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§ 3.4  A First Word on Probability

Def :① experiment E、sample space S、event A (Í S)、
               elementary event a (Î A). Let |S| = n.

② Pr(a) = The probability that a occurs = =          
Pr(A) = The probability that A occurs = =    

Ex3.28 ~ Ex3.36: see book.
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§ 3.4  A First Word on Probability

Ex3.31 : 5 cards from a standard deck of 52 cards.  (52
5) = 2598960  

What is the probability:
(a) Three aces and two jacks; (b) three aces and a pair; 
(c) a full house?
Sol.
(a) (4

3) = 4 for aces, (4
2) = 6 for jacks.

Let A = the event where Tanya draws three aces and two jacks. 
\|A| = (4

3) (4
2) = 4×6; Pr(A) = 24 / 2598960 ≈ 0.000009234.

(b) (4
3) = 4 for aces, (12

1) (4
2) = 12×6 = 72 for a pair.

Let B = the event where Tanya draws three aces and a pair. 
\|B| = (4

3) (12
1) (4

2) = 4×72; Pr(B) = 288 / 2598960 ≈ 0.000110814.
(c) (13

1) (4
3) = 13×4 for three something, (12

1) (4
2) = 12×6 = 72 for a pair

Let C = the event where Tanya draws a full house. 
\|C| = (13

1) (4
3) (12

1) (4
2) = 13×288 = 3744; 
Pr(C) = 3744 / 2598960 ≈ 0.001440576.
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§ 3.4  A First Word on Probability

Def : � Cartesian product, or cross product, of A and B = A ´ B
= {(a, b) | a Î A, b Î B }.

� ordered pairs : the element of A ´ B. (form : (a, b))
� (a, b) = (c, d) if and only if a = c and b = d. 

Ex3.32 : A = { 1, 2, 3} and B = {x, y}, then
A ´ B = {(1, x), (1, y), (2, x), (2, y), (3, x), (3, y)}
B ´ A = {(x, 1), (y, 1), (x, 2), (y, 2), (x, 3), (y, 3)}
(1, x) Î A ´ B , (1, x) Ï B ´ A

|A ´ B| = 3×2 = 6 = |A| |B| = |B| |A| = |B ´ A|.
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§ 3.4  A First Word on Probability

Ex3.37 : 120 passengers on airline: 
48: wine; 78: mixed drink; 66: iced tea;
36: 2 beverages; 24: 3 beverages.

Choose two from 120 passengers: what is the probability that: 
a) Event A : they both want only iced tea?
b) Event B : they both enjoy exactly two of the three 

beverage offerings?
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§ 3.4  A First Word on probability

Sol. (1/2)
a + b + c = 36
24 – a – b = 24 + c – 36 = c – 12 ≥ 0
42 – a – c = 42 + b – 36 = b + 6 ≥ 0
54 – b – c = 54 + a – 36 = a + 18 ≥ 0
and 120 = (c – 12) + (b + 6) + (a + 18) + a + b + c + 24 + d 

= 36×2 + 12 + 24 + d = 108 + d
∴ d = 12 
(8 unknowns 6 equations ∴ infinite selected)
ex:
let a = b = 12, then c = 12, 42 – a – c = b + 6 = 18.
let a = b = 10, then c = 16, 42 – a – c = b + 6 = 16.
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§ 3.4  A First Word on probability

Sol. (2/2)
In Book:
|S| = (     ) = 7140

|A| = (     ) = 153

|B| = (     ) = 630

∴ Pr (A) =        , Pr (B) =     . 
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§ 4.1 The Well-Ordering Principle: Mathematical 
Induction

Def : The Well-Ordering Principle : Every nonempty subset 
of Z+ contains a smallest element. (Z+ is well ordered) 

Thm 4.1 : Finite Induction Principle ( or The Principle of 
Mathematical Induction): 

Let S(n) denote an open mathematical statement that 
involves variable n ∈ Z+.

a) If S(1) is true; and
b) If whenever S(k) is true, then S(k + 1) is true; k ∈ Z+.

then S(n)  is true for all n ∈ Z+.
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§ 4.1 The Well-Ordering Principle: Mathematical 
Induction

Proof. Let F = {t ∈ Z+ | S(t) is false}.
If F ¹ f, then by the Well-Ordering Principle, 
∃ s ∈ F such that s is the least element of F.

