) = a^m. \end{array}$

(c) Fall 2023, Justie Su-Tzu Juan

Thm 4.9 : Let $a, b, c \in \mathbb{Z}^+$, with c = lcm(a, b). If d is a common multiple of a and b, then $c \mid d$. **Proof.**

- If not, then by division algorithm, d = qc + r, where 0 < r < c.
 - $\therefore c = \operatorname{lcm}(a, b), \therefore \exists m \in \mathbb{Z}^+ \text{ s.t. } c = ma,$
 - ∴ *d* is a common multiple of *a* and *b*, ∴ $\exists n \in \mathbb{Z}^+$ s.t. *d* = *na*.

$$\Rightarrow$$
 na = d = qc + r = qma + r

$$\Rightarrow$$
 $(n - qm) a = r > 0$

In a similar way, *b* | *r*.

∴ $(a | r \text{ and } b | r) \Rightarrow r \text{ is } a \text{ common multiple of } a \text{ and } b.$ but $0 < r < c \rightarrow \leftarrow (\therefore c \text{ is the least common multiple of } a, b)$ Hence c | d.

Thm 4.10 : $\forall a, b \in \mathbb{Z}^+$, $ab = lcm(a, b) \cdot gcd(a, b)$ Proof. (reader)

EX 4.40 : a) $\forall a, b \in \mathbb{Z}^+$, of a, b are relatively prime, then lcm(a, b) = ab.

- b) \therefore gcd(168, 456) = 24 (by <u>EX 4.36</u>)
 - \therefore lcm(168, 456) = (168) (456) / 24 = 3192.

Computer Science and Information Engineering National Chi Nan University **Discrete Mathematics** Dr. Justie Su-Tzu Juan

Chap 4 Properties the Integers: Mathematical Induction § 4.5 The Fundamental Theorem of Arithmetic Slides for a Course Based on the Text Discrete & Combinatorial Mathematics (5th Edition) by Ralph P. Grimaldi

Lemma 4.2 : If $a, b \in \mathbb{Z}^+$ and p is a prime, $p \mid ab \Rightarrow p \mid a \text{ or } p \mid b$. Proof.

> If $p \mid a$, then we are finished. If $p \nmid a$: $\therefore p$ is prime, $\therefore \operatorname{gcd}(p, a) = 1$. i.e. $\exists x, y \in \mathbb{Z}$ s.t. px + ay = 1. Then for p(bx) + (ab)y = b: $\therefore p \mid p \land p \mid ab$, $\therefore p \mid p(bx) \land p \mid (ab)y$. (by Thm 4.3(d)) $\therefore [p(bx) + (ab)y = b] \land p \mid p(bx) \land p \mid (ab)y$, $\therefore p \mid b$. (by Thm 4.3(e))

$\begin{array}{l} \underline{\text{Lemma 4.3}}: \text{Let } a_i \in \mathbb{Z}^+, \forall i \in \{1, 2, ..., n\}.\\ [(p \text{ is prime}) \land (p \mid a_1 a_2 \ldots a_n)] \Rightarrow \exists i \in \{1, 2, ..., n\}, p \mid a_i.\\ \\ \text{Proof. (reader)} \end{array}$

(c) Fall 2023, Justie Su-Tzu Juan

EX 4.38 : Show that $\sqrt{2}$ is irrational. (Aristotle (384 – 322 B. C.)) **Proof. Suppose** $\sqrt{2}$ is not irrational. say $\sqrt{2} = \frac{c}{k}$, $\therefore \sqrt{2} = \frac{c}{k}, \therefore 2 = \frac{a^2}{b^2} \Rightarrow 2b^2 = a^2 \Rightarrow 2|a^2 \Rightarrow 2|a$ (by Lemma 4.2) Let a = 2c for some $c \in \mathbb{Z}^+$. $\therefore 2b^2 = a^2, \therefore 2b^2 = 4c^2 \Rightarrow 2c^2 = b^2 \Rightarrow 2|b^2 \Rightarrow 2|b$ (by Lemma 4.2) $\therefore 2|a \wedge 2|b \Rightarrow 2|$ gcd(a, b), i.e. gcd(a, b) $\ge 2 \rightarrow \leftarrow$ $\therefore \sqrt{2}$ is irrational.

