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§ 4.2 Recursive Definitions

EX4.17  [∪] 

Consider A1, A2, …, An+1, where Ai  U  1  i  n + 1,

we define their union recursively:

1) The union of A1, A2 is A1 ∪ A2.

2) The union of A1, A2, … An, An+1, for n  2 is

A1 ∪ A2 ∪… ∪ An ∪ An+1 = (A1 ∪ A2 ∪… ∪ An ) ∪ An+1.

ex  “Generalized Associative Law for ∪”:

If n, r  Z+, with n  3 and 1  r < n, then

S(n) = (A1 ∪ A2 ∪… ∪ Ar) ∪ (Ar+1 ∪… ∪ An)

= A1 ∪ … ∪ Ar ∪ Ar+1 ∪… ∪ An.

Where Ai  U for all 1  i  n.
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§ 4.2 Recursive Definitions

Proof. 
① S(3) is true from the associative law of ∪.
② Assuming the truth of S(k) for some k  Z+, where k  3 

and 1  r < k.
Now consider n = k + 1:
case 1. r = k : 

(A1∪A2∪…∪Ak)∪Ak+1 = A1∪A2∪…∪Ak∪Ak+1

∵ The given recursive definition. 

case 2. 1  r < k : 
(A1∪A2∪…∪Ar) ∪ (Ar+1∪…∪Ak∪Ak+1)
= (A1∪A2∪…∪Ar) ∪ [(Ar+1∪…∪Ak) ∪ Ak+1]
= [(A1∪…∪Ar) ∪ (Ar+1∪…∪Ak)] ∪ Ak+1

(by I. H.) = (A1∪…∪Ar∪Ar+1∪…∪Ak) ∪ Ak+1

= A1∪…∪Ar∪Ar+1∪…∪Ak∪Ak+1

∴ By the Principle of Mathematical Induction, 

S(n) is true for all integer n  3. 
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§ 4.2 Recursive Definitions

Note  [∩] Consider A1, A2, …, An+1, where 

Ai  U  1  i  n + 1,

we define their intersection recursively:

1) The intersection of A1, A2 is A1 ∩ A2.

2) For n  2, the intersection of A1, A2 , …, An, An+1 is

A1 ∩ A2 ∩ … ∩ An ∩ An+1

= (A1 ∩ A2 ∩ … ∩ An) ∩ An+1.
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§ 4.2 Recursive Definitions

EX4.18  Let n ∈ Z+ Where n  2, and let A1, A2, …, An,  U

then A1 ∩ A2 ∩ … ∩ An = A1 ∪ A2 ∪ … ∪ An

Proof. 

Let S(n) = A1 ∩ A2 ∩ … ∩ An = A1 ∪ A2 ∪ … ∪ An , n ∈ Z+.

① n = 2, A1 ∩ A2 = A1 ∪ A2,∵ the second of DeMorgan’s Laws.

② Assume for some n = k, where k  2:

A1 ∩ A2 ∩ … ∩ Ak = A1 ∪ A2 ∪ … ∪ Ak

Now consider n = k + 1 ( 3):

A1 ∩ A2 ∩ … ∩ Ak ∩ Ak+1 = (A1 ∩ A2 ∩ … ∩ Ak) ∩ Ak+1

= (A1∩ A2 ∩ … ∩ Ak) ∪ Ak+1 = (A1 ∪A2 ∪… ∪ Ak) ∪ Ak+1

= A1 ∪A2 ∪… ∪ Ak ∪ Ak+1                                        (by I. H.)

∴ By the Principle of Mathematical Induction,

The generalized DeMorgan Law for n  2 obtained.

(c) Fall 2023, Justie Su-Tzu Juan 5



§ 4.2 Recursive Definitions

Remark : +,  can also be defined in this way. In fact, EX4.1, 

EX4.3 already used.

ex :① Define the sequence of harmonic numbers H1, H2, …, by

1) H1 = 1; and

2)  n  1, Hn+1 = Hn +

② Define n! by

1) 0! = 1; and 
2)  n  0, (n + 1) ! = (n + 1)  n !

③ The sequence bn = 2n, n  N can be defined recursively by

1) b0 = 0; and 

2)  n  0, bn+1 = bn + 2
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§ 4.2 Recursive Definitions

EX4.19  The Fibonacci numbers may be defined recursively by 

1) F0 = 0, F1 = 1; and

2) Fn = Fn–1 + Fn–2, for n  Z+ with n  2.