∵ S(1) is true, ∴ 1 ∉ F, s ¹ 1,
Þ s > 1, s – 1 ∈ Z+.

∵ s is the least element of F, ∴ s – 1 ∉ F. i.e. S(s – 1) is true.
∵ S(s – 1) is true Þ S(s) is true (by (b))

Þ s ∉ F.     ®¬
∴ F = f.

Def : (a) “S(1) is true”: basis step
(b) “S(k) is true Þ S(k + 1) is true” : inductive step

“S(k) is true”: induction hypothesis (I. H.)
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§ 4.1 The Well-Ordering Principle: Mathematical 
Induction

Remark :① 1 ® n0 ∈ Z. sub.
② [S(n0) Ù [∀k ³ n0 [S(k) Þ S(k + 1)]]] Þ ∀n ³ n0 S(n)

Think: Pushing dominoes:
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§ 4.1 The Well-Ordering Principle: Mathematical 
Induction

EX 4.1 : ∀ n ∈ Z+, ån
i = 1 i = 1 + 2 + 3 + … + n = n(n + 1)/2.

Proof.  Let S(n) is ån
i = 1 i = n(n + 1) / 2.

① n = 1 : S(1): å1
i = 11 = 1 = 1×(1 + 1) / 2.      ∴ S(1) is true.

② Assume n = k, S(n) is true for some k ∈ Z+, 
i.e. S(k): åk

i = 1 i = k(k + 1) / 2, is true.
Then, when n = k + 1,
S(k + 1): åk

i 
+
=

1
1 i = 1 + 2 + 3 + … + k + (k + 1)

= (åk
i = 1 i) + (k + 1),

(by I. H.) = (k(k + 1) / 2) + (k + 1)
= [k(k + 1) + 2(k + 1)] / 2
= (k + 1)(k + 2) / 2.

∴ S(k + 1) is true.
By the Principle of Mathematical Induction, 

S(n) is true for all n ∈ Z+.
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§ 4.1 The Well-Ordering Principle: Mathematical 
Induction

EX 4.2 : A wheel painted by 1 to 36 in a random manner. Show 
that ∃ 3 consecutive numbers total 55 or more.

Sol. (By contradiction) Assume x1, x2, …, x36 be the numbers 
labeled in the wheel clockwise.

For the result to be false:
x1 + x2 + x3 < 55
x2 + x3 + x4 < 55
x3 + x4 + x5 < 55 

⋮
x34 + x35 + x36 < 55
x35 + x36 + x1 < 55

+) x36 + x1 + x2 < 55
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

3 å3
i

6
= 1 xi < 36 × 55 
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§ 4.1 The Well-Ordering Principle: Mathematical 
Induction

EX 4.4: ∀ n ∈ Z+, ån
i = 1 i 2 = n(n + 1)(2n + 1) / 6.

Proof.
Let S(n) : ån

i = 1 i 2 = n(n + 1)(2n + 1) / 6.
① Basis Step: S(1) : å1

i = 1 i 2 = 1 = 1(1+1)(2+1) / 6 .  ∴ S(1) is true.
② Inductive Step:

Assume S(k) is true for some k ∈ Z+,
i.e. åk

i = 1 i2 = k(k +1)(2k + 1) / 6.
Then S(k + 1): åk

i 
+
=

1
1 i2 = åk

i = 1 i2 + (k + 1)2

(By I. H.) = k(k +1)(2k + 1) / 6 + (k + 1)2

= (k + 1) [k(2k + 1) / 6 + (k + 1)]
= (k + 1) (2k2 + 7k + 6) / 6
= (k + 1)(k + 2)(2k + 3) / 6, S(k + 1) is true

∴ By Principle of Mathematical Induction, S(n) is true " n Î Z+.
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§ 4.1 The Well-Ordering Principle: Mathematical 
Induction

EX 4.6 : Why need to establish the basis step:
(no matter how easy it may be to verify it!)

ex:   Let S(n) : ån
i = 1 i = (n2 + n + 2) / 2.

