Computer Science and Information Engineering National Chi Nan University Discrete Mathematics Dr. Justie Su-Tzu Juan

Chap 3 Set Theory § 3.4 A First Word on Probability

Slides for a Course Based on the Text Discrete & Combinatorial Mathematics (5th Edition) by Ralph P. Grimaldi

Def: ① experiment *E* · sample space *S* · event *A* (⊆ *S*) · elementary event *a* (∈ *A*). Let |*S*| = *n*.
② *Pr(a)* = *The probability that a occurs* = $\frac{1}{n} = \frac{|\{a\}|}{|S|}$ *Pr(A)* = *The probability that A occurs* = $\frac{|A|}{n} = \frac{|A|}{|S|}$

Ex3.28 ~ Ex3.36: see book.

Ex3.31 : 5 cards from a standard deck of 52 cards. $\binom{52}{5} = 2598960$ What is the probability:

(a) Three aces and two jacks; (b) three aces and a pair;(c) a full house?

Sol.

(a) $\binom{4}{3} = 4$ for aces, $\binom{4}{2} = 6$ for jacks. Let A = the event where Tanya draws three aces and two jacks. $|A| = \binom{4}{3}\binom{4}{2} = 4.6$; $Pr(A) = 24 / 2598960 \approx 0.00009234$. (b) $\binom{4}{3} = 4$ for aces, $\binom{12}{1}\binom{4}{2} = 12 \cdot 6 = 72$ for a pair. Let *B* = the event where Tanya draws three aces and a pair. $|B| = \binom{4}{3} \binom{12}{1} \binom{4}{2} = 4.72; Pr(B) = 288 / 2598960 \approx 0.000110814.$ (c) $\binom{13}{1}\binom{4}{3} = 13.4$ for three something, $\binom{12}{1}\binom{4}{2} = 12.6 = 72$ for a pair Let *C* = the event where Tanya draws a full house. $\therefore |C| = \binom{13}{1} \binom{4}{3} \binom{12}{1} \binom{4}{2} = 13.288 = 3744;$ $Pr(C) = 3744 / 2598960 \approx 0.001440576.$ (c) Fall 2023, Justie Su-Tzu Juan 3

<u>Def</u> : ③ *Cartesian product*, or *cross product*, of *A* and $B = A \times B$ = {(*a*, *b*) | *a* ∈ *A*, *b* ∈ *B* }.

④ *ordered pairs* : the element of *A* × *B*. (form : (*a*, *b*))
⑤ (*a*, *b*) = (*c*, *d*) if and only if *a* = *c* and *b* = *d*.

$$\underline{\text{Ex3.32}} : A = \{1, 2, 3\} \text{ and } B = \{x, y\}, \text{ then} \\ A \times B = \{(1, x), (1, y), (2, x), (2, y), (3, x), (3, y)\} \\ B \times A = \{(x, 1), (y, 1), (x, 2), (y, 2), (x, 3), (y, 3)\} \\ (1, x) \in A \times B, (1, x) \notin B \times A \\ |A \times B| = 3 \cdot 2 = 6 = |A| |B| = |B| |A| = |B \times A|.$$

Ex3.37 : 120 passengers on airline:

- 48: wine; 78: mixed drink; 66: iced tea;
- 36: 2 beverages; 24: 3 beverages.

Choose two from 120 passengers: what is the probability that:

- a) Event A : they both want only iced tea?
- **b)** Event *B* : they both enjoy exactly two of the three

beverage offerings?

Sol. (1/2) a + b + c = 36 $24 - a - b = 24 + c - 36 = c - 12 \ge 0$ $42 - a - c = 42 + b - 36 = b + 6 \ge 0$ $54 - b - c = 54 + a - 36 = a + 18 \ge 0$

and 120 = (c - 12) + (b + 6) + (a + 18) + a + b + c + 24 + d= $36 \cdot 2 + 12 + 24 + d = 108 + d$

 $\therefore d = 12$

(8 unknowns 6 equations : infinite selected)

ex:

let a = b = 12, then c = 12, 42 - a - c = b + 6 = 18. let a = b = 10, then c = 16, 42 - a - c = b + 6 = 16.

Sol. (2/2) **In Book:** $|\mathcal{S}| = (\frac{120}{2}) = 7140$ $|A| = (\frac{18}{2}) = 153$ $|B| = (\frac{36}{2}) = 630$: $Pr(A) = \frac{51}{2380}, Pr(B) = \frac{3}{34}$

(c) Fall 2023, Justie Su-Tzu Juan

Computer Science and Information Engineering National Chi Nan University Discrete Mathematics Dr. Justie Su-Tzu Juan

Chap 4 Properties the Integers: Mathematical Induction § 4.1 The Well-Ordering Principle: Mathematical Induction

Slides for a Course Based on the Text Discrete & Combinatorial Mathematics (5th Edition) by Ralph P. Grimaldi

<u>Def</u> : *The Well-Ordering Principle* : Every nonempty subset of Z⁺ contains a smallest element. (Z⁺ is *well ordered*)

Thm 4.1 : Finite Induction Principle (or The Principle of Mathematical Induction):

Let S(n) denote an open mathematical statement that involves variable $n \in \mathbb{Z}^+$.

a) If S(1) is true; and

b) If whenever S(k) is true, then S(k + 1) is true; $k \in \mathbb{Z}^+$. then S(n) is true for all $n \in \mathbb{Z}^+$.

Proof. Let $F = \{t \in \mathbb{Z}^+ \mid S(t) \text{ is false}\}$. If $F \neq \phi$, then by the Well-Ordering Principle, $\exists s \in F$ such that s is the least element of F. $\because S(1)$ is true, $\therefore 1 \notin F, s \neq 1$, $\Rightarrow s > 1, s - 1 \in \mathbb{Z}^+$. $\because s$ is the least element of $F, \therefore s - 1 \notin F$. i.e. S(s - 1) is true. $\because S(s - 1)$ is true $\Rightarrow S(s)$ is true (by (b)) $\Rightarrow s \notin F. \quad \rightarrow \leftarrow$ $\therefore F = \phi$.

<u>Def</u>: (a) "S(1) is true": **basis step** (b) "S(k) is true \Rightarrow S(k + 1) is true": **inductive step** "S(k) is true": **induction hypothesis** (I. H.)

<u>Remark</u> : ① 1 \rightarrow $n_0 \in \mathbb{Z}$. sub. ② $[S(n_0) \land [\forall k \ge n_0 [S(k) \Rightarrow S(k+1)]]] \Rightarrow \forall n \ge n_0 S(n)$

Think: Pushing dominoes:

11

EX 4.1 : $\forall n \in \mathbb{Z}^+, \sum_{i=1}^n i = 1 + 2 + 3 + ... + n = n(n+1)/2.$ **Proof.** Let S(n) is $\sum_{i=1}^{n} i = n(n+1)/2$. (1) $n = 1 : S(1): \sum_{i=1}^{1} 1 = 1 = 1 \cdot (1+1) / 2.$ $\therefore S(1)$ is true. ② Assume n = k, S(n) is true for some $k \in \mathbb{Z}^+$, i.e. $S(k): \sum_{i=1}^{k} i = k(k+1) / 2$, is true. Then, when n = k + 1, $S(k+1): \sum_{i=1}^{k+1} i = