Computer Science and Information Engineering National Chi Nan University Discrete Mathematics Dr. Justie Su-Tzu Juan

Chap 3 Set Theory § 3.4 A First Word on Probability

Slides for a Course Based on the Text Discrete \& Combinatorial Mathematics (5 ${ }^{\text {th }}$ Edition) by Ralph P. Grimaldi

3.4 A First Word on Probability

Def $\square(1)$ experiment $\mathcal{E}, ~$ sample space $\mathcal{S} \cdot$ event $A(\subseteq \mathcal{J})$, elementary event $a(\in A)$. Let $|\mathcal{S}|=n$.
(2) $\operatorname{Pr}(a)=$ The probability that a occurs $=\frac{1}{n}=\frac{|\{a\}|}{|s|}$ $\operatorname{Pr}(A)=$ The probability that A occurs $=\frac{|A|}{n}=\frac{|A|}{|S|}$
$\underline{\text { Ex3.28 } ~ E x 3.36 \square s e e ~ b o o k . ~}$

3.4 A First Word on Probability

Ex3.31 $\square 5$ cards from a standard deck of 52 cards. $\left({ }_{5}^{5}\right)=2598960$ What is the probability:
(a) Three aces and two jacks; (b) three aces and a pair;
(c) a full house?

Sol.

(a) $\binom{4}{3}=\mathbf{4}$ for aces, $\binom{4}{2}=\mathbf{6}$ for jacks.

Let $A=$ the event where Tanya draws three aces and two jacks.
$\therefore|A|=\binom{4}{3}\binom{4}{2}=4 \cdot 6 ; \operatorname{Pr}(A)=24 / 2598960 \approx 0.000009234$.
(b) $\binom{4}{3}=\mathbf{4}$ for aces, $\binom{12}{1}\binom{4}{2}=\mathbf{1 2 . 6}=\mathbf{7 2}$ for a pair.

Let $B=$ the event where Tanya draws three aces and a pair.
$\therefore|B|=\binom{4}{3}\binom{12}{1}\binom{4}{2}=4 \cdot 72 ; \operatorname{Pr}(B)=288 / 2598960 \approx 0.000110814$.
(c) $\binom{13}{1}\binom{4}{3}=\mathbf{1 3 . 4}$ for three something, $\binom{12}{1}\binom{4}{2}=\mathbf{1 2 . 6}=\mathbf{7 2}$ for a pair

Let $C=$ the event where Tanya draws a full house.
$\therefore|C|=\binom{13}{1}\binom{4}{3}\binom{12}{1}\binom{4}{2}=\mathbf{1 3} \cdot 288=\mathbf{3 7 4 4}$;
$\operatorname{Pr}(C)=3744 / 2598960 \approx 0.001440576$. (c) Fall 2023, Justie Su-Tzu Juan

3.4 A First Word on Probability

Def $\square(3)$ Cartesian product, or cross product, of \boldsymbol{A} and $B=A \times B$

$$
=\{(a, b) \mid a \in A, b \in B\} .
$$

(4) ordered pairs : the element of $\boldsymbol{A} \times \boldsymbol{B}$. (form : $(\boldsymbol{a}, \boldsymbol{b})$)
(5) $(a, b)=(c, d)$ if and only if $a=c$ and $b=d$.
$\underline{\operatorname{Ex} 3.32} \square A=\{1,2,3\}$ and $B=\{x, y\}$, then $A \times B=\{(1, x),(1, y),(2, x),(2, y),(3, x),(3, y)\}$ $B \times A=\{(x, 1),(y, 1),(x, 2),(y, 2),(x, 3),(y, 3)\}$ $(1, x) \in A \times B,(1, x) \notin B \times A$ $|A \times B|=3.2=6=|A||B|=|B||A|=|B \times A|$.

3.4 A First Word on Probability

Ex3.37 $\square 120$ passengers on airline:
48: wine; 78: mixed drink; 66: iced tea;
36: 2 beverages; 24: 3 beverages.
Choose two from 120 passengers: what is the probability that:
a) Event A : they both want only iced tea?
b) Event \boldsymbol{B} : they both enjoy exactly two of the three beverage offerings?

3.4 A First Word on probability

Sol. (1/2)

$$
\begin{aligned}
& a+b+c=36 \\
& 24-a-b=24+c-36=c-12 \geq 0 \\
& 42-a-c=42+b-36=b+6 \geq 0 \\
& 54-b-c=54+a-36=a+18 \geq 0
\end{aligned}
$$

 and $\mathbf{1 2 0}=(c-12)+(b+6)+(a+18)+a+b+c+24+d$

$$
=36 \cdot 2+12+24+d=108+d
$$

$\therefore d=12$
(8 unknowns 6 equations \therefore infinite selected) ex:
let $\mathbf{a}=b=12$, then $c=12,42-a-c=b+6=18$.
let $a=b=10$, then $c=16,42-a-c=b+6=16$.

3.4 A First Word on probability

Sol. (2/2)

$$
\begin{aligned}
& \text { In Book: } \\
& |S|=\binom{120}{2}=7140 \\
& |A|=\binom{18}{2}=\mathbf{1 5 3} \\
& |B|=\binom{36}{2}=\mathbf{6 3 0}
\end{aligned}
$$

$$
\begin{aligned}
& |B|=\binom{36}{2}=630 \\
& \therefore \operatorname{Pr}(A)=\frac{51}{2380}, \operatorname{Pr}(B)=\frac{3}{34^{\circ}}
\end{aligned}
$$

Computer Science and Information Engineering National Chi Nan University

Discrete Mathematics

Dr. Justie Su-Tzu Juan

Chap 4 Properties the Integers: Mathematical Induction
 § 4.1 The Well-Ordering Principle: Mathematical Induction

Slides for a Course Based on the Text Discrete \& Combinatorial Mathematics ($5^{\text {th }}$ Edition) by Ralph P. Grimaldi

§ 4.1 The Well-Ordering Principle: Mathematical Induction

Def \square The Well-Ordering Principle : Every nonempty subset of \mathbf{Z}^{+}contains a smallest element. (\mathbf{Z}^{+}is well ordered)

Thm $4.1 \square$ Finite Induction Principle (or The Principle of Mathematical Induction):
Let $S(n)$ denote an open mathematical statement that involves variable $n \in \mathbf{Z}^{+}$.
a) If $S(1)$ is true; and
b) If whenever $S(k)$ is true, then $S(k+1)$ is true; $k \in Z^{+}$. then $S(n)$ is true for all $n \in \mathbb{Z}^{+}$.