Assume S(k) is true for some k Î Z+,
i.e. åk

i = 1 i = (k2 + k + 2) / 2.
The S(k + 1) : åk

i 
+
=

1
1 i = åk

i = 1 i + (k + 1)
(By I.H.) = (k2 + k + 2) / 2 + (k + 1)

= [k2 + k + 2+ 2(k +1)] / 2
= [(k + 1)2 + (k + 1) + 2] / 2, S(k + 1) is true!

If we can find S(n0) is true for some n0 Î Z+,
Then S(n) is true for all n ³ n0 Î Z+.
But, By Ex4.1, ån

i = 1 i = n(n + 1) / 2.
Þ n(n + 1) / 2 = ån

i = 1 i = (n2 + n + 1) / 2.              
Þ 0 = 1        ®¬!! 
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§ 4.1 The Well-Ordering Principle: Mathematical 
Induction

Note : See Fig. 4.2, using n “+”, n “×”, v.s.
Fig. 4.3, using 2 “+”, 3 “×”.
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§ 4.1 The Well-Ordering Principle: Mathematical 
Induction

Ex 4.7 : [非已知公式] Consider the sum of consecutive odd 
positive integers:

1) 1                   =   1 = 12 2) 1 + 3             =   4 = 22

3) 1 + 3 + 5       =   9 = 32 4) 1 + 3 + 5 + 7 = 16 = 42

∴ We conjecture : S(n): ån
i=1 (2i – 1) = n2 is true.

Proof it :
① S(1), S(2), S(3), S(4) are true.
② Assume S(k) is true,

i.e. åk
i=1 (2i – 1) = k2.

Then, S(k + 1): åk
i 

+
=

1
1 (2i – 1) = åk

i=1 (2i – 1)+(2k + 1)
(By I.H.)   = k2 + 2k +1 = (k + 1)2.

∴ S(k + 1) is true.
By Principle of Mathematical Induction,

S(n) is true for all n Î Z+.
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§ 4.1 The Well-Ordering Principle: Mathematical 
Induction

Ex 4.8 : [非å]

Conjecture S(n): " n ³ 6, 4n < (n2 – 7).
Proof.
① S(6) is true by above table.
② Assume S(k) is true for some integer k ³ 6, i.e. 4k < k2 – 7.

Consider n = k + 1: 4(k + 1) = 4k + 4 < (k2 – 7) + 4 (by I.H.)
∵ " k ³ 6, 2k + 1 ³ 13 > 4
∴ 4(k + 1) < (k2 – 7) + 4 < (k2 – 7) + 2k + 1
Þ 4(k + 1) < (k2 + 2k + 1) – 7 = (k + 1)2 – 7.
∴ S(k + 1) is true.

By Principle of Mathematical Induction, S(n) is true " n ³ 6.
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§ 4.1 The Well-Ordering Principle: Mathematical 
Induction

EX 4.9 : Harmonic number : Hn = 1+ 1/2 + 1/3 + … + 1/n. " n Î Z+. 
Property: " n Î Z+, Sj=1

n Hj = (n + 1)Hn – n.
Proof. 

Let S(n) : Sj=1
n Hj = (n + 1)Hn – n.

① n = 1 : Sj=1
1 H1 = H1 = 1 = 2×1 – 1 = (1 + 1) × H1 – 1.    
∴ S(1) is true.

② Assume S(k) is true for some k Î Z+, 
i.e. Sj=1

k Hj = (k + 1)Hk – k.
Then, consider n = k + 1:
Sj=1

k+1 Hj = Sj=1
k Hj + Hk+1= [(k + 1)Hk – k] + Hk+1 (by I.H.)

= (k + 1)[Hk+1 – 1/(k + 1)] – k + Hk+1 
= (k + 2)Hk+1 – 1 – k
= [(k + 1) + 1]Hk+1 – (k + 1)     ∴ S(k + 1) is true.