F2 = F1 + F0 = 1 + 0 = 1

F3 = F2 + F1  = 1 + 1 = 2

F4 = F3 + F2 = 2 + 1 = 3

F5 = F4 + F3  = 3 + 2 = 5

Observation:

F0
2 + F1

2 + F2
2 + F3

2 + F4
2

= 02 + 12 + 12 + 22 + 32 = 15 = 3  5

F0
2 + F1

2 + F2
2 + F3

2 + F4
2 + F5

2

= 02 + 12 + 12 + 22 + 32 + 52 = 40 = 5  8
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§ 4.2 Recursive Definitions

ex : ∀ n ∈ Z+, i=0, n Fi
2 = Fn  Fn+1

Proof. 

① For n = 1, i=0, 1Fi
2 = F0

2 + F1
2 = 02 + 12 = 1 = 1  1 = F1  F2

The conjecture is true.

② Assume n = k, i=0, k Fi
2 = Fk  Fk+1.

Now, consider n = k + 1 ( 2):

i=0, k+1Fi
2 = i=0, k Fi

2 + Fk+1
2 = (Fk  Fk+1) + Fk+1

2 (by I. H.)

= Fk+1  (Fk + Fk+1) = Fk+1  Fk+2

∴ The truth of the case for n = k +1 follows 

from the case for n = k.

By the Principle of Mathematical Induction, the given     

conjecture is true for all n ∈ Z+.
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§ 4.2 Recursive Definitions

EX4.20  Lucas numbers: defined recursively by

1) L0 = 2, L1 = 1; and

2) Ln = Ln–1 + Ln–2 , for n  Z+ with n  2.

2, 1, 3, 4, 7, 11, 18, 29, … 

ex : ∀ n ∈ Z+, Ln = Fn–1 + Fn+1

Proof.(1/2)

① when n = 1 and n = 2 :

L1 = 1 = 0 + 1 = F0 + F2 = F1–1 + F1+1, and

L2 = 3 = 1 + 2 = F1 + F3 = F2–1 + F2+1, 

∴ The result is true for n = 1 and n = 2.
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§ 4.2 Recursive Definitions

Proof.(2/2)

② Assume Ln = Fn–1 + Fn+1

∀ n = 1, 2, … , k–1, k, where k  2 

and then consider Lk+1 : 

Lk+1 = Lk + Lk-1 = (Fk–1 + Fk+1) + (Fk–2 + Fk) (by I. H.)

= (Fk–1 + Fk–2) + (Fk+1 + Fk)

= Fk + Fk+2 = F(k+1)–1 + F(k+1)+1

∴ By the Principle of Strong Mathematical Induction,

Ln = Fn–1 + Fn+1 ∀ n  Z+.
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§ 4.2 Recursive Definitions

EX4.21 ① Define the binomial coefficients recursively by :

(0
0) = 1; (r

n) = 0,     if r < 0 or r > n;

(r
n+1) = (r

n) + (r–1
n), if n  r  0

② For m  Z+, k  N, the Eulerian number am,k are defined 

recursively by

a0,0 = 1; am, k = 0, if k < 0 or k  m; 

am,k = (m – k)am–1, k–1 + (k + 1)am–1, k, if 0  k  m – 1. 

Row Sum

(m = 1)                                1                                  1 = 1!

(m = 2)                            1      1 2 = 2!

(m = 3)                        1      4      1                          6 = 3!

(m = 4)                    1     11    11     1                    24 = 4!

(m = 5)                1     26    66    26 1              120 = 5!
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§ 4.2 Recursive Definitions

Conjecture : k
m

=
–

0
1 am, k = m!  m  Z+

Proof.

① For 1  m  5, it’s true.

② Assume the result is true for some fixed m ( 1)

Now, consider m + 1:

k=
m

0 am+1,k =  k=
m

0 [(m – k + 1)am,k–1 + (k + 1)am,k]

= [(m + 1)am,–1 + am,0] + [m am,0 + 2am,1] +   

[(m – 1)am,1 + 3am,2] + … + [3am,m–3 + (m – 1)am,m–2] +

[2am,m–2 + m am,m–1] + [am,m–1 + (m + 1) am,m]

∵ am, –1 = 0 = am,m

∴  k =
m

0 am+1,k = [am,0 + m am,0] + [2am,1 + (m – 1)am,1]

+ … +[(m – 1)am,m–2 + 2am,m–2] + [m am,m–1 + am,m–1]

= (m + 1) k
m

=
–

0
1 am,k = (m + 1) m ! = (m + 1) ! (by I. H.)