§ 4.1 The Well-Ordering Principle: Mathematical Induction

Proof. Let $F=\left\{t \in \mathbb{Z}^{+} \mid S(t)\right.$ is false $\}$.
If $\boldsymbol{F} \neq \phi$, then by the Well-Ordering Principle, $\exists s \in F$ such that s is the least element of F.
$\because S(1)$ is true, $\therefore 1 \notin F, s \neq 1$, $\Rightarrow s>1, s-1 \in \mathbb{Z}^{+}$.
$\because s$ is the least element of $F, \therefore s-1 \notin F$. i.e. $S(s-1)$ is true.
$\because S(s-1)$ is true $\Rightarrow S(s)$ is true (by (b)) $\Rightarrow s \notin F . \quad \rightarrow \leftarrow$
$\therefore F=\phi$.
Def $\square(a)$ " $S(1)$ is true": basis step
(b) " $S(k)$ is true $\Rightarrow S(k+1)$ is true" : inductive step " $S(k)$ is true": induction hypothesis (I. H.)

§4.1 The Well-Ordering Principle: Mathematical Induction

Remark $\square(1) 1 \rightarrow n_{0} \in \mathbf{Z}$. sub.

$$
\text { (2) }\left[S\left(n_{0}\right) \wedge\left[\forall k \geq n_{0}[S(k) \Rightarrow S(k+1)]\right]\right] \Rightarrow \forall n \geq n_{0} S(n)
$$

Think: Pushing dominoes:

§ 4.1 The Well-Ordering Principle: Mathematical Induction

EX 4.1 $\square \forall n \in Z^{+}, \sum_{i=1}^{n} i=1+2+3+\ldots+n=n(n+1) / 2$.
Proof. Let $S(n)$ is $\sum_{i=1}^{n} i=n(n+1) / 2$.
(1) $n=1: S(1): \sum_{i=1}^{1} 1=1=1 \cdot(1+1) / 2 . \quad \therefore S(1)$ is true.
(2) Assume $n=k, S(n)$ is true for some $k \in Z^{+}$, i.e. $S(k): \sum_{i=1}^{k} i=k(k+1) / 2$, is true.

Then, when $n=k+1$,
$S(k+1): \sum_{i=1}^{k+1} i=1+2+3+\ldots+k+(k+1)$

$$
=\left(\sum_{i=1}^{k} i\right)+(k+1)
$$

$$
(\text { by I. H. })=(k(k+1) / 2)+(k+1)
$$

$$
=[k(k+1)+2(k+1)] / 2
$$

$$
=(k+1)(k+2) / 2 .
$$

$\therefore S(k+1)$ is true.
By the Principle of Mathematical Induction,
$S(n)$ is true for all $n \in \mathbb{Z}^{+}$.

§ 4.1 The Well-Ordering Principle: Mathematical Induction

EX 4.2 $\square \mathbf{A}$ wheel painted by 1 to 36 in a random manner. Show that $\exists 3$ consecutive numbers total 55 or more.
Sol. (By contradiction) Assume $x_{1}, x_{2}, \ldots, x_{36}$ be the numbers labeled in the wheel clockwise.

For the result to be false:

$$
\begin{aligned}
& \begin{array}{ll}
x_{1}+x_{2}+x_{3} & <55 \\
x_{2}+x_{3}+x_{4} & <55
\end{array} \quad 3 \sum_{i=1}^{36} x_{i}=3 \sum_{i}^{36}={ }_{1} i \\
& =3 \cdot(36 \cdot 37) / 2 \\
& =3 \cdot 666 \\
& =1998 \\
& \mathbf{3 6} \cdot \mathbf{5 5}=\mathbf{1 9 8 0} \\
& +x_{36}+x_{1}+x_{2}<55 \text {) } \\
& \Rightarrow 1998<1980 \rightarrow \leftarrow \\
& 3 \sum_{i=1}^{36} x_{i}<36 \cdot 55
\end{aligned}
$$

§ 4.1 The Well-Ordering Principle: Mathematical Induction

EX 4.4 $\square \forall n \in Z^{+}, \sum_{i=1}^{n} i^{2}=n(n+1)(2 n+1) / 6$.
Proof.
Let $S(n): \sum_{i=1}^{n} i^{2}=n(n+1)(2 n+1) / 6$.
(1) Basis Step: $S(1): \sum_{i=1}^{1} i^{2}=1=1(1+1)(2+1) / 6 . \therefore S(1)$ is true.
(2) Inductive Step:

Assume $S(k)$ is true for some $k \in \mathbb{Z}^{+}$,

$$
\text { i.e. } \sum_{i=1}^{k} i^{2}=k(k+1)(2 k+1) / 6
$$

Then $S(k+1): \sum_{i=1}^{k+1} i^{2}=\sum_{i=1}^{k} i^{2}+(k+1)^{2}$

$$
\begin{aligned}
(\text { By I. H.) }) & =k(k+1)(2 k+1) / 6+(k+1)^{2} \\
& =(k+1)[k(2 k+1) / 6+(k+1)] \\
& =(k+1)\left(2 k^{2}+7 k+6\right) / 6 \\
& =(k+1)(k+2)(2 k+3) / 6, S(k+1) \text { is true }
\end{aligned}
$$

\therefore By Principle of Mathematical Induction, $S(n)$ is true $\forall n \in \mathbf{Z}^{+}$.

