Computer Science and Information Engineering

 National Chi Nan University
Discrete Mathematics

Dr. Justie Su-Tzu Juan

Chap 4 Properties the Integers:

 Mathematical Induction § 4.2 Recursive Definitions (2)Slides for a Course Based on the Text Discrete \& Combinatorial Mathematics (5 $5^{\text {th }}$ Edition) by Ralph P. Grimaldi

4.2 Recursive Definitions

EX4.17: [U]

Consider $A_{1}, A_{2}, \ldots, A_{n+1}$, where $A_{i} \subseteq \mathcal{U} \forall 1 \leq i \leq n+1$, we define their union recursively:

1) The union of A_{1}, A_{2} is $A_{1} \cup A_{2}$.
2) The union of $A_{1}, A_{2}, \ldots A_{n}, A_{n+1}$, for $n \geq 2$ is

$$
A_{1} \cup A_{2} \cup \ldots \cup A_{n} \cup A_{n+1}=\left(A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right) \cup A_{n+1} .
$$

ex : "Generalized Associative Law for \cup ": If $n, r \in \mathbf{Z}^{+}$, with $n \geq \mathbf{3}$ and $\mathbf{1} \leq r<n$, then $S(n)=\left(A_{1} \cup A_{2} \cup \ldots \cup A_{r}\right) \cup\left(A_{r+1} \cup \ldots \cup A_{n}\right)$

$$
=A_{1} \cup \ldots \cup A_{r} \cup A_{r+1} \cup \ldots \cup A_{n} .
$$

Where $A_{i} \subseteq \mathcal{U}$ for all $1 \leq i \leq n$.

4.2 Recursive Definitions

Proof.

(1) $S(3)$ is true from the associative law of \cup.
(2) Assuming the truth of $S(k)$ for some $k \in \mathbf{Z}^{+}$, where $k \geq 3$ and $1 \leq r<k$.
Now consider $n=k+1$:
case 1. $r=k$:

$$
\left(A_{1} \cup A_{2} \cup \ldots \cup A_{k}\right) \cup A_{k+1}=A_{1} \cup A_{2} \cup \ldots \cup A_{k} \cup A_{k+1}
$$

\because The given recursive definition.
case 2. $1 \leq r<k$:

$$
\left(A_{1} \cup A_{2} \cup \ldots \cup A_{r}\right) \cup\left(A_{r+1} \cup \ldots \cup A_{k} \cup A_{k+1}\right)
$$

$$
=\left(A_{1} \cup A_{2} \cup \ldots \cup A_{r}\right) \cup\left[\left(A_{r+1} \cup \ldots \cup A_{k}\right) \cup A_{k+1}\right]
$$

$$
=\left[\left(A_{1} \cup \ldots \cup A_{r}\right) \cup\left(A_{r+1} \cup \ldots \cup A_{k}\right)\right] \cup A_{k+1}
$$

$$
(\text { by I. } H .)=\left(A_{1} \cup \ldots \cup A_{r} \cup A_{r+1} \cup \ldots \cup A_{k}\right) \cup A_{k+1}
$$

$$
=A_{1} \cup \ldots \cup A_{r} \cup A_{r+1} \cup \ldots \cup A_{k} \cup A_{k+1}
$$

\therefore By the Principle of Mathematical Induction, $S(n)$ is true for all integer $n \geq 3$.
(c) Fall 2023, Justie Su-Tzu Juan

Note : [$\cap]$ Consider $A_{1}, A_{2}, \ldots, A_{n+1}$, where

$$
A_{i} \subseteq U \forall 1 \leq i \leq n+1,
$$

we define their intersection recursively:

1) The intersection of A_{1}, A_{2} is $A_{1} \cap A_{2}$.
2) For $n \geq 2$, the intersection of $A_{1}, A_{2}, \ldots, A_{n}, A_{n+1}$ is

$$
\begin{aligned}
& A_{1} \cap A_{2} \cap \ldots \cap A_{n} \cap A_{n+1} \\
&=\left(A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right) \cap A_{n+1} .
\end{aligned}
$$

4.2 Recursive Definitions

EX4.18 : Let $n \in Z^{+}$Where $n \geq 2$, and let $A_{1}, A_{2}, \ldots, A_{n}, \subseteq \mathcal{U}$ then $\overline{A_{1} \cap A_{2} \cap \ldots \cap A_{n}}=\overline{A_{1}} \cup \overline{A_{2}} \cup \ldots \cup \overline{A_{n}}$

Proof.