∴ the result is true for all m  1 by the Principle of Math. Ind.
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§ 4.2 Recursive Definitions

EX4.22  [implicit] Define the set X recursively by

1) 1  X; and 

2) For each a  X, a + 2  X

Claim that X consists (precisely) of all positive odd integers    

Proof.(1/2)

Let Y = {2n +1 | n  N}.

Claim : X = Y (i.e. X  Y and Y  X)

Proof.

① Y  X :  a  Y  a = 2n + 1 for some n (↝ a  X )

let S(n) : 2n + 1  X,  n  N.

i) S(0) : 2  0 + 1 = 1  X is true.

ii) Assume S(k) is true for some k  0,

i.e. 2k + 1 is an element in X.
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§ 4.2 Recursive Definitions

Proof.(2/2)

By (2) of the recursive definition of X ;

(2k + 1) + 2 = 2(k + 1) + 1  X

∴ S(k + 1) is also true.

∴ S(n) is true by the Principle of Mathematical 

Induction for all n  N.

② X  Y : (1) : 1 = 2  0 + 1  Y.

(2) : If b  X and b  Y  is true, 

then there exist some k  0, s.t. b = 2k + 1.

Consider b + 2  X,

b + 2 = (2k + 1) + 2 = 2(k + 1) + 1  Y

∴ b  Y by the Principle of Mathematical 

Induction for all b X. So, X  Y.

∴ By ①, ② X  Y and Y  X  X = Y.
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§ 4.3  The Division Algorithm: Prime Numbers

Def 4.1  a, b   and b  0:

 b divides a, write b | a   n   s.t. a = bn.

 b is a divisor of a.

 a is a multiple of b.

Note :  ∵  a, b  , ab = 0  either a = 0 or b = 0.

∴ say “ has no proper divisor of 0”.

 cancel:  ex: 2x = 2y  2(x – y) = 0

 2 = 0 or x – y = 0

 x = y.

(not × ½ , ∵ ½    )
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§ 4.3  The Division Algorithm: Prime Numbers
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Thm 4.3   a, b, c  

a) 1 | a and a | 0.

b) [(a | b)  (b | a)]  a =  b.

c) [(a | b)  (b | c)]  a | c

d) a | b  a | bx for all x 

e)  x, y, z   s.t. x = y + z

 [(a | x)  (a | y)]  a | z  [(a | y)  (a | z)]  a | x

 [(a | x)  (a | z)]  a | y

f) [(a | b)  (a | c)]  a | (bx + cy) for all x, y  

Def :  bx + cy is called a linear combination of b and c.

g) For 1  i  n, let ci  

[ 1  i  n, (a | ci)]  a | (c1x1 + c2x2 + … + cnxn), 

where xi   for all 1  i  n.



§ 4.3  The Division Algorithm: Prime Numbers
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Proof. (f)

[(a | b)  (a | c)]  (b = am)  (c = an) for some m, n  

∴ bx + cy = (am)x + (an)y = a(mx + ny) with mx + ny  

i.e. a | (bx + cy)

Ex 4.23 :   x, y, z  s.t. 6x + 9y + 15z = 107?

Sol.

by Thm 4.3(g), ∵ [(3 | 6)  (3 | 9)  (3 | 15)]  3 | 107 



∴ there do not exist such integer x, y, z.

f) [(a | b)  (a | c)]  a | (bx + cy) for all x, y  



§ 4.3  The Division Algorithm: Prime Numbers
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Ex 4.24 :  Let a, b  so that 2a + 3b is a multiple of 17.

Prove that 17 divides 9a + 5b.

Proof.

∵ 17 | (2a + 3b)  17 | (–4)(2a + 3b)

∵ 17 | (17a + 17b)  17 | [(17a + 17b) + (–4)(2a + 3b)]

 17 | [(17 – 8)a + (17 – 12)b]

 17 | (9a + 5b).

Def :   Number theory: Using integer division in mathematics.