§ 4.1 The Well-Ordering Principle: Mathematical Induction

EX 4.6 \square Why need to establish the basis step: (no matter how easy it may be to verify it!)
ex: Let $S(n): \sum_{i=1}^{n} i=\left(n^{2}+n+2\right) / 2$.
Assume $S(k)$ is true for some $k \in \mathbb{Z}^{+}$,

$$
\text { i.e. } \sum_{i=1}^{k} i=\left(k^{2}+k+2\right) / 2 .
$$

The $S(k+1): \sum_{i=1}^{k+1} i=\sum_{i=1}^{k} i+(k+1)$

$$
\begin{aligned}
(\text { By I.H. }) & =\left(k^{2}+k+2\right) / 2+(k+1) \\
& =\left[k^{2}+k+2+2(k+1)\right] / 2 \\
& =\left[(k+1)^{2}+(k+1)+2\right] / 2, S(k+1) \text { is true! }
\end{aligned}
$$

If we can find $S\left(n_{0}\right)$ is true for some $n_{0} \in \mathbf{Z}^{+}$,
Then $S(n)$ is true for all $n \geq n_{0} \in \mathbf{Z}^{+}$.
But, By Ex4.1, $\sum_{i=1}^{n} i=n(n+1) / 2$.
$\Rightarrow n(n+1) / 2=\sum_{i=1}^{n} i=\left(n^{2}+n+1\right) / 2$.
$\Rightarrow 0=1 \quad \rightarrow \leftarrow!!$

§ 4.1 The Well-Ordering Principle: Mathematical Induction

Note \square See Fig. 4.2, using n "+", n " \times ", v.s.
Fig. 4.3, using 2 "+", 3 " \times ".

```
procedure Sum0fSquares1 ( }n\mathrm{ : positive integer)
begin
    sum :=0
    fori:=1 to n do
        sum := sum + i}\mp@subsup{}{}{2
end
```

Figure 4.2

```
procedure SumOfSquares2 ( }n\mathrm{ : positive integer)
begin
    sum:= n*(n+1)*(2*n+1)/6
end
```

Figure 4.3

§ 4．1 The Well－Ordering Principle：Mathematical Induction

Ex 4.7 ［非已知公式］Consider the sum of consecutive odd positive integers：
$\begin{array}{lll}\text { 1）} 1 & =1=1^{2} & \text { 2）} 1+3\end{array}=4=2^{2}$
3） $1+3+5=9=3^{2}$
4） $1+3+5+7=16=4^{2}$
\therefore We conjecture ：$S(n)$ ：$\sum_{i=1}^{n}(2 i-1)=n^{2}$ is true．

Proof it ：

（1）$S(1), S(2), S(3), S(4)$ are true．
（2）Assume $S(k)$ is true，

$$
\text { i.e. } \sum_{i=1}^{k}(2 i-1)=k^{2}
$$

Then，$S(k+1): \sum_{i=1}^{k+1}(2 i-1)=\sum_{i=1}^{k}(2 i-1)+(2 k+1)$

$$
(\text { By I.H. })=k^{2}+2 k+1=(k+1)^{2}
$$

$\therefore S(k+1)$ is true．
By Principle of Mathematical Induction， $S(n)$ is true for all $n \in \mathbb{Z}^{+}$．

§ 4.1 The Well-Ordering Principle: Mathematical Induction

Ex 4.8 [非 $\Sigma]$

$$
\text { Table } 4.1
$$

n	$4 n$	$n^{2}-7$	n	$4 n$	$n^{2}-7$
1	4	-6	5	20	18
2	8	-3	6	24	29
3	12	2	7	28	42
4	16	9	8	32	57

Conjecture $S(n): \forall n \geq 6,4 n<\left(n^{2}-7\right)$.
Proof.
(1) $S(6)$ is true by above table.
(2) Assume $S(k)$ is true for some integer $k \geq 6$, i.e. $4 k<k^{2}-7$. Consider $n=k+1: 4(k+1)=4 k+4<\left(k^{2}-7\right)+4$ (by I.H.)

$$
\begin{aligned}
& \because \forall k \geq 6,2 k+1 \geq 13>4 \\
& \therefore 4(k+1)<\left(k^{2}-7\right)+4<\left(k^{2}-7\right)+2 k+1 \\
& \Rightarrow 4(k+1)<\left(k^{2}+2 k+1\right)-7=(k+1)^{2}-7 . \\
& \therefore S(k+1) \text { is true. }
\end{aligned}
$$

By Principle of Mathematical Induction, $S(n)$ is true $\forall n \geq \mathbf{6}$.

§ 4.1 The Well-Ordering Principle: Mathematical Induction

EX 4.9 \square Harmonic number : $H_{n}=1+1 / 2+1 / 3+\ldots+1 / n . \forall n \in Z^{+}$. Property: $\forall n \in \mathrm{Z}^{+}, \Sigma_{j=1}^{n} H_{j}=(n+1) H_{n}-n$.
Proof.
Let $S(n): \Sigma_{j=1}{ }^{n} H_{j}=(n+1) H_{n}-n$.
(1) $n=1: \Sigma_{j=1}{ }^{1} H_{1}=H_{1}=1=2 \cdot 1-1=(1+1) \cdot H_{1}-1$.
$\therefore S(1)$ is true.
(2) Assume $S(k)$ is true for some $k \in \mathbf{Z}^{+}$,

$$
\text { i.e. } \Sigma_{j=1}^{k} H_{j}=(k+1) H_{k}-k .
$$

Then, consider $n=k+1$:

$$
\begin{aligned}
& \Sigma_{j=1}^{k+1} H_{j}=\Sigma_{j=1}^{k} H_{j}+H_{k+1}=\left[(k+1) H_{k}-k\right]+H_{k+1}(\text { by } I . H .) \\
&=(k+1)\left[H_{k+1}-1 /(k+1)\right]-k+H_{k+1} \\
&=(k+2) H_{k+1}-1-k \\
&=[(k+1)+1] H_{k+1}-(k+1) \quad \therefore S(k+1) \text { is true. }
\end{aligned}
$$

By the Principle of Mathematical Induction, $S(n)$ is true $\forall n \in \mathbb{Z}^{+}$.
(c) Fall 2023, Justie Su-Tzu Juan

EX 4.10 $\square[$ Binary Search $] \forall n \geq 0$, let $A_{n} \subset \mathbb{R}$, where $\left|A_{n}\right|=2^{n}$. And the elements of A_{n} are listed in ascending order. $r \in \mathbb{R}$, prove that: "determine $r \in A_{n}$ or not must compare $\leq n+1$ elements in A_{n} ". Proof. (1/2)
Let $S(n)=$ "determine $r \in A_{n}$ or not, compare $\leq n+1$ elements in A_{n} ".
(1) $n=0: A_{0}=\{a\}$, and only 1 comparison is needed. $1=0+1$,
$\therefore S(0)$ is true.
(2) Assume $S(k)$ is true. For some $k \geq 0$, consider $n=k+1$:
$A_{k+1} \subset \mathbb{R}$ where $\left|A_{k+1}\right|=2^{k+1}$.
Let $A_{k+1}=B_{k} \cup C_{k}$, where $\left|B_{k}\right|=\left|C_{k}\right|=2^{k}$ and the element of $\boldsymbol{B}_{\boldsymbol{k}}, \boldsymbol{C}_{\boldsymbol{k}}$ are in ascending order with $\forall b \in B_{k}, \forall c \in C_{k}, b<c$
Now: a) First we compare r and $x=$ the largest element x in B_{k}.
b) If $r \leq x$, then $r \notin C_{k}$.
c) If $r>x$, then $r \notin B_{k}$.