By the Principle of Mathematical Induction, S(n) is true "n Î Z+.
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§ 4.1 The Well-Ordering Principle: Mathematical 
Induction

EX 4.10 : [Binary Search] " n ³ 0, let An Ì R, where |An| = 2n. And 
the elements of An are listed in ascending order. r Î R, prove that: 
“determine r ÎAn or not must compare £ n + 1 elements in An”.

Proof. (1/2)
Let S(n)=“determine r ÎAn or not, compare £ n+1 elements in An”.
① n = 0: A0 = {a}, and only 1 comparison is needed. 1 = 0 + 1, 

∴ S(0) is true. 
② Assume S(k) is true. For some k ³ 0, consider n = k + 1: 

Ak+1 Ì R where |Ak+1| = 2k+1.
Let Ak+1 = Bk È Ck, where |Bk| = |Ck| = 2k and
the element of Bk, Ck are in ascending order with    

" b Î Bk, " c Î Ck, b < c
Now: a) First we compare r and x = the largest element x in Bk.

b) If r £ x, then r Ï Ck .
c) If r > x, then r Ï Bk .
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§ 4.1 The Well-Ordering Principle: Mathematical 
Induction

Proof. (2/2)
Both (b), (c) imply, ∵ |Bk| = |Ck| = 2k, by I. H.
we can determine where r Î Bk (Ck) by making £ k + 1
additional comparisons. 

∴ at most (k + 1) + 1 comparisons are made, i.e. S(k+1) is true.
By the P. of Math. Induction, the general result follows.

EX 4.11 : Program verification. (略)
S(n) = " x, y Î R, if the program reaches the top 

of the while loop with n Î N, after the loop 
is bypassed (for n = 0) or the two loop 
instructions are executed n (> 0) times, 
then the value of the real variable answer is 
x(yn).

(c) Fall 2023, Justie Su-Tzu Juan 21



§ 4.1 The Well-Ordering Principle: Mathematical 
Induction

Sol. 
S(n) = " x, y Î R, if the program reaches the top of the while loop 

with n Î N, after the loop is bypassed (for n = 0) or the two loop 
instructions are executed n (> 0) times, then the value of the real 
variable answer is x(yn).

S(0) is true. Since when n = 0, answer = x = x(1) = x (y0).
S(k) is true Þ S(k + 1) is true.   利用“x1”!

已知: 
1. The value of y is unchanged
2. The value of x is x1 = x(y1) = xy.
3. The value on n is (k + 1) – 1 = k.

By I.H., after the while loop for x1, y and n = k is bypassed (for k = 0) 
or two loop instructions are executed k (> 0) times, then answer = 

x1(yk) = (xy)(yk) = x(yk + 1).
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§ 4.1 The Well-Ordering Principle: Mathematical 
Induction

EX 4.13 : S(n) : n can be written as a sum of 3’s and/or 8’s. 
Prove S(n) is true for all n ³ 14. 

Proof. 
① n = 14: 14 = 3 + 3 + 8, S (14) is true.
② Assume S(k) is true. For some k ³ 14,

i.e. $ a, b Î Z+È{0} such that k = a × 3 + b × 8.
Consider n = k + 1: 

By I. H.: k + 1 = a × 3 + b × 8 + 1 for some a, b Î Z+ È{0}.
Case 1: if b ¹ 0: then k + 1 = a × 3 + (b – 1)8 + 9 

= (a +3) × 3 + (b – 1) × 8.
Case 2: if b = 0: i.e. k + 1 = a × 3 + 1 for some a Î Z+.

∵ k ³ 14 ∴ a ³ 5,      i.e. (a – 5) Î Z+ È{0}.
∴ k + 1 = (a – 5) × 3 + 2 × 8.

By Case 1 & 2, S(k + 1) is true.
By the Principle of Mathematical Induction, S(n) is true for all n 
³ 14.
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§ 4.1 The Well-Ordering Principle: Mathematical 
Induction

Thm 4.2 : Principle of Strong Mathematical Induction :
(Finite Induction Principle – Alternative Form):

Let S(n) denote an open mathematical statement that involves 
the variable n Î Z+. Let n0, n1 Î Z+ with n0 £ n1,  

basis step        a) If S(n0), S(n0 + 1), … , S(n1 – 1), S(n1) are true; 
and 

inductive step b) If whenever S(n0), S(n0 + 1), … , S(k – 1), S(k) 
are true for some k Î Z+, where k ³ n1, then   
S(k + 1) is also true. 

then S(n) is true " n ³ n0.