An integer n   +, n  1, is called a prime.

 n has exactly two positive divisors, 1 and n itself.

All other positive integers ( 1  not prime) are called 

composite.



§ 4.3  The Division Algorithm: Prime Numbers
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Lemma 4.1 :  n   + and n is composite   prime p s.t. p | n.

Proof.

Let S = {x | x is composite and x have no prime divisor.}

If S  , By the Well-Ordering Principle, S has a least 

element m.

∵ m  S

∴ m is composite and m have no prime divisor.

∵ m is composite, 

∴  m1, m2   + with 1  m1  m, 1  m2  m

s.t. m = m1  m2

But ∵ m1  S ∴ m1 is prime or divisible by a prime

Consequently,  prime p s.t.  p | m 

∴ S = .



§ 4.3  The Division Algorithm: Prime Numbers
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Thm 4.4 (Euclid 400 B.C.):  There are infinitely many primes.

Proof.

If  not, let p1, p2, … , pk be the finite prime.

Let B = p1  p2  …  pk +1

∵ B  pi,  1  i  k ∴ B cannot be a prime

i.e. B is composite.

By Lemma 4.1,  prime pj, 1  j  k s.t. pj | B

∵ (pj | p1p2… pk)  (pj | B)  (B = p1p2… pk +1)

∴ by Thm 4.3 (e), pj | 1

 (∵ prime  1)

∴ There are infinitely many primes.
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Thm 4.5 :   a, b  , with b  0,  q, r   s.t. a = qb + r, 

where 0  r < b.

Proof. (1/2)

一、  (存在性)

 b | a:   m   s.t. a = bm, Let q = m, r = 0, it’s hold.

 b | a:  Let S = {a – tb | t  , a – tb  0}

(i) (S)  If a  0:  let t = 0, a – tb = a  S, ∴ S  .

If a  0:  let t = a – 1, a – tb = a – (a – 1)b

= a(1 – b) + b  b  0

(∵ b  0, b  1, 1 – b  0, a(1 – b)  0)

∴ a – tb = a(1 – b) + b  S, ∴S  
(ii) (find q, r):   a  , S is a nonempty subset of +

By the Well-Ordering Principle, S has a least 

element r, where 0  r = a – qb for some q  .
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Proof. (2/2)

(iii) (0rb):  (a) r = b  a = (q + 1)b  b | a  (b | a)

(b) r  b  r = b + c for some c  +,

∵ a – qb = r = b + c  c = a – (q + 1)b  S

 (r is least)

∴ by (a), (b), r  b.

二、 (唯一性)

Let q1, q2, r1, r2   with a = q1b + r1= q2b + r2, 

where 0  r1, r2  b. 

∵ q1b + r1= q2b + r2  b|q1 – q2| = |r2 – r1|

∵ 0  r1, r2  b  |r2 – r1|  b  b|q1 – q2|  b

If q1  q2, then b|q1 – q2|  b 

∴ q1 = q2  r1 = r2

i.e. the quotient and remainder are unique.
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Def :  a: dividend b: divisor q: quotient r: remainder

Ex 4.25 : a) a = 170, b = 11

∵ 170 = 1511 + 5, 0  5  11

So when 170 is divided by 11, the quotient is 15 and 

the remainder is 5.

b) a = 98, b = 7

∵ 98 = 147, 7 (exactly) divides 98.

c) a = – 45, b = 8

∵ – 45 = (– 6)8 + 3, where 0  3  8

d) Let a, b   +

 a = qb for some q  + : (–a) = (–q)b

 a = qb + r for some q  N and 0 < r  b:

(–a) = (–q)b – r = (– q)b – b + (b – r) 

= (–q – 1)b + (b – r),                  0  b – r  b.
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Ex 4.26 :  ∵乘法為“連加”，故考慮以“連減”來計算除法.