§4.1 The Well-Ordering Principle: Mathematical Induction

Proof. (2/2)

Both (b), (c) imply, $\because\left|B_{k}\right|=\left|C_{k}\right|=2^{k}$, by I. \boldsymbol{H}.
we can determine where $r \in B_{k}\left(C_{k}\right)$ by making $\leq k+1$ additional comparisons.
\therefore at most $(k+1)+1$ comparisons are made, i.e. $S(k+1)$ is true. By the P. of Math. Induction, the general result follows.

EX $4.11 \square$ Program verification. (略) $S(n)=\forall x, y \in \mathrm{R}$, if the program reaches the top

```
whilen 
    begin
        x := x* y
        n:=n-1
    end
answer:= x
``` of the while loop with \(n \in N\), after the loop is bypassed (for \(n=0\) ) or the two loop instructions are executed \(n(>0)\) times, then the value of the real variable answer is \(x\left(y^{n}\right)\).

Figure 4.4

\section*{§4.1 The Well-Ordering Principle: Mathematical Induction}

Sol.
\(S(n)=\forall x, y \in \mathrm{R}\), if the program reaches the top of the while loop with \(n \in \mathbf{N}\), after the loop is bypassed (for \(n=0\)) or the two loop instructions are executed \(\boldsymbol{n}(>0)\) times, then the value of the real variable answer is \(x\left(y^{n}\right)\).
\(S(0)\) is true. Since when \(n=0\), answer \(=x=x(1)=x\left(y^{0}\right)\).
\(S(k)\) is true \(\Rightarrow S(k+1)\) is true. 利用 " \(x_{1}\) "!
```

    begin
                \(x:=x^{*} y\)
                \(n:=n-1\)
    end
    answer $:=x$

```

Figure 4.4
By I.H., after the while loop for \(x_{1}, y\) and \(n=k\) is bypassed (for \(k=0\)) or two loop instructions are executed \(k(>0)\) times, then answer \(=\)
\[
x_{1}\left(y^{k}\right)=(x y)\left(y^{k}\right)=x\left(y^{k+1}\right)
\]
(c) Fall 2023, Justie Su-Tzu Juan

\section*{§ 4.1 The Well-Ordering Principle: Mathematical Induction}

EX \(4.13 \square S(n)\) : \(n\) can be written as a sum of 3's and/or 8's. Prove \(S(n)\) is true for all \(n \geq 14\).
Proof.
(1) \(n=14: 14=3+3+8, S(14)\) is true.
(2) Assume \(S(k)\) is true. For some \(k \geq 14\),
i.e. \(\exists a, b \in \mathbf{Z}^{+} \cup\{0\}\) such that \(k=a \cdot 3+b \cdot 8\).

Consider \(\boldsymbol{n}=\boldsymbol{k}+1\) :
By I. \(H .: ~ \boldsymbol{k}+\mathbf{1}=\boldsymbol{a} \cdot \mathbf{3 + b} \cdot \mathbf{8 + 1}\) for some \(a, b \in \mathrm{Z}^{+} \cup\{0\}\).
Case 1: if \(b \neq 0\) : then \(k+1=a \cdot 3+(b-1) 8+9\)
\[
=(a+3) \cdot 3+(b-1) \cdot 8 .
\]

Case 2: if \(b=0\) : i.e. \(k+1=a \cdot 3+1\) for some \(a \in Z^{+}\).
\[
\because k \geq 14 \therefore a \geq 5 \text {, i.e. }(a-5) \in \mathbf{Z}^{+} \cup\{0\} \text {. }
\]
\[
\therefore k+1=(a-5) \cdot 3+2 \cdot 8 .
\]

By Case \(1 \& 2, S(k+1)\) is true.
By the Principle of Mathematical Induction, \(S(n)\) is true for all \(n\) \(\geq 14\).

Thm \(4.2 \square\) Principle of Strong Mathematical Induction : (Finite Induction Principle - Alternative Form):
Let \(S(n)\) denote an open mathematical statement that involves the variable \(n \in \mathbf{Z}^{+}\). Let \(n_{0}, n_{1} \in \mathbf{Z}^{+}\)with \(n_{0} \leq n_{1}\),
basis step
a) If \(S\left(n_{0}\right), S\left(n_{0}+1\right), \ldots, S\left(n_{1}-1\right), S\left(n_{1}\right)\) are true; and
inductive step b) If whenever \(S\left(n_{0}\right), S\left(n_{0}+1\right), \ldots, S(k-1), S(k)\) are true for some \(k \in \mathrm{Z}^{+}\), where \(k \geq n_{1}\), then \(S(k+1)\) is also true.
then \(S(n)\) is true \(\forall n \geq n_{0}\).

Remark \(\square \mathbf{A s}\) Thm 4.1, \(\boldsymbol{n}_{\mathbf{0}}\) need not actually be a positive integer.
It may be 0 or negative integer.