Let $S(n)=\overline{A_{1} \cap A_{2} \cap \ldots \cap A_{n}}=\overline{A_{1}} \cup \overline{A_{2}} \cup \ldots \cup \overline{A_{n}}, n \in \mathbb{Z}^{+}$.
(1) $n=2, \overline{A_{1} \cap A_{2}}=\overline{A_{1}} \cup \overline{A_{2}}, \because$ the second of DeMorgan's Laws.
(2) Assume for some $n=k$, where $k \geq 2$:

$$
\overline{A_{1} \cap A_{2} \cap \ldots \cap A_{k}}=\overline{A_{1}} \cup \bar{A}_{2} \cup \ldots \cup \overline{A_{k}}
$$

Now consider $n=k+1(\geq 3)$:

$$
\begin{aligned}
& \overline{A_{1} \cap A_{2} \cap \ldots \cap A_{k} \cap A_{k+1}}=\left(\overline{\left.A_{1} \cap A_{2} \cap \ldots \cap A_{k}\right) \cap A_{k+1}}\right. \\
& \left.=\overline{\left(A_{1} \cap A_{2} \cap \ldots \cap A_{k}\right.}\right) \cup \overline{A_{k+1}}=\left(\overline{A_{1}} \cup \overline{A_{2}} \cup \ldots \cup \overline{A_{k}}\right) \cup \overline{A_{k+1}} \\
& =\overline{A_{1}} \cup \overline{A_{2}} \cup \ldots \cup \overline{A_{k}} \cup \overline{A_{k+1}} \\
& \text { (by I. H.) }
\end{aligned}
$$

\therefore By the Principle of Mathematical Induction,
The generalized DeMorgan Law for $n \geq 2$ obtained.

4.2 Recursive Definitions

Remark : +, • can also be defined in this way. In fact, EX4.1, EX4.3 already used.
ex : (1) Define the sequence of harmonic numbers H_{1}, H_{2}, \ldots, by

1) $H_{1}=1$; and
2) $\forall n \geq 1, H_{n+1}=H_{n}+\left(\frac{1}{n+1}\right)$
(2) Define n ! by
3) $0!=1$; and
4) $\forall n \geq 0,(n+1)!=(n+1) \cdot n$!
(3) The sequence $b_{n}=2 n, n \in \mathbf{N}$ can be defined recursively by
5) $b_{0}=0$; and
6) $\forall n \geq 0, b_{n+1}=b_{n}+2$
(c) Fall 2023, Justie Su-Tzu Juan

4.2 Recursive Definitions

EX4.19 : The Fibonacci numbers may be defined recursively by

1) $F_{0}=0, F_{1}=1$; and
2) $\boldsymbol{F}_{n}=F_{n-1}+F_{n-2}$, for $n \in \mathbf{Z}^{+}$with $n \geq 2$.

$$
F_{2}=F_{1}+F_{0}=1+0=1
$$

$$
F_{3}=F_{2}+F_{1}=1+1=2
$$

$$
F_{4}=F_{3}+F_{2}=2+1=3
$$

$$
F_{5}=F_{4}+F_{3}=3+2=5
$$

Observation:

$$
\begin{aligned}
& F_{0}^{2}+F_{1}^{2}+F_{2}^{2}+F_{3}^{2}+F_{4}^{2} \\
& =0^{2}+1^{2}+1^{2}+2^{2}+3^{2}=15=3 \cdot 5 \\
& F_{0}^{2}+F_{1}^{2}+F_{2}^{2}+F_{3}^{2}+F_{4}^{2}+F_{5}^{2} \\
& =0^{2}+1^{2}+1^{2}+2^{2}+3^{2}+5^{2}=40=5 \cdot 8
\end{aligned}
$$

4.2 Recursive Definitions

ex: $\forall n \in \mathbf{Z}^{+}, \Sigma_{i=0, n} F_{i}^{2}=F_{n} \cdot F_{n+1}$
Proof.
(1) For $n=1, \Sigma_{i=0,1} F_{i}^{2}=F_{0}{ }^{2}+F_{1}{ }^{2}=0^{2}+1^{2}=1=1 \cdot 1=F_{1} \cdot F_{2}$

The conjecture is true.
(2) Assume $n=k, \Sigma_{i=0, k} F_{i}^{2}=F_{k} \cdot F_{k+1}$.