See Fig 4.10, 連減並用 Ex 4.25 (d)

Ex 4.27 :  利用上述Algorithm 計算“改進位制”：
Write 6137 in the octal system (base 8)

i.e. find r0, r1, r2, …, rk with rk  0  s.t. (rk…r1r0)8=6137

Sol. ∵ 6137 = r0+r18+r28
2+…+rk 8

k = r0+8(r1+8(r2+…+8(rk)…))

and 6137 =1+8767  r0=1

=1+8[7+8(95)]  r1=7 

=1+8[7+8(7+811)]  r2=7

=1+8{7+8[7+8(3+81)]}  r3=3

r4=1

i.e. 6137=184+383+782+781+1=(13771)8

8  6137 Remainders

8  767       1(r0)

8  95       7(r1)

8  11       7(r2)

8  1       3(r3)

0       1(r4)
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Ex 4.28 : (1/3)

 2位進:  see book, Table 4.3

four bits:  0~15 = 0~24 – 1

leading 1:  8~15 = 23~24 – 1

six bits:    0~63 = 0~26 – 1

n bits:       0~2n – 1

leading 0:  0~2n–1 – 1

leading 1:  2n–1~2n – 1

 eight bits = one bytes

one bytes:   0 ~ 28 – 1  = 0 ~ 255

two bytes:   0 ~ 216 – 1 = 0 ~ 65535

four bytes:  0 ~ 232 – 1 = 0 ~ 4294967295
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Ex 4.28 : (2/3) (base - 16)

 Table 4.4:

Represent the integer 13874945 in the hexadecimal system:
16  13874945 Remainders

16  867184 1 (r0)
16  54199 0 (r1)

16  3387 7 (r2)
16  211 11=B (r3)
16  13 3 (r4)

0 13=D (r5)  ∴ 13874945=(D3B701)16

Base 10 Base2 Base 16

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F
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Ex 4.28 : (3/3)

 Converting between base 2 and base 16.

(i) Convert the binary integer 01001101 to its base-16 

counterpart

01001101

4 D ∴(01001101)2=(4D)16

(ii) Convert the two-byte number (A13F)16 in base 2

A 1 3 F

1010 0001 0011 1111

∴(A13F)16=(1010000100111111)2
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§ 4.3  The Division Algorithm: Prime Numbers

Ex 4.29 :

負數如何表示： n  0: two’s complement method.

 First consider the binary representation of |n|,

 Replace each 0 by 1, 1 by 0; the result is called the one’s 

complement of |n|.

Add 1 to ; the result is called the two’s complement of |n|.

ex: – 6: 6  0110

 0110  1001

 1001 + 0001 = 1010

Note:   See Table 4.5 (p. 225):  7 ~ – 8 need four-bit patterns

 Other obtained: – 8  n  – 1   7  nc  0

 nonnegative integer start with 0, negative integer start 

with 1 (first bit).
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Ex 4.30 :  (1/2)

 Perform 33 – 15 in base 2, using the two’s complement of 8 

bits.

Sol.

∵ 33 –15 = 33 + ( –15);

33 = (00100001)2

15 = (00001111)2

→ –15 = (11110000+00000001)2 = (11110001)2

33 00100001

– 15 +  11110001

100010010

discarded Answer = (00010010)2 = 18

nonnegative
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Ex 4.30 :  (2/2)

 15 – 33=?  15+(– 33)

15 = (00001111)2

33 = (00100001)2

→ – 33 = (11011110+00000001)2 = (11011111)2

15 00001111

– 33 +  11011111

11101110 → (00010001)2

→ (00010010)2 = 18

∴Answer = – 18

 [overflow  error]  ex: 117+88

117 01110101

+  88 +  01011000

11001101

negative

 Take the one’s complement

Add 1

Negative!! 
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§ 4.3  The Division Algorithm: Prime Numbers

Remark :  In general, let x, y  + with x  y, 2n–2  x < 2n–1

Then the binary rep. for x is made up of n – 1 bits  n bits

The one’s complement of y = (2n – 1) – y = 11…1 – y

The two’s complement of y = (2n – 1) – y + 1

∴ x – y = x + [(2n – 1) – y + 1] – 2n

n個1

removal of the extra bit
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Ex 4.31 :  If n   + and n is composite, then  p: a prime 
s.t. p | n and p  .

Proof.  
∵ n is composite 
∴We can write n = n1n2, where 1  n1  n, 1  n2  n.
If (n1  ) and (n2  ), 

then n = n1 n2  ( ) ( ) = n 
∴ n1  or n2  ,  W.L.O.G. say n1  .

(without loss of generality)
 If n1 is a prime:        the result follows.

If n1 is not a prime:  by Lemma 4.1, 
 a prime p  n1 s.t. p | n1,
∵ p | n1  n1 | n, 
∴ p | n and p  .

n

n n

n n

n n n

n