\section*{§4.1 The Well-Ordering Principle: Mathematical Induction}

EX 4.14 \(\square\) As EX 4.13, \(\forall n \in \mathbf{Z}^{+}\)where \(n \geq 14\), \(S(n): n\) can be written as a sum of 3 's and/or 8's.
Proof.
(1) \(\because 14=3+3+8 ; 15=3+3+3+3+3 ; 16=8+8\). \(\therefore S(14), S(15), S(16)\) are true. \(\left(n_{0}=14, n_{1}=16\right)\)
(2) Assume \(S(14), S(15), \ldots, S(k-1), S(k)\) are true for some \(k \in \mathbf{Z}^{+}\)with \(k \geq 16\).
Now if \(n=k+1\), then \(n \geq 17\) and \(k+1=(k-2)+3\).
\(\because n_{0}=14 \leq k-2 \leq k, \therefore S(k-2)\) is true. (by I.H.)
i.e. \((k-2)\) can be written as a sum of 3 's and/or 8 's;
so \(k+1=(k-2)+3\) can also be written in this form.
\(\therefore \mathrm{S}(k+1)\) is true.
\(\therefore S(n)\) is true for all \(n \geq 14\) by the Principle of
Strong Mathematical Induction .

\section*{§ 4.1 The Well-Ordering Principle: Mathematical Induction}

Ex 4.15 \(\square\left[\right.\) Using more than one prior result] Let \(a_{0}=1, a_{1}=2, a_{2}=\) 3 and \(a_{n}=a_{n-1}+a_{n-2}+a_{n-3} \forall n \in \mathbf{Z}^{+}\)where \(n \geq 3\).
\[
\text { i.e. } \begin{aligned}
a_{3} & =a_{2}+a_{1}+a_{0}=3+2+1=6 \\
a_{4} & =a_{3}+a_{2}+a_{1}=6+3+2=11 \\
a_{5} & =a_{4}+a_{3}+a_{2}=11+6+3=20
\end{aligned}
\]

Prove: \(a_{n} \leq 3^{n} \forall n \in \mathbf{N}\).
Proof. (1/2)
Let \(S^{\prime}(n): a_{n} \leq 3^{n} \forall n \in \mathbf{N}\).
(1) i) \(a_{0}=1=3^{0} \leq 3^{0}\) ii) \(a_{1}=2 \leq 3=3^{1}\) iii) \(a_{2}=3 \leq 9=3^{2}\).
\(\therefore S^{\prime}(0), S^{\prime}(1), S^{\prime}(2)\) are true.
(2) Assume \(S^{\prime}(0), S^{\prime}(1), S^{\prime}(2), \ldots, S^{\prime}(k-1), S^{\prime}(k)\) are true for some \(k \in \mathbf{Z}^{+}\)where \(k \geq 2\).

\section*{§ 4.1 The Well-Ordering Principle: Mathematical Induction}

Proof. (2/2)
\[
\begin{aligned}
& \text { For } n=k+1 \geq 3, a_{k+1}=a_{k}+a_{k-1}+a_{k-2} \\
& \\
& \leq 3^{k}+3^{k-1}+3^{k-2} \\
& \\
& \leq 3^{k}+3^{k}+3^{k}=3\left(3^{k}\right)=3^{k+1} . \\
& \therefore\left[S^{\prime}(k-2) \wedge S^{\prime}(k-1) \wedge S^{\prime}(k)\right] \Rightarrow S^{\prime}(k+1) .
\end{aligned}
\]

By the Principle of Strong Mathematical Induction, \(a_{n} \leq 3^{n} \forall n \in \mathbf{N}\).

Computer Science and Information Engineering National Chi Nan University

\section*{Discrete Mathematics}

Dr. Justie Su-Tzu Juan

Chap 4 Properties the Integers: Mathematical Induction § 4.2 Recursive Definitions

Slides for a Course Based on the Text Discrete \& Combinatorial Mathematics (5 \({ }^{\text {th }}\) Edition) by Ralph P. Grimaldi

\subsection*{4.2 Recursive Definitions}

Def \(\square\) (1) explicit formula. ex : \(\boldsymbol{b}_{\boldsymbol{n}}=2 \boldsymbol{2} \forall \boldsymbol{n} \in \mathbf{N}\).
(2) recursive definition.
\[
\text { ex : }\left\{\begin{array}{l}
a_{n}=a_{n-1}+a_{n-2}+a_{n-3}, \forall n \in \mathbb{Z}^{+}, n \geq 3 \\
a_{0}=1, a_{1}=2, a_{2}=3
\end{array}\right.
\]
ex: 比較: \(b_{6}=2 \cdot 6=12\)
\[
\begin{aligned}
a_{6} & =a_{5}+a_{4}+a_{3} \\
& =\left[\left(a_{4}+a_{3}+a_{2}\right)+\left(a_{3}+a_{2}+a_{1}\right)+\left(a_{2}+a_{1}+a_{0}\right)\right] \\
& =\ldots
\end{aligned}
\]
(3) a basis for the recursion. \(\mathbf{e x}: a_{0}=1, a_{1}=2, a_{2}=3\) the recursive process.
\[
\text { ex : } a_{n}=a_{n-1}+a_{n-2}+a_{n-3} \forall n \in \mathbf{Z}^{+}, n \geq 3 .
\]

\subsection*{4.2 Recursive Definitions}

EX4.16 \(\square\) Given any statements \(p_{1}, p_{2}, \ldots, p_{n}, p_{n+1}\), we define
1) the conjunction of \(p_{1}, p_{2}\) by \(p_{1} \wedge p_{2}\), and
2) the conjunction of \(p_{1}, p_{2}, \ldots, p_{\boldsymbol{n}}, \boldsymbol{p}_{\boldsymbol{n}+1}\) for \(n \geq 2\) by
\[
p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n} \wedge p_{n+1} \Leftrightarrow\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n}\right) \wedge p_{n+1}
\]
ex : Let \(n \in \mathbf{Z}^{+}\)where \(n \geq 3\), let \(r \in \mathbf{Z}^{+}\)with \(1 \leq r<n\). Then \(S(n):\) For any statements \(p_{1}, p_{2}, \ldots, p_{r}, p_{r+1}, \ldots, p_{n}\),
\[
\begin{aligned}
\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{r}\right) \wedge\left(p_{r+1} \wedge \ldots \wedge\right. & \left.p_{n}\right) \Leftrightarrow \\
& p_{1} \wedge p_{2} \wedge \ldots \wedge p_{r} \wedge p_{r+1} \wedge \ldots \wedge p_{n} .
\end{aligned}
\]

Proof. (1/2)
(1) \(S(3)\) is hold by the associative law of \(\wedge\).
(2) Assume \(S(k)\) is true for \(k \geq 3\) and all \(1 \leq r<k\), Now, Consider \(\boldsymbol{S}(\boldsymbol{k}+1)\) :