Now, consider $n=k+1(\geq 2)$:

$$
\begin{aligned}
\Sigma_{i=0, k+1} F_{i}^{2} & =\Sigma_{i=0, k} F_{i}^{2}+F_{k+1}^{2}=\left(F_{k} \cdot F_{k+1}\right)+F_{k+1}^{2}(\text { by I. H. }) \\
& =F_{k+1} \cdot\left(F_{k}+F_{k+1}\right)=F_{k+1} \cdot F_{k+2}
\end{aligned}
$$

\therefore The truth of the case for $n=k+\mathbf{1}$ follows
from the case for $n=k$.
By the Principle of Mathematical Induction, the given conjecture is true for all $n \in \mathbf{Z}^{+}$.

4.2 Recursive Definitions

EX4.20 : Lucas numbers: defined recursively by

1) $L_{0}=2, L_{1}=1$; and
2) $L_{n}=L_{n-1}+L_{n-2}$, for $n \in \mathbf{Z}^{+}$with $n \geq 2$. $2,1,3,4,7,11,18,29, \ldots$

$$
\underline{\text { ex }: ~} \forall n \in \mathbb{Z}^{+}, L_{n}=F_{n-1}+F_{n+1}
$$

Proof.(1/2)
(1) when $n=1$ and $n=2$:

$$
\begin{aligned}
& L_{1}=1=0+1=F_{0}+F_{2}=F_{1-1}+F_{1+1}, \text { and } \\
& L_{2}=3=1+2=F_{1}+F_{3}=F_{2-1}+F_{2+1},
\end{aligned}
$$

\therefore The result is true for $n=1$ and $n=2$.

4.2 Recursive Definitions

Proof.(2/2)

(2) Assume $L_{n}=F_{n-1}+F_{n+1}$

$$
\forall n=1,2, \ldots, k-1, k, \text { where } k \geq 2
$$

and then consider L_{k+1} :

$$
\begin{aligned}
L_{k+1} & =L_{k}+L_{k-1}=\left(F_{k-1}+F_{k+1}\right)+\left(F_{k-2}+F_{k}\right)(\text { by I. H. }) \\
& =\left(F_{k-1}+F_{k-2}\right)+\left(F_{k+1}+F_{k}\right) \\
& =F_{k}+F_{k+2}=F_{(k+1)-1}+F_{(k+1)+1}
\end{aligned}
$$

\therefore By the Principle of Strong Mathematical Induction,

$$
L_{n}=F_{n-1}+F_{n+1} \forall n \in \mathbb{Z}^{+} .
$$

§ 4.2 Recursive Definitions

EX4.21 : (1) Define the binomial coefficients recursively by :

$$
\left\{\begin{array}{l}
\binom{0}{0}=1 ;\left({ }_{r}^{n}\right)=0, \quad \text { if } r<0 \text { or } r>n ; \\
\left({ }_{r}^{n+1}\right)=\left({ }_{r}{ }^{n}\right)+\left({ }_{r-1}{ }^{n}\right), \text { if } n \geq r \geq 0
\end{array}\right.
$$

(2) For $m \in \mathbf{Z}^{+}, k \in \mathbf{N}$, the Eulerian number $a_{m, k}$ are defined recursively by

$$
\left\{\begin{array}{l}
a_{0,0}=1 ; a_{m, k}=0, \text { if } k<0 \text { or } k \geq m ; \\
a_{m, k}=(m-k) a_{m-1, k-1}+(k+1) a_{m-1, k}, \text { if } 0 \leq k \leq m-1 .
\end{array}\right.
$$

($m=1$)	$a_{1,0} 1$					$1=1$!
($m=2$)	$a_{2,0} 1^{a_{2,1} \mathbf{1}}$					$2=2!$
($m=3$)	$\begin{array}{llll}a_{3,0} & 1 & 4 & 1\end{array}$					$6=3$!
($m=4$)			1111			$24=4!$
$(m=5)$	$a_{5,0} 1$	26	$66^{a_{5,3}} 26$		1	$120=5$!