Note : \sqrt{p} is irrational for every prime *p* (exercise)

<u>Thm 4.11</u> : *The Fundamental Theorem of Arithmetic* ∀ n > 1, n ∈ Z⁺, n can be written as a product of primes uniquely, up to the order of the primes.

(c) Fall 2023, Justie Su-Tzu Juan

 $\forall n > 1, n \in \mathbb{Z}^+$, *n* can be written as a product of primes uniquely, **4.5** The up to the order of the primes.

Proof. (1/3)

- **∃:** If not exist such product :
 - Let m > 1 be the smallest integer

not expressible as a product of primes.

- : *m* is not a prime, (o.w. prime is a product of one factor $\rightarrow \leftarrow$)
- : Let $m = m_1 m_2$, where $1 < m_1 \le m_2 < m$.
- $\therefore m_1 < m, m_2 < m,$
- $\therefore m_1, m_2$ can be written as product of primes.
- $\therefore m = m_1 m_2$
- \therefore we can obtain a prime factorization of m. $\rightarrow \leftarrow$

 $\forall n > 1, n \in \mathbb{Z}+, n$ can be written as a product of primes uniquely, **4.5** The up to the order of the primes.

Proof. (2/3)

! : Prove by induction on *n* :

Let *S*(*n*) : *n* have a unique prime factorization

n = 2 : *S*(2) is true.

Suppose n = 2, 3, 4, ..., h - 1, S(n) is true.

Now, consider n = h:

Suppose $h = p_1^{s(1)} p_2^{s(2)} \dots p_k^{s(k)} = q_1^{t(1)} q_2^{t(2)} \dots q_r^{t(r)}$. Where p_i, q_j are primes, $\forall 1 \le i \le k, 1 \le j \le r$. and $p_1 < p_2 < \dots < p_k$ and $q_1 < q_2 < \dots < q_r$. and $s(i) \in \mathbb{Z}^+, t(j) \in \mathbb{Z}^+, \forall 1 \le i \le k, 1 \le j \le r$. 4.5 The $\forall n > 1, n \in \mathbb{Z}^+$, *n* can be written as a product of primes uniquely, up to the order of the primes.

Proof. (3/3)

- : $p_1 | h, ..., p_1 | q_1^{t(1)} q_2^{t(2)} ..., q_r^{t(r)}$. By Lemma 4.3, $\exists 1 \le j \le r, p_1 | q_i$.
- $\therefore p_1, q_j \text{ are primes.} \qquad \therefore p_1 = q_j.$ In the same way, $\therefore q_1 \mid h \Rightarrow \exists 1 \le e \le k, q_1 = p_e.$ $\Rightarrow p_1 \le p_e = q_1 \le q_j = p_1, \qquad e = j = 1, \text{ i.e. } p_1 = q_1.$ Let $n_1 = h \mid p_1 = p_1^{s(1)-1} p_2^{s(2)} \dots p_k^{s(k)} = q_1^{t(1)-1} q_2^{t(2)} \dots q_r^{t(r)}.$ $\therefore n_1 < h, \qquad \text{by I. H.:}$
 - $k = r, p_i = q_i \forall 1 \le i \le k,$ $s(1) - 1 = t(1) - 1, \text{ and } s(i) = t(i) \forall 2 \le i \le k = r.$
- $\therefore s(1) 1 = t(1) 1 \Longrightarrow s(1) = t(1).$
- \Rightarrow The prime factorization of *h* is unique.

EX 4.39 : Find the prime factorization of 980220.

 $2 | 980220 = 2^1 (490110)$

Sol.

- $2\overline{490110} = 2^2 (245055)$
- $3 \ | 245055 \ = 2^2 \cdot 3^1 \ (81685)$
 - $581685 = 2^2 \cdot 3^1 \cdot 5^1 (16337)$
- $17\overline{16337} = 2^2 \cdot 3^1 \cdot 5^1 \cdot 17^1 (961)$
 - $31 \quad 961 = 2^2 \cdot 3^1 \cdot 5^1 \cdot 17^1 \cdot 31^2$ 31

EX 4.40 : Suppose $n \in \mathbb{Z}^+$ and $10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot n = 21 \cdot 20 \cdot 19 \cdot 18 \cdot 17 \cdot 16 \cdot 15 \cdot 14$, 17 | *n* or not?