Remark : As Thm 4.1, n0 need not actually be a positive integer.             
It may be 0 or negative integer.
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§ 4.1 The Well-Ordering Principle: Mathematical 
Induction

EX 4.14 : As EX 4.13, ∀ n Î Z+ where n ³ 14,
S(n) : n can be written as a sum of 3’s and/or 8’s.

Proof. 
① ∵ 14 = 3 + 3 + 8; 15 = 3 + 3 + 3 + 3 + 3; 16 = 8 + 8.

∴ S(14), S(15), S(16) are true.  (n0 = 14, n1 = 16)
② Assume S(14), S(15), … , S(k –1), S(k) are true for some 

k Î Z+ with k ³ 16. 
Now if n = k + 1, then n ³ 17 and k + 1 = (k – 2) + 3.
∵ n0 = 14 £ k – 2 £ k, ∴ S(k – 2) is true. (by I.H.)

i.e. (k – 2) can be written as a sum of 3’s and/or 8’s;
so k + 1 = (k – 2) + 3 can also be written in this form. 
∴ S(k+1) is true.

∴ S(n) is true for all n ³ 14 by the Principle of 
Strong Mathematical Induction .
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§ 4.1 The Well-Ordering Principle: Mathematical 
Induction

Ex 4.15 : [Using more than one prior result] Let a0 = 1, a1 = 2, a2 = 
3 and an = an–1 + an–2 + a n–3 " n Î Z+ where n ³ 3.

i.e. a3 = a2 + a1 + a0 = 3 + 2 + 1 = 6
a4 = a3 + a2 + a1 = 6 + 3 + 2 = 11
a5 = a4 + a3 + a2 = 11 + 6 + 3 = 20

Prove: an £ 3n " n Î N.
Proof. (1/2)

Let S’(n) : an £ 3n " n Î N.
① i) a0 = 1 = 30£ 30 ii) a1 = 2 £ 3 = 31 iii) a2 = 3 £ 9 = 32.
∴ S’(0), S’(1), S’(2) are true.

② Assume S’(0), S’(1), S’(2), … , S’(k – 1), S’(k) are true 
for some k Î Z+ where k ³ 2.
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§ 4.1 The Well-Ordering Principle: Mathematical 
Induction

Proof. (2/2)
For n = k + 1 ³ 3, ak+1 = ak + ak-1 + ak-2

£ 3k + 3k–1 + 3k–2

£ 3k + 3k + 3k = 3(3k) = 3k+1.
∴ [S’(k – 2) Ù S’(k – 1) Ù S’(k)] Þ S’(k + 1).
By the Principle of Strong Mathematical Induction , 
an £ 3n " n Î N.
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§ 4.2 Recursive Definitions

Def :① explicit formula. ex : bn = 2n " n Î N.
② recursive definition. 

ex :   an = an–1 + an–2 + an–3, " n Î Z+, n ³ 3. 
a0 = 1, a1 = 2, a2 = 3.

ex : 比較 : b6 = 2 × 6 = 12
a6 = a5 + a4 + a3

= [(a4 + a3 + a2)+(a3 + a2 + a1)+(a2 + a1 + a0)]
= …

③ a basis for the recursion. ex : a0 = 1, a1 = 2, a2 = 3
the recursive process.      

ex : an = an–1 + an–2 + an–3 " n Î Z+, n ³ 3. 
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§ 4.2 Recursive Definitions

EX4.16 : Given any statements p1, p2, …, pn, pn+1, we define
1) the conjunction of p1, p2 by p1 Ù p2, and 
2) the conjunction of p1, p2 , …, pn, pn+1 for n ³ 2 by

p1 Ù p2 Ù … Ù pn Ù pn+1 Û (p1 Ù p2 Ù … Ù pn) Ù pn+1

ex : Let n Î Z+ where n ³ 3, let r Î Z+ with 1 £ r < n. Then 
S(n) : For any statements p1, p2, …, pr, pr+1, …, pn, 

(p1Ùp2Ù…Ùpr) Ù (pr+1Ù…Ùpn) Û
p1Ùp2Ù…ÙprÙpr+1Ù…Ùpn.

Proof. (1/2)
① S(3) is hold by the associative law of Ù. 
② Assume S(k) is true for k ³ 3 and all 1 £ r < k,

Now, Consider S(k + 1):                             
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§ 4.2 Recursive Definitions

Proof. (2/2)
case 1. If r = k, then

(p1 Ù p2 Ù … Ù pk) Ù pk+1 Û p1 Ù p2 Ù … Ù pk Ù pk+1
is true from our recursive definition. 

case 2. For 1 £ r < k, we have
(p1 Ù p2 Ù … Ù pr) Ù (pr+1 Ù … Ù pk Ù pk+1)

Û (p1 Ù p2 Ù … Ù pr) Ù [(pr+1 Ù … Ù pk) Ù pk+1]
Û [(p1 Ù p2 Ù … Ù pr) Ù (pr+1 Ù … Ù pk)] Ù pk+1

(by I. H.) Û (p1 Ù p2 Ù … Ù pr Ù pr+1 Ù … Ù pk) Ù pk+1
Û p1 Ù p2 Ù … Ù pk+1.

∴ by the Principle of Mathematical Induction, 
S(n) is true for all n Î Z+ where n ³ 3.
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§ 4.2 Recursive Definitions

EX4.17 : [∪] 
Consider A1, A2, …, An+1, where Ai Í U " 1 £ i £ n + 1,
we define their union recursively:
1) The union of A1, A2 is A1 ∪ A2.
2) The union of A1, A2, … An, An+1, for n ³ 2 is

A1 ∪ A2 ∪ … ∪ An ∪ An+1 = (A1 ∪ A2 ∪ … ∪ An ) ∪ An+1.

ex : “Generalized Associative Law for ∪”:
If n, r Î Z+, with n ³ 3 and 1 £ r < n, then
S(n) = (A1 ∪ A2 ∪ … ∪ Ar) ∪ (Ar+1 ∪ … ∪ An)

= A1 ∪ … ∪ Ar ∪ Ar+1 ∪ … ∪ An.
Where Ai Í U for all 1 £ i £ n.
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§ 4.2 Recursive Definitions

Proof. 
① S(3) is true from the associative law of ∪.
② Assuming the truth of S(k) for some k Î Z+, where k ³ 3 

and 1 £ r < k.
Now consider n = k + 1:
case 1. r = k : 

(A1∪A2∪…∪Ak)∪Ak+1 = A1∪A2∪…∪Ak∪Ak+1
∵ The given recursive definition. 

case 2. 1 £ r < k : 
(A1∪A2∪…∪Ar) ∪ (Ar+1∪…∪Ak∪Ak+1)
= (A1∪A2∪…∪Ar) ∪ [(Ar+1∪…∪Ak) ∪ Ak+1]
= [(A1∪…∪Ar) ∪ (Ar+1∪…∪Ak)] ∪ Ak+1

(by I. H.) = (A1∪…∪Ar∪Ar+1∪…∪Ak) ∪ Ak+1
= A1∪…∪Ar∪Ar+1∪…∪Ak∪Ak+1

∴ By the Principle of Mathematical Induction, 
S(n) is true for all integer n ³ 3. 
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§ 4.2 Recursive Definitions

Note : [∩] Consider A1, A2, …, An+1, where 
Ai Í U " 1 £ i £ n + 1,

we define their intersection recursively:
1) The intersection of A1, A2 is A1 ∩ A2.
2) For n ³ 2, the intersection of A1, A2 , …, An, An+1 is

A1 ∩ A2 ∩ … ∩ An ∩ An+1

= (A1 ∩ A2 ∩ … ∩ An) ∩ An+1.
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§ 4.2 Recursive Definitions

EX4.18 : Let n ∈ Z+ Where n ³ 2, and let A1, A2, …, An, Í U
then A1 ∩ A2 ∩ … ∩ An = A1 ∪ A2 ∪ … ∪ An