§4.2 Recursive Definitions

Conjecture : $\Sigma_{k=0}^{m-1} a_{m, k}=m!\forall m \in \mathbf{Z}^{+}$
Proof.
(1) For $1 \leq m \leq 5$, it's true.
(2) Assume the result is true for some fixed $m(\geq 1)$

Now, consider $m+1$:

$$
\begin{aligned}
\Sigma_{k=0}^{m} & a_{m+1, k}=\sum_{k=0}^{m}\left[(m-k+1) a_{m, k-1}+(k+1) a_{m, k}\right] \\
= & {\left[(m+1) a_{m,-1}+a_{m, 0}\right]+\left[m a_{m, 0}+2 a_{m, 1}\right]+} \\
& {\left[(m-1) a_{m, 1}+3 a_{m, 2}\right]+\ldots+\left[3 a_{m, m-3}+(m-1) a_{m, m-2}\right]+} \\
& {\left[2 a_{m, m-2}+m a_{m, m-1}\right]+\left[a_{m, m-1}+(m+1) a_{m, m}\right] }
\end{aligned}
$$

$$
\begin{aligned}
& \because a_{m,-1}=0=a_{m, m} \\
& \therefore \Sigma_{k=0}^{m} a_{m+1, k}=\left[a_{m, 0}+m a_{m, 0}\right]+\left[2 a_{m, 1}+(m-1) a_{m, 1}\right] \\
& \quad+\ldots+\left[(m-1) a_{m, m-2}+2 a_{m, m-2}\right]+\left[m a_{m, m-1}+a_{m, m-1}\right] \\
& \quad=(m+1) \sum_{k=0}^{m-1} a_{m, k}=(m+1) m!=(m+1)!(b y I . H .)
\end{aligned}
$$

\therefore the result is true for all $m \geq 1$ by the Principle of Math. Ind.

§ 4.2 Recursive Definitions

EX4.22 : [implicit] Define the set X recursively by

1) $1 \in X$; and
2) For each $a \in X, a+2 \in X$

Claim that X consists (precisely) of all positive odd integers
Proof.(1/2)
Let $Y=\{2 n+1 \mid n \in \mathbf{N}\}$.
Claim : $X=Y$ (i.e. $X \subseteq Y$ and $Y \subseteq X)$
Proof.
(1) $Y \subseteq X: \forall a \in Y \Rightarrow a=2 n+1$ for some $n(\sim a \in X)$
let $S(n): 2 n+1 \in X, \forall n \in N$.
i) $S(0): \mathbf{2} \cdot \mathbf{0 + 1}=\mathbf{1} \in X$ is true.
ii) Assume $S(k)$ is true for some $k \geq 0$, i.e. $2 k+1$ is an element in X.

§4.2 Recursive Definitions

Proof.(2/2)

By (2) of the recursive definition of X;
$(2 k+1)+2=2(k+1)+1 \in X$
$\therefore S(k+1)$ is also true.
$\therefore S(n)$ is true by the Principle of Mathematical Induction for all $n \in \mathbf{N}$.
(2) $X \subseteq Y:(1): \mathbf{1}=\mathbf{2} \cdot \mathbf{0}+\mathbf{1} \in Y$.
(2) : If $b \in X$ and $b \in Y$ is true, then there exist some $k \geq 0$, s.t. $b=2 k+1$.
Consider $b+2 \in X$,

$$
b+2=(2 k+1)+2=2(k+1)+1 \in Y
$$

$\therefore b \in Y$ by the Principle of Mathematical
Induction for all $b \in X$. So, $X \subseteq Y$.
\therefore By (1), (2) $X \subseteq Y$ and $Y \subseteq X \Rightarrow X=Y$.
(c) Fall 2023, Justie Su-Tzu Juan

Computer Science and Information Engineering

 National Chi Nan University
Discrete Mathematics Dr. Justie Su-Tzu Juan

Chap 4 Properties the Integers: Mathematical Induction

§ 4.3 The Division Algorithm: Prime Numbers
Slides for a Course Based on the Text
Discrete \& Combinatorial Mathematics (5 ${ }^{\text {th }}$ Edition) by Ralph P. Grimaldi

§ 4.3 The Division Algorithm: Prime Numbers

Def 4.1 : $a, b \in \mathrm{Z}$ and $b \neq 0$:
(1) b divides a, write $b \mid a \equiv \exists n \in Z$ s.t. $a=b n$.
(2) b is a divisor of \boldsymbol{a}.
(3) a is a multiple of b.