\subsection*{4.2 Recursive Definitions}

Proof. (2/2)
case 1. If \(r=k\), then
\(\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{k}\right) \wedge p_{k+1} \Leftrightarrow p_{1} \wedge p_{2} \wedge \ldots \wedge p_{k} \wedge p_{k+1}\)
is true from our recursive definition.
case 2. For \(1 \leq r<\boldsymbol{k}\), we have
\[
\begin{aligned}
\left(p_{1} \wedge\right. & \left.p_{2} \wedge \ldots \wedge p_{r}\right) \wedge\left(p_{r+1} \wedge \ldots \wedge p_{k} \wedge p_{k+1}\right) \\
& \Leftrightarrow\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{r}\right) \wedge\left[\left(p_{r+1} \wedge \ldots \wedge p_{k}\right) \wedge p_{k+1}\right] \\
& \Leftrightarrow\left[\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{r}\right) \wedge\left(p_{r+1} \wedge \ldots \wedge p_{k}\right)\right] \wedge p_{k+1} \\
(\text { by I. H. }) & \Leftrightarrow\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{r} \wedge p_{r+1} \wedge \ldots \wedge p_{k}\right) \wedge p_{k+1} \\
& \Leftrightarrow p_{1} \wedge p_{2} \wedge \ldots \wedge p_{k+1} .
\end{aligned}
\]
\(\therefore\) by the Principle of Mathematical Induction,
\(S(n)\) is true for all \(n \in \mathbb{Z}^{+}\)where \(n \geq 3\).

\subsection*{4.2 Recursive Definitions}

\section*{EX4.17 []U]}

Consider \(A_{1}, A_{2}, \ldots, A_{n+1}\), where \(A_{i} \subseteq U \forall 1 \leq i \leq n+1\), we define their union recursively:
1) The union of \(A_{1}, A_{2}\) is \(A_{1} \cup A_{2}\).
2) The union of \(A_{1}, A_{2}, \ldots A_{n}, A_{n+1}\), for \(n \geq 2\) is \(A_{1} \cup A_{2} \cup \ldots \cup A_{n} \cup A_{n+1}=\left(A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right) \cup A_{n+1}\).
ex \(\square\) "Generalized Associative Law for U":
If \(n, r \in \mathbf{Z}^{+}\), with \(n \geq 3\) and \(1 \leq r<n\), then
\(S(n)=\left(A_{1} \cup A_{2} \cup \ldots \cup A_{r}\right) \cup\left(A_{r+1} \cup \ldots \cup A_{n}\right)\)
\(=A_{1} \cup \ldots \cup A_{r} \cup A_{r+1} \cup \ldots \cup A_{n}\).
Where \(A_{i} \subseteq \mathcal{U}\) for all \(1 \leq i \leq n\).

\subsection*{4.2 Recursive Definitions}

\section*{Proof.}
(1) \(S(3)\) is true from the associative law of \(U\).
(2) Assuming the truth of \(S(k)\) for some \(k \in \mathbb{Z}^{+}\), where \(k \geq 3\) and \(1 \leq r<k\).
Now consider \(\boldsymbol{n}=\boldsymbol{k}+1\) :
case 1. \(r=k\) :
\(\left(A_{1} \cup A_{2} \cup \ldots \cup A_{k}\right) \cup A_{k+1}=A_{1} \cup A_{2} \cup \ldots \cup A_{k} \cup A_{k+1}\)
\(\because\) The given recursive definition.
case 2. \(1 \leq r<k\) :
\(\left(A_{1} \cup A_{2} \cup \ldots \cup A_{r}\right) \cup\left(A_{r+1} \cup \ldots \cup A_{k} \cup A_{k+1}\right)\)
\(=\left(A_{1} \cup A_{2} \cup \ldots \cup A_{r}\right) \cup\left[\left(A_{r+1} \cup \ldots \cup A_{k}\right) \cup A_{k+1}\right]\)
\(=\left[\left(A_{1} \cup \ldots \cup A_{r}\right) \cup\left(A_{r+1} \cup \ldots \cup A_{k}\right)\right] \cup A_{k+1}\)
(by I. H. \()=\left(A_{1} \cup \ldots \cup A_{r} \cup A_{r+1} \cup \ldots \cup A_{k}\right) \cup A_{k+1}\)
\(=A_{1} \cup \ldots \cup A_{r} \cup A_{r+1} \cup \ldots \cup A_{k} \cup A_{k+1}\)
\(\therefore\) By the Principle of Mathematical Induction, \(S(n)\) is true for all integer \(n \geq 3\).
(c) Fall 2023, Justie Su-Tzu Juan

\subsection*{4.2 Recursive Definitions}

Note \(\square[\cap]\) Consider \(A_{1}, A_{2}, \ldots, A_{n+1}\), where
\[
A_{i} \subseteq U \forall 1 \leq i \leq n+1,
\]
we define their intersection recursively:
1) The intersection of \(A_{1}, A_{2}\) is \(A_{1} \cap A_{2}\).
2) For \(n \geq 2\), the intersection of \(A_{1}, A_{2}, \ldots, A_{n}, A_{n+1}\) is
\[
\begin{aligned}
& A_{1} \cap A_{2} \cap \ldots \cap A_{n} \cap A_{n+1} \\
& \quad=\left(A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right) \cap A_{n+1} .
\end{aligned}
\]

\subsection*{4.2 Recursive Definitions}

EX4.18 Let \(n \in \mathbb{Z}^{+}\)Where \(n \geq 2\), and let \(A_{1}, A_{2}, \ldots, A_{n}, \subseteq U\) then \(\overline{A_{1} \cap A_{2} \cap \ldots \cap A_{n}}=\overline{A_{1}} \cup \overline{A_{2}} \cup \ldots \cup A_{n}-\)
Proof.
Let \(S(n)=\overline{A_{1} \cap A_{2} \cap \ldots \cap A_{n}}=\overline{A_{1}} \cup \overline{A_{2}} \cup \ldots \cup A_{n}, n \in \mathbb{Z}^{+}\).
(1) \(n=2, \overline{A_{1} \cap A_{2}}=\overline{A_{1}} \cup \overline{A_{2}}, \because\) the second of DeMorgan's Laws.
(2) Assume for some \(n=k\), where \(k \geq 2\) :
\[
\overline{A_{1} \cap A_{2} \cap \ldots \cap A_{k}}=\overline{A_{1}} \cup \overline{A_{2}} \cup \ldots \cup A_{k}
\]

Now consider \(n=k+1(\geq 3)\) :
\[
\begin{aligned}
& \overline{A_{1} \cap A_{2} \cap \ldots \cap A_{k} \cap A_{k+1}}=\left(\overline{\left.A_{1} \cap A_{2} \cap \ldots \cap A_{k}\right) \cap A_{k+1}}\right. \\
& =\overline{\left(A_{1} \cap A_{2} \cap \ldots \cap A_{k}\right) \cup \overline{A_{k+1}}}=\left(\overline{A_{1}} \cup \overline{\left.A_{2} \cup \ldots \cup A_{k}\right) \cup A_{k+1}}\right. \\
& =\overline{A_{1}} \cup \overline{A_{2}} \cup \ldots \cup A_{k} \cup A_{k+1} \\
& \text { (by I. } \left.H_{.}\right)
\end{aligned}
\]
\(\therefore\) By the Principle of Mathematical Induction,
The generalized DeMorgan Law for \(n \geq 2\) obtained.

\section*{4．2 Recursive Definitions}

Remark：＋，亦可如此定義。事實上，之前已用過了（EX4．1， EX4．3）但之後將可清楚定義。
ex ：（1）Define the sequence of harmonic numbers \(H_{1}, H_{2}, \ldots\), by
1）\(H_{1}=1\) ；and
2）\(\forall n \geq 1, H_{n+1}=H_{n}+\left(\frac{1}{n \square 1}\right)\)
（2）Define \(\boldsymbol{n}\) ！by
1） \(0!=1\) ；and
2）\(\forall n \geq 0,(n+1)!=(n+1) \cdot n!\)
（3）The sequence \(b_{n}=2 n, n \in \mathbf{N}\) can be defined recursively by
1）\(b_{0}=0\) ；and
2）\(\forall n \geq 0, b_{n+1}=b_{n}+2\)
（c）Fall 2023，Justie Su－Tzu Juan

\subsection*{4.2 Recursive Definitions}

EX4.19 \(\square\) The Fibonacci numbers may be defined recursively by
1) \(F_{0}=0, F_{1}=1\); and
2) \(\boldsymbol{F}_{n}=\boldsymbol{F}_{n-1}+F_{n-2}\), for \(\boldsymbol{n} \in \mathbf{Z}^{+}\)with \(\boldsymbol{n} \geq \mathbf{2}\).
\[
\begin{aligned}
& F_{2}=F_{1}+F_{0}=1+0=1 \\
& F_{3}=F_{2}+F_{1}=1+1=2 \\
& F_{4}=F_{3}+F_{2}=2+1=3 \\
& F_{5}=F_{4}+F_{3}=\mathbf{3}+\mathbf{2}=\mathbf{5}
\end{aligned}
\]

觀察:
\[
\begin{aligned}
& F_{0}{ }^{2}+F_{1}{ }^{2}+F_{2}{ }^{2}+F_{3}{ }^{2}+F_{4}{ }^{2} \\
& =0^{2}+1^{2}+1^{2}+2^{2}+3^{2}=15=3 \cdot 5 \\
& F_{0}{ }^{2}+F_{1}{ }^{2}+F_{2}{ }^{2}+F_{3}{ }^{2}+F_{4}{ }^{2}+F_{5}{ }^{2} \\
& =0^{2}+1^{2}+1^{2}+2^{2}+3^{2}+5^{2}=40=5 \cdot 8
\end{aligned}
\]

\subsection*{4.2 Recursive Definitions}
ex : \(\forall n \in \mathbb{Z}^{+}, \Sigma_{i=0, n} F_{i}^{2}=F_{n} \cdot F_{n+1}\)
Proof.
(1) For \(n=1, \Sigma_{i=0,1} F_{i}^{2}=F_{0}^{2}+F_{1}{ }^{2}=0^{2}+1^{2}=1=1 \cdot 1=F_{1} \cdot F_{2}\)

The conjecture is true.
(2) Assume \(n=k, \Sigma_{i=0, k} F_{i}^{2}=F_{k} \cdot F_{k+1}\).

Now, consider \(n=k+1(\geq 2)\) :
\[
\begin{aligned}
\Sigma_{i=0, k+1} F_{i}^{2} & =\Sigma_{i=0, k} F_{i}^{2}+F_{k+1}^{2}=\left(F_{k} \cdot F_{k+1}\right)+F_{k+1}^{2}(\text { by I. H.) } \\
& =F_{k+1} \cdot\left(F_{k}+F_{k+1}\right)=F_{k+1} \cdot F_{k+2}
\end{aligned}
\]
\(\therefore\) The truth of the case for \(n=k+1\) follows
from the case for \(\boldsymbol{n}=\boldsymbol{k}\).
By the Principle of Mathematical Induction, the given conjecture is true for all \(n \in \mathbf{Z}^{+}\).

\subsection*{4.2 Recursive Definitions}

EX4.20 \(\square\) Lucas numbers: defined recursively by
1) \(L_{0}=2, L_{1}=1\); and
2) \(L_{n}=L_{n-1}+L_{n-2}\), for \(n \in \mathbf{Z}^{+}\)with \(n \geq 2\). \(2,1,3,4,7,11,18,29, \ldots\)
ex : \(\forall n \in \mathbb{Z}^{+}, L_{n}=F_{n-1}+F_{n+1}\)
Proof.(1/2)
(1) when \(n=1\) and \(n=2\) :
\[
\begin{aligned}
& L_{1}=1=0+1=F_{0}+F_{2}=F_{1-1}+F_{1+1}, \text { and } \\
& L_{2}=3=1+2=F_{1}+F_{3}=F_{2-1}+F_{2+1},
\end{aligned}
\]
\(\therefore\) The result is true for \(n=1\) and \(n=2\).

\subsection*{4.2 Recursive Definitions}

\section*{Proof.(2/2)}
(2) Assume \(L_{n}=F_{n-1}+F_{n+1}\)
\[
\forall n=1,2, \ldots, k-1, k, \text { where } k \geq 2
\]
and then consider \(L_{k+1}\) :
\[
\begin{aligned}
L_{k+1} & =L_{k}+L_{k-1}=\left(F_{k-1}+F_{k+1}\right)+\left(F_{k-2}+F_{k}\right)(\text { by I. H. }) \\
& =\left(F_{k-1}+F_{k-2}\right)+\left(F_{k+1}+F_{k}\right) \\
& =F_{k}+F_{k+2}=F_{(k+1)-1}+F_{(k+1)+1}
\end{aligned}
\]
\(\therefore\) By the Principle of Strong Mathematical Induction,
\[
L_{n}=F_{n-1}+F_{n+1} \forall n \in \mathbf{Z}^{+} .
\]

\subsection*{4.2 Recursive Definitions}

EX4.21 (1) Define the binomial coefficients recursively by :
\[
\left\{\begin{array}{l}
\left(\mathbf{0}_{0}^{0}\right)=1 ;\left({ }_{r}^{n}\right)=0, \quad \text { if } r<0 \text { or } r>n ; \\
\left(r_{r}^{n+1}\right)=\left({ }_{r}^{n}\right)+\left(\left(_{r-1}^{n}\right), \text { if } n \geq r \geq 0\right.
\end{array}\right.
\]
(2) For \(\boldsymbol{m} \in \mathbf{Z}^{+}, k \in \mathbf{N}\), the Eulerian number \(a_{m, k}\) are defined recursively by
\[
\left\{\begin{array}{l}
a_{0,0}=1 ; a_{m, k}=0, \text { if } k<0 \text { or } k \geq m ; \\
a_{m, k}=(m-k) a_{m-1, k-1}+(k+1) a_{m-1, k}, \text { if } 0 \leq k \leq m-1 .
\end{array}\right.
\]
\[
\begin{aligned}
& \text { (} m=1 \text {) } \\
& \text { (} m=2 \text {) } \\
& \text { (} m=3 \text {) } \\
& (m=4) \\
& \text { (} m=5 \text {) } \\
& \begin{array}{lll}
a_{5,0} 1 & 26 & 66^{a_{5,3}} 26
\end{array}
\end{aligned}
\]
\begin{tabular}{rl}
1 & \(=1!\) \\
2 & \(=2!\) \\
6 & \(=3!\) \\
24 & \(=4!\) \\
120 & \(=5!\)
\end{tabular}

\subsection*{4.2 Recursive Definitions}

Conjecture: \(\Sigma_{k=0}^{m=1} a_{m, k}=m!\forall m \in \mathbf{Z}^{+}\)
Proof.
(1) For \(1 \leq m \leq 5\), it's true.
(2) Assume the result is true for some fixed \(m(\geq 1)\)

Now, consider \(m+1\) :
\(\Sigma_{k=0}^{m} a_{m+1, k}=\Sigma_{k=0}^{m}\left[(m-k+1) a_{m, k-1}+(k+1) a_{m, k}\right]\)
\(=\left[(m+1) a_{m,-1}+a_{m, 0}\right]+\left[m a_{m, 0}+2 a_{m, 1}\right]+\) \(\left[(m-1) a_{m, 1}+3 a_{m, 2}\right]+\ldots+\left[3 a_{m, m-3}+(m-1) a_{m, m-2}\right]+\) \(\left[2 a_{m, m-2}+m a_{m, m-1}\right]+\left[a_{m, m-1}+(m+1) a_{m, m}\right]\)
\(\because a_{m,-1}=0=a_{m, m}\)
\(\therefore \Sigma_{k=0}^{m} a_{m+1, k}=\left[a_{m, 0}+m a_{m, 0}\right]+\left[2 a_{m, 1}+(m-1) a_{m, 1}\right]\) \(+\ldots+\left[(m-1) a_{m, m-2}+2 a_{m, m-2}\right]+\left[m a_{m, m-1}+a_{m, m-1}\right]\)
\(=(m+1) \sum_{k=0}^{m=1} a_{m, k}=(m+1) m!=(m+1)!(\) by I. H. \()\)
\(\therefore\) the result is true for all \(m \geq 1\) by the Principle of Math. Ind.

\subsection*{4.2 Recursive Definitions}

EX4.22 \(\square\) [implicit] Define the set \(X\) recursively by
1) \(1 \in X\); and
2) For each \(a \in X, a+2 \in X\)

Claim that \(X\) consists (precisely) of all positive odd integers
Proof.(1/2)
Let \(Y=\{2 n+1 \mid n \in \mathrm{~N}\}\).
\(\underline{\text { Claim }: ~} X=Y\) (i.e. \(X \subseteq Y\) and \(Y \subseteq X\))
Proof.
(1) \(Y \subseteq X: \forall a \in Y \Rightarrow a=2 n+1\) for some \(n(\sim a \in X)\)
let \(S(n): 2 n+1 \in X, \forall n \in N\).
i) \(S(0): 2 \cdot 0+1=1 \in X\) is true.
ii) Assume \(S(k)\) is true for some \(k \geq 0\), i.e. \(2 k+1\) is an element in \(X\).

\subsection*{4.2 Recursive Definitions}

Proof.(2/2)
By (2) of the recursive definition of \(X\);
\((2 k+1)+2=2(k+1)+1 \in X\)
\(\therefore S(k+1)\) is also true.
\(\therefore S(n)\) is true by the Principle of Mathematical Induction for all \(\boldsymbol{n} \in \mathbf{N}\).
(2) \(X \subseteq Y:(1): 1=2 \cdot 0+1 \in Y\).
(2) : If \(b \in X\) and \(b \in Y\) is true,
then there exist some \(k \geq 0\), s.t. \(b=2 k+1\).
Consider \(b+2 \in X\),
\[
b+2=(2 k+1)+2=2(k+1)+1 \in Y
\]
\(\therefore b \in Y\) by the Principle of Mathematical Induction for all \(b \in X . S o, X \subseteq Y\).
\(\therefore \mathrm{By}(1)\), (2) \(\quad X \subseteq Y\) and \(Y \subseteq X \Rightarrow X=Y\).
(c) Fall 2023, Justie Su-Tzu Juan```