Proof. 
Let S(n) = A1 ∩ A2 ∩ … ∩ An = A1 ∪ A2 ∪ … ∪ An , n ∈ Z+.
① n = 2, A1 ∩ A2 = A1 ∪ A2,∵ the second of DeMorgan’s Laws.
② Assume for some n = k, where k ³ 2:

A1 ∩ A2 ∩ … ∩ Ak = A1 ∪ A2 ∪ … ∪ Ak
Now consider n = k + 1 (³ 3):
A1 ∩ A2 ∩ … ∩ Ak ∩ Ak+1 = (A1 ∩ A2 ∩ … ∩ Ak) ∩ Ak+1
= (A1∩ A2 ∩ … ∩ Ak) ∪ Ak+1 = (A1 ∪A2 ∪… ∪ Ak) ∪ Ak+1
= A1 ∪A2 ∪… ∪ Ak ∪ Ak+1                                        (by I. H.)

∴ By the Principle of Mathematical Induction,
The generalized DeMorgan Law for n ³ 2 obtained.
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§ 4.2 Recursive Definitions

Remark : +, ×亦可如此定義。事實上，之前已用過了(EX4.1, 
EX4.3) 但之後將可清楚定義。 

                   
ex :① Define the sequence of harmonic numbers H1, H2, …, by

1) H1 = 1; and
2) " n ³ 1, Hn+1 = Hn +

② Define n! by
1) 0! = 1; and 
2) " n ³ 0, (n + 1) ! = (n + 1) × n !

③ The sequence bn = 2n, n Î N can be defined recursively by
1) b0 = 0; and 
2) " n ³ 0, bn+1 = bn + 2
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§ 4.2 Recursive Definitions

EX4.19 : The Fibonacci numbers may be defined recursively by 
1) F0 = 0, F1 = 1; and
2) Fn = Fn–1 + Fn–2, for n Î Z+ with n ³ 2.

F2 = F1 + F0 = 1 + 0 = 1
F3 = F2 + F1  = 1 + 1 = 2
F4 = F3 + F2 = 2 + 1 = 3
F5 = F4 + F3  = 3 + 2 = 5

觀察:
F0

2 + F1
2 + F2

2 + F3
2 + F4

2

= 02 + 12 + 12 + 22 + 32 = 15 = 3 × 5
F0

2 + F1
2 + F2

2 + F3
2 + F4

2 + F5
2

= 02 + 12 + 12 + 22 + 32 + 52 = 40 = 5 × 8
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§ 4.2 Recursive Definitions

ex : ∀ n ∈ Z+, Si=0, n Fi
2 = Fn × Fn+1

Proof. 
① For n = 1, Si=0, 1Fi

2 = F0
2 + F1

2 = 02 + 12 = 1 = 1 × 1 = F1 × F2
The conjecture is true.

② Assume n = k, Si=0, k Fi
2 = Fk × Fk+1.

Now, consider n = k + 1 (³ 2):
Si=0, k+1Fi

2 = Si=0, k Fi
2 + Fk+1

2 = (Fk × Fk+1) + Fk+1
2 (by I. H.)

= Fk+1 × (Fk + Fk+1) = Fk+1 × Fk+2
∴ The truth of the case for n = k +1 follows 

from the case for n = k.
By the Principle of Mathematical Induction, the given     

conjecture is true for all n ∈ Z+.
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§ 4.2 Recursive Definitions

EX4.20 : Lucas numbers: defined recursively by
1) L0 = 2, L1 = 1; and
2) Ln = Ln–1 + Ln–2 , for n Î Z+ with n ³ 2.