Note : (1) $\because \forall a, b \in Z, a b=0 \Rightarrow$ either $a=0$ or $b=0$.
\therefore say "Z has no proper divisor of 0 ".
(2) cancel: ex: $2 x=2 y \Rightarrow 2(x-y)=0$

$$
\begin{aligned}
& \Rightarrow 2=0 \text { or } x-y=0 \\
& \Rightarrow x=y .
\end{aligned}
$$

$$
(\operatorname{not} \times 1 / 2, \because 1 / 2 \notin \mathrm{Z})
$$

(c) Fall 2023, Justie Su-Tzu Juan

§4.3 The Division Algorithm: Prime Numbers

Thm 4.3: $\forall a, b, c \in Z$
a) $1 \mid a$ and $a \mid 0$.
b) $[(a \mid b) \wedge(b \mid a)] \Rightarrow a= \pm b$.
c) $[(a \mid b) \wedge(b \mid c)] \Rightarrow a \mid c$
d) $a|b \Rightarrow a| b x$ for all $x \in Z$
e) $\forall x, y, z \in Z$ s.t. $x=y+z$
(1) $[(a \mid x) \wedge(a \mid y)] \Rightarrow a \mid z$
(2) $[(a \mid y) \wedge(a \mid z)] \Rightarrow a \mid x$
(3) $[(a \mid x) \wedge(a \mid z)] \Rightarrow a \mid y$
f) $[(a \mid b) \wedge(a \mid c)] \Rightarrow a \mid(b x+c y)$ for all $x, y \in Z$

Def : $b x+c y$ is called a linear combination of b and c.
g) For $1 \leq i \leq n$, let $c_{i} \in Z$
$\left[\forall 1 \leq i \leq n,\left(a \mid c_{i}\right)\right] \Rightarrow a \mid\left(c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}\right)$, where $x_{i} \in \mathrm{Z}$ for all $1 \leq i \leq n$.

§ 4.3 The Division Algorithm: Prime Numbers

f) $[(a \mid b) \wedge(a \mid c)] \Rightarrow a \mid(b x+c y)$ for all $x, y \in Z$

Proof. (f)
$[(a \mid b) \wedge(a \mid c)] \Rightarrow(b=a m) \wedge(c=a n)$ for some $m, n \in \mathbb{Z}$
$\therefore b x+c y=(a m) x+(a n) y=a(m x+n y)$ with $m x+n y \in Z$ i.e. $a \mid(b x+c y)$

Ex 4.23: $\exists x, y, z \in Z$ s.t. $6 x+9 y+15 z=107$?
Sol.

$$
\text { by Thm } 4.3(\mathrm{~g}), \because[(3 \mid 6) \wedge(3 \mid 9) \wedge(3 \mid 15)] \Rightarrow 3 \mid 107
$$

\therefore there do not exist such integer x, y, z.

§4.3 The Division Algorithm: Prime Numbers

Ex 4.24 : Let $a, b \in Z$ so that $2 a+3 b$ is a multiple of 17. Prove that 17 divides $9 a+5 b$.
Proof.

$$
\begin{array}{ll}
\because 17 \mid(2 a+3 b) & \Rightarrow 17 \mid(-4)(2 a+3 b) \\
\because 17 \mid(17 a+17 b) & \Rightarrow 17 \mid[(17 a+17 b)+(-4)(2 a+3 b)] \\
& \Rightarrow 17 \mid[(17-8) a+(17-12) b] \\
& \Rightarrow 17 \mid(9 a+5 b) .
\end{array}
$$

Def : (1) Number theory: Using integer division in mathematics.
(2) An integer $n \in Z^{+}, n>1$, is called a prime. $\equiv n$ has exactly two positive divisors, 1 and n itself.
(3) All other positive integers ($>1 \wedge$ not prime) are called composite.

4.3 The Division Algorithm: Prime Numbers

Lemma 4.1 : $n \in Z^{+}$and n is composite $\Rightarrow \exists$ prime p s.t. $p \mid n$.
Proof.
Let $S=\{x \mid x$ is composite and x have no prime divisor. $\}$ If $S \neq \phi$, By the Well-Ordering Principle, S has a least element m.
$\because m \in S$
$\therefore m$ is composite and m have no prime divisor.
$\because m$ is composite,
$\therefore \exists m_{1}, m_{2} \in Z^{+}$with $1<m_{1}<m, 1<m_{2}<m$

$$
\text { s.t. } m=m_{1} \cdot m_{2}
$$

But $\because m_{1} \notin S \quad \therefore m_{1}$ is prime or divisible by a prime Consequently, \exists prime p s.t. $p \mid m \rightarrow \leftarrow$
$\therefore S=\phi$.

4.3 The Division Algorithm: Prime Numbers

Thm 4.4 (Euclid 400 B.C.): There are infinitely many primes. Proof.

If not, let $p_{1}, p_{2}, \ldots, p_{k}$ be the finite prime.
Let $B=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}+1$
$\because B>p_{i}, \forall 1 \leq i \leq k \quad \therefore B$ cannot be a prime i.e. B is composite.