Sol.

: $17 | (21 \cdot 20 \cdot 19 \cdot 18 \cdot 17 \cdot 16 \cdot 15 \cdot 14),$

 $\therefore 17 \mid (10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot n).$

But 17 \ 10, 17 \ 9, 17 \ 8, 17 \ 7, 17 \ 6, 17 \ 5,

17 ** 4, 17 ** 3, 17 ** 2,

... By <u>Lemma 4.3</u>, 17 | *n* .

EX 4.41 : For $n \in \mathbb{Z}^+$, Find the number of positive divisors of *n*. $\underline{\mathbf{ex}}: 2: 1, 2 \sim 2$ $3:1, 3 \sim 2$ $4:1,2,4\sim 3$ Sol. $\forall n \in \mathbb{Z}^+$, by <u>Thm4.11</u>, let $n = p_1^{e(1)} p_2^{e(2)} \dots p_k^{e(k)}$, where p_i is prime $\forall 1 \le i \le k$, $e(i) > 0 \forall 1 \le i \le k$. If $m \mid n$, then $m = p_1^{f(1)} p_2^{f(2)} \dots p_k^{f(k)}$ where $0 \le f(i) \le e(i)$. $\forall 1 \le i \le k$. : the number of positive divisors of *n* is $(e(1) + 1) (e(2) + 1) \dots (e(k) + 1).$

ex : (1) $29338848000 = 2^8 3^5 5^3 7^3 11$: 有(8+1)(5+1)(3+1)(3+1)(1+1)=9·6·4·4·2 = 1728 個 positive divisors. ② 其中有多少個為 360 = 2³ · 3² · 5 的倍數: it must satisfy : $2^{t(1)} 3^{t(2)} 5^{t(3)} 7^{t(4)} 11^{t(5)}$ where $3 \le t(1) \le 8, 2 \le t(2) \le 5, 1 \le t(3) \le 3, 0 \le t(4) \le 3, 0 \le t(5) \le 1$ $\Rightarrow [(8-3)+1][(5-2)+1][(3-1)+1][(3-0)+1][(1-0)+1]]$ $= 6 \cdot 4 \cdot 3 \cdot 4 \cdot 2 = 576.$ ③其中有多少個為 perfect square: it mast satisfy : $2^{s(1)} 3^{s(2)} 5^{s(3)} 7^{s(4)} 11^{s(5)}$ where s(1) = 0, 2, 4, 6, 8; s(2) = 0, 2, 4; s(3) = 0, 2; s(4) = 0, 2; s(5) = 0.i.e. $(2^2)^{r(1)} (3^2)^{r(2)} (5^2)^{r(3)} (7^2)^{r(4)}$ where $0 \le r(1) \le 4, 0 \le r(2) \le 2, 0 \le r(3) \le 1, 0 \le r(4) \le 1,$ \Rightarrow 5 · 3 · 2 · 2 · 1 = 60.

$$\underline{\text{Def}}:(\prod_{i=m}^{n}) = \prod_{i=m}^{n} x_i = \underbrace{x_m \cdot x_{m+1} \cdot \ldots \cdot x_n}_{n-m+1 \text{ terms.}} \text{ where } m, n \in \mathbb{Z}.$$

i : *index*, *m* : *lower limit*, *n* : *upper limit*.

$$\underbrace{ex}: (1) \ \Pi_{i=3}^{7} x_{i} = x_{3} \cdot x_{4} \cdot x_{5} \cdot x_{6} \cdot x_{7} = \Pi_{j=3}^{7} x_{j} \\
(2) \ \Pi_{i=3}^{6} i = 3 \cdot 4 \cdot 5 \cdot 6 = 6! / 2! \\
(3) \ \Pi_{i=m}^{n} i = m \ (m+1) \ (m+2) \ \dots \ (n-1) \ n = \frac{n!}{(m-1)!} \\
\forall \ m, n \in \mathbb{Z}^{+} \text{ with } m \leq n. \\
(4) \ \Pi_{i=7}^{11} x_{i} = x_{7} \cdot x_{8} \cdot x_{9} \cdot x_{10} \cdot x_{11} \\
= \Pi_{j=0}^{4} x_{7+j} = \Pi_{j=0}^{4} x_{11-j}$$