2, 1, 3, 4, 7, 11, 18, 29, … 

ex : ∀ n ∈ Z+, Ln = Fn–1 + Fn+1

Proof.(1/2)
① when n = 1 and n = 2 :

L1 = 1 = 0 + 1 = F0 + F2 = F1–1 + F1+1, and
L2 = 3 = 1 + 2 = F1 + F3 = F2–1 + F2+1, 

∴ The result is true for n = 1 and n = 2.
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§ 4.2 Recursive Definitions

Proof.(2/2)
② Assume Ln = Fn–1 + Fn+1

∀ n = 1, 2, … , k–1, k, where k ³ 2 
and then consider Lk+1 : 

Lk+1 = Lk + Lk-1 = (Fk–1 + Fk+1) + (Fk–2 + Fk) (by I. H.)
= (Fk–1 + Fk–2) + (Fk+1 + Fk)
= Fk + Fk+2 = F(k+1)–1 + F(k+1)+1

∴ By the Principle of Strong Mathematical Induction,
Ln = Fn–1 + Fn+1 ∀ n Î Z+.
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§ 4.2 Recursive Definitions

EX4.21 :① Define the binomial coefficients recursively by :
(0

0) = 1; (r
n) = 0,     if r < 0 or r > n;

(r
n+1) = (r

n) + (r–1
n), if n ³ r ³ 0

② For m Î Z+, k Î N, the Eulerian number am,k are defined 
recursively by

a0,0 = 1; am, k = 0, if k < 0 or k ³ m; 
am,k = (m – k)am–1, k–1 + (k + 1)am–1, k, if 0 £ k £ m – 1. 

Row Sum
(m = 1)                                1                                  1 = 1!
(m = 2)                            1      1 2 = 2!
(m = 3)                        1      4      1                          6 = 3!
(m = 4)                    1     11    11     1                    24 = 4!
(m = 5)                1     26    66    26 1              120 = 5!
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§ 4.2 Recursive Definitions

Conjecture : Sk
m

=
–

0
1 am, k = m! " m Î Z+

Proof.
① For 1 £ m £ 5, it’s true.
② Assume the result is true for some fixed m (³ 1)

Now, consider m + 1:
Sk=

m
0 am+1,k = S k=

m
0 [(m – k + 1)am,k–1 + (k + 1)am,k]

= [(m + 1)am,–1 + am,0] + [m am,0 + 2am,1] +   
[(m – 1)am,1 + 3am,2] + … + [3am,m–3 + (m – 1)am,m–2] +
[2am,m–2 + m am,m–1] + [am,m–1 + (m + 1) am,m]

∵ am, –1 = 0 = am,m
∴ S k =

m
0 am+1,k = [am,0 + m am,0] + [2am,1 + (m – 1)am,1]
+ … +[(m – 1)am,m–2 + 2am,m–2] + [m am,m–1 + am,m–1]

= (m + 1) Sk
m

=
–

0
1 am,k = (m + 1) m ! = (m + 1) ! (by I. H.)

∴ the result is true for all m ³ 1 by the Principle of Math. Ind.
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§ 4.2 Recursive Definitions

EX4.22 : [implicit] Define the set X recursively by
1) 1 Î X; and 
2) For each a Î X, a + 2 Î X

Claim that X consists (precisely) of all positive odd integers    
Proof.(1/2)

Let Y = {2n +1 | n Î N}.
Claim : X = Y (i.e. X Í Y and Y Í X)
Proof.
① Y Í X : " a Î Y Þ a = 2n + 1 for some n (↝ a Î X )

let S(n) : 2n + 1 Î X, " n Î N.
i) S(0) : 2 × 0 + 1 = 1 Î X is true.

ii) Assume S(k) is true for some k ³ 0,
i.e. 2k + 1 is an element in X.
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§ 4.2 Recursive Definitions

Proof.(2/2)
By (2) of the recursive definition of X ;

(2k + 1) + 2 = 2(k + 1) + 1 Î X
∴ S(k + 1) is also true.
∴ S(n) is true by the Principle of Mathematical 

Induction for all n Î N.
② X Í Y : (1) : 1 = 2 × 0 + 1 Î Y.

(2) : If b Î X and b Î Y  is true, 
then there exist some k ³ 0, s.t. b = 2k + 1.
Consider b + 2 Î X,

b + 2 = (2k + 1) + 2 = 2(k + 1) + 1 Î Y
∴ b Î Y by the Principle of Mathematical 

Induction for all bÎ X. So, X Í Y.
∴ By ①, ② X Í Y and Y Í X Þ X = Y.
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