By Lemma 4.1, \exists prime $\boldsymbol{p}_{j}, 1 \leq j \leq k$ s.t. $p_{j} \mid B$
$\because\left(p_{j} \mid p_{1} p_{2} \ldots p_{k}\right) \wedge\left(p_{j} \mid B\right) \wedge\left(B=p_{1} p_{2} \ldots p_{k}+1\right)$
\therefore by Thm 4.3 (e), $p_{j} \mid 1$
$\rightarrow \leftarrow \quad(\because$ prime $>1)$
\therefore There are infinitely many primes.

4．3 The Division Algorithm：Prime Numbers

Thm 4．5：$\forall a, b \in \mathrm{Z}$ ，with $b>0, \exists!q, r \in \mathrm{Z}$ s．t．$a=q b+r$ ， where $0 \leq r<b$ ．
Proof．（1／2）
一，ヨ（存在性）
（1）$b \mid a: \exists m \in Z$ s．t．$a=b \cdot m$ ，Let $q=m, r=0$ ，it＇s hold．
（2）$b \nmid a$ ：Let $S=\{a-t b \mid t \in \mathrm{Z}, a-t b>0\}$
（i）$(S \neq \phi)$ If $a>0$ ：let $t=0, a-t b=a \in S, \therefore S \neq \phi$ ． If $a<0$ ：let $t=a-1, a-t b=a-(a-1) b$

$$
=a(1-b)+b \geq b>0
$$

$$
(\because b>0, b \geq 1,1-b \leq 0, a(1-b) \geq 0)
$$

$$
\therefore a-t b=a(1-b)+b \in S, \therefore S \neq \phi
$$

（ii）（find q, r ）：$\forall a \in \mathrm{Z}, S$ is a nonempty subset of Z^{+}
By the Well－Ordering Principle，S has a least element r ，where $0<r=a-q b$ for some $q \in \mathrm{Z}$ ．
（c）Fall 2023，Justie Su－Tzu Juan

4．3 The Division Algorithm：Prime Numbers

Proof．（2／2）
（iii）$(0 \leq r<b):$（a）$r=b \Rightarrow a=(q+1) b \Rightarrow b \mid a \rightarrow \leftarrow(b \nmid a)$
（b）$r>b \Rightarrow r=b+c$ for some $c \in \mathrm{Z}^{+}$， $\because a-q b=r=b+c \Rightarrow c=a-(q+1) b \in S$ $\rightarrow \leftarrow(r$ is least $)$
\therefore by（a），（b），$r<b$ ．
二，！（唯一性）
Let $q_{1}, q_{2}, r_{1}, r_{2} \in \mathrm{Z}$ with $a=q_{1} b+r_{1}=q_{2} b+r_{2}$ ， where $0 \leq r_{1}, r_{2}<b$ ．
$\because q_{1} b+r_{1}=q_{2} b+r_{2} \Rightarrow b\left|q_{1}-q_{2}\right|=\left|r_{2}-r_{1}\right|$
$\because 0 \leq r_{1}, r_{2}<b \Rightarrow\left|r_{2}-r_{1}\right|<b \Rightarrow b\left|q_{1}-q_{2}\right|<b$
If $q_{1} \neq q_{2}$ ，then $b\left|q_{1}-q_{2}\right| \geq b \rightarrow \leftarrow$
$\therefore q_{1}=q_{2} \Rightarrow r_{1}=r_{2}$
i．e．the quotient and remainder are unique．
（c）Fall 2023，Justie Su－Tzu Juan

4.3 The Division Algorithm: Prime Numbers

Def : a : dividend $\quad b$: divisor $\quad q$: quotient $\quad r$: remainder
Ex 4.25 : a) $a=170, b=11$
$\because 170=15 \cdot 11+5,0 \leq 5<11$
So when 170 is divided by 11 , the quotient is 15 and the remainder is 5 .
b) $\boldsymbol{a}=\mathbf{9 8}, \boldsymbol{b}=\mathbf{7}$
$\because 98=14 \cdot 7,7$ (exactly) divides 98 .
c) $a=-45, b=8$
$\because-45=(-6) \cdot 8+3$, where $0 \leq 3<8$
d) Let $a, b \in \mathrm{Z}^{+}$
(1) $a=q b$ for some $q \in \mathrm{Z}^{+}:(-a)=(-q) \cdot b$
(2) $a=q b+r$ for some $q \in \mathrm{~N}$ and $0<r<b$:

$$
\begin{aligned}
(-a) & =(-q) b-r=(-q) b-b+(b-r) \\
& =(-q-1) b+(b-r), \quad 0<b-r<b .
\end{aligned}
$$

(c) Fall 2023, Justie Su-Tzu Juan

4．3 The Division Algorithm：Prime Numbers

Ex 4.26 ：\because 乘法為＂連加＂，故考慮以＂連減＂來計算除法． See Fig 4．10，連減並用 Ex 4.25 （d）

Ex 4.27 ：利用上述 Algorithm 計算＂改進位制＂： Write 6137 in the octal system（base 8）
i．e．find $r_{0}, r_{1}, r_{2}, \ldots, r_{k}$ with $r_{k}>0$ s．t．$\left(r_{k} \ldots r_{1} r_{0}\right)_{8}=6137$
Sol．$\because 6137=r_{0}+r_{1} \cdot 8+r_{2} \cdot 8^{2}+\ldots+r_{k} \cdot 8^{k}=r_{0}+8\left(r_{1}+8\left(r_{2}+\ldots+8\left(r_{k}\right) \ldots\right)\right)$

$$
\begin{array}{cc}
\text { and } 6137=1+8 \cdot 767 & \Rightarrow r_{0}=1 \\
=1+8[7+8(95)] & \Rightarrow r_{1}=7 \\
=1+8[7+8(7+8 \cdot 11)] & \Rightarrow r_{2}=7 \\
=1+8\{7+8[7+8(3+8 \cdot 1)]\} & \Rightarrow r_{3}=3 \\
& r_{4}=1
\end{array}
$$

$$
\text { i.e. } 6137=1 \cdot 8^{4}+3 \cdot 8^{3}+7 \cdot 8^{2}+7 \cdot 8^{1}+1=(137 \%)_{8}
$$

（c）Fall 2023，Justie Su－Tzu Juan

4.3 The Division Algorithm: Prime Numbers

Ex 4.28 : (1/3)
(1) 2 位進: see book, Table 4.3
four bits: $0 \sim 15=0 \sim 2^{4}-1$
leading 1: $8 \sim 15=2^{3} \sim 2^{4}-1$
six bits: $\quad 0 \sim 63=0 \sim 2^{6}-1$
n bits: $\quad 0 \sim 2^{n}-1$
\{ leading 0: $0 \sim 2^{n-1}-1$
leading 1: $2^{n-1} \sim 2^{n}-1$
(2) eight bits $=$ one bytes
one bytes: $0 \sim 2^{8}-1=0 \sim 255$
two bytes: $0 \sim 2^{16}-1=0 \sim 65535$
four bytes: $0 \sim 2^{32}-1=0 \sim 4294967295$
(c) Fall 2023, Justie Su-Tzu Juan

4.3 The Division Algorithm: Prime Numbers

Ex 4.28 : (2/3)
(base - 16)
(3) Table 4.4:

Base 10	Base2	Base 16
10	1010	A
11	1011	B
12	1100	C
13	1101	D
14	1110	E
15	1111	F

Represent the integer 13874945 in the hexadecimal system: 1613874945 Remainders
$\begin{array}{r}16 \mid 867184 \\ 16 \mid 54199 \\ 16 \mid 3387 \\ 16 \mid 211 \\ 16 \mid 13 \\ \\ \\ \hline\end{array}$

1	$\left(r_{0}\right)$
0	$\left(r_{1}\right)$
7	$\left(r_{2}\right)$
$11=\mathrm{B}$	$\left(r_{3}\right)$
3	$\left(r_{4}\right)$
$13=\mathrm{D}$	$\left(r_{5}\right)$

(c) Fall 2023, Justie Su-Tzu Juan

4.3 The Division Algorithm: Prime Numbers

Ex 4.28 : (3/3)
(4) Converting between base 2 and base 16.
(i) Convert the binary integer 01001101 to its base-16 counterpart

$$
\underbrace{0100}_{4} \underbrace{1101}_{D} \quad \therefore(01001101)_{2}=(4 \mathrm{D})_{16}
$$

(ii) Convert the two-byte number (A13F) ${ }_{16}$ in base 2

$$
\underbrace{\mathrm{A}}_{1010} \underbrace{1}_{(\mathrm{A} 13 \mathrm{~F})_{16}=(1010000100111111)_{2}} \underbrace{3}_{0011} \underbrace{\mathrm{~F}}_{1111}
$$