 $\begin{array}{l} \underline{\mathbf{EX}\ 4.42} : m, n \in \mathbf{Z}^+, \mbox{ let } m = p_1^{e(1)} p_2^{e(2)} \dots p_t^{e(t)}, n = p_1^{f(1)} p_2^{f(2)} \dots \\ p_t^{f(t)}, \mbox{ where } p_i \mbox{ is prime, } e(i) \ge 0, f(i) \ge 0, \ \forall \ 1 \le i \le t. \\ \mbox{ Let } a_i = a(i) = \min\{e(i), f(i)\} \equiv \mbox{ the smaller of } e(i) \mbox{ and } f(i), \ \forall 1 \le i \le t \\ b_i = b(i) = \max\{e(i), f(i)\} \equiv \mbox{ the larger of } e(i) \mbox{ and } f(i), \ \forall 1 \le i \le t \\ \mbox{ then } (1) \mbox{ gcd}(m, n) = \Pi_{i=1}^t p_i^{a(i)}, \ (2) \mbox{ lcm}(m, n) = \Pi_{i=1}^t p_i^{b(i)} \end{array}$

$$\underbrace{ex}: m = 491891400 = 2^3 \cdot 3^3 \cdot 5^2 \cdot 7^2 \cdot 11^1 \cdot 13^2 \\ n = 1138845708 = 2^2 \cdot 3^2 \cdot 7^1 \cdot 11^2 \cdot 13^3 \cdot 17^1 \\ \rightarrow p_1 = 2, p_2 = 3, p_3 = 5, p_4 = 7, p_5 = 11, p_6 = 13, p_7 = 17. \\ \rightarrow a_1 = 2, a_2 = 2, a_3 = 0, a_4 = 1, a_5 = 1, a_6 = 2, a_7 = 0 \\ \therefore gcd(m, n) = 2^2 \cdot 3^2 \cdot 5^0 \cdot 7^1 \cdot 11^1 \cdot 13^2 \cdot 17^0 = 468468. \\ \rightarrow b_1 = 3, b_2 = 3, b_3 = 2, b_4 = 2, b_5 = 2, b_6 = 3, b_7 = 1 \\ \therefore lcm(m, n) = 2^3 \cdot 3^3 \cdot 5^2 \cdot 7^2 \cdot 11^2 \cdot 13^3 \cdot 17^1 \\ = 1195787993400.$$

Note : Any two consecutive integers are relatively prime. (<u>HW 19</u>. § 4.4)

EX 4.39 : Can we find three consecutive positive integers whose product is a perfect square?

(i.e. $\exists m, n \in \mathbb{Z}^+$. s.t. $m(m + 1)(m + 2) = n^2$?)

Sol. (1/2)

- Suppose ∃ *m*, *n* ∈ Z^+ , s.t. $m(m + 1)(m + 2) = n^2$.
- 1. : gcd(m, m + 1) = 1 = gcd(m + 1, m + 2),
 - $\therefore \forall \text{ prime } p_i, p_i \mid (m+1) \Rightarrow p_i \nmid m \text{ and } p_i \nmid (m+2).$
 - $\therefore m(m+1)(m+2) = n^2, \therefore p_i \mid (m+1) \Longrightarrow p_i \mid n^2.$
 - \therefore n^2 is a perfect square,
 - . the exponents t_i of p_i in the prime factorizations of n^2 must be even.

EX 4.39 : Can we find three consecutive positive integers whose product is a perfect square?

(i.e. $\exists m, n \in \mathbb{Z}^+$. s.t. $m (m + 1)(m + 2) = n^2$?)

Sol. (2/2)

- : the exponents t_i of p_i in the prime factorizations of n^2 must be even.
- $\therefore m + 1$ is a perfect square.

2. : n² = m(m + 1)(m + 2) and n², m + 1 are perfect square,
⇒ m(m + 2) is a perfect square.
but m² < m² + 2 m = m(m + 2) < m² + 2 m + 1 = (m + 1)²
∴ m(m + 2) cannot be a perfect square. →
∴ There are no three consecutive positive integer whose

product is a perfect square.