4．3 The Division Algorithm：Prime Numbers

Ex 4.29 ：

負數如何表示：$n<0$ ：two＇s complement method．
（1）First consider the binary representation of $|n|$ ，
（2）Replace each 0 by 1,1 by 0 ；the result is called the one＇s complement of $|n|$ ．
（3）Add 1 to（2）；the result is called the two＇s complement of $|n|$ ． ex：－6：（1） $6 \rightarrow 0110$
（2） $\mathbf{0 1 1 0} \leftrightarrow \mathbf{1 0 0 1}$
（3） $\mathbf{1 0 0 1}+\mathbf{0 0 0 1}=1010$

Note：（1）See Table 4.5 （p．225）： $7 \sim-8$ need four－bit patterns
（2）Other obtained：$-8 \leq n \leq-1 \leftrightarrow 7 \geq n^{c} \geq 0$
（3）nonnegative integer start with 0 ，negative integer start with 1 （first（c）bit Fial $_{\text {）}}^{2023, ~ J u s t i e ~ S u-T z u ~ J u a n ~}$

4.3 The Division Algorithm: Prime Numbers

Ex 4.30 : (1/2)
(1) Perform 33 - 15 in base 2, using the two's complement of 8 bits.
Sol.

$$
\begin{aligned}
& \because 33-15=33+(-15) \text {; } \\
& 33=(00100001)_{2} \\
& 15=(00001111)_{2} \\
& \rightarrow-15=(11110000+00000001)_{2}=(11110001)_{2} \\
& 33 \\
& 00100001 \\
& -15 \\
& +11110001 \\
& 100010010 \text { nonnegative } \\
& \text { discarded } \quad \text { Answer }=(00010010)_{2}=18
\end{aligned}
$$

4.3 The Division Algorithm: Prime Numbers

Ex 4.30 : (2/2)
(2) 15-33=? 15+(-33) $15=(00001111)_{2}$ $33=(00100001)_{2}$ $\rightarrow-33=(11011110+00000001)_{2}=(11011111)_{2}$
15 00001111
$-33 \longrightarrow \mathbf{1 1 0 1 1 1 1 1}$ (1) Take the one's complement ${ }^{111101110} \rightarrow(00010001)_{2}$ negative $\quad \rightarrow(00010010)_{2}=18$
\therefore Answer $=-18$
(2) Add 1
(3) [overflow error] ex: 117+88

$$
\begin{array}{r}
117 \\
+\quad 88 \\
\hline
\end{array}
$$

01110101
+01011000 Negative!! $\rightarrow \leftarrow$
(c) Fall 2023, Justie Su-Tzu Juan

4.3 The Division Algorithm: Prime Numbers

Remark : In general, let $x, y \in \mathrm{Z}^{+}$with $x>y, 2^{n-2} \leq x<2^{n-1}$ Then the binary rep. for x is made up of $n-1$ bits $\rightarrow n$ bits The one's complement of $y=\left(2^{n}-1\right)-y=11 \ldots 1-y$
The two's complement of $y=\left(2^{n}-1\right)-y+1 n$ 個 1
$\therefore x-y=x+\left[\left(2^{n}-1\right)-y+1\right]-2^{n}$
\rightarrow removal of the extra bit

4.3 The Division Algorithm: Prime Numbers

Ex 4.31: If $n \in Z^{+}$and n is composite, then $\exists p$: a prime s.t. $\boldsymbol{p} \mid \boldsymbol{n}$ and $\boldsymbol{p} \leq \sqrt{n}$.

Proof.
(1) $\because n$ is composite
\therefore We can write $n=n_{1} n_{2}$, where $1<n_{1}<n, 1<n_{2}<n$.
If $\left(\boldsymbol{n}_{1}>\sqrt{n}\right)$ and $\left(\boldsymbol{n}_{2}>\sqrt{n}\right)$,
then $n=n_{1} n_{2}>(\sqrt{n})(\sqrt{n})=n \rightarrow \leftarrow$
$\therefore n_{1} \leq \sqrt{n}$ or $\boldsymbol{n}_{2} \leq \sqrt{n}$, W.L.O.G. say $\boldsymbol{n}_{1} \leq \sqrt{n}$. (without loss of generality)
(2) If n_{1} is a prime: the result follows. If \boldsymbol{n}_{1} is not a prime: by Lemma 4.1,
\exists a prime $p<n_{1}$ s.t. $p \mid n_{1}$,
$\because p\left|n_{1} \wedge n_{1}\right| n$,
$\therefore p \mid n$ and $p \leq \sqrt{n}$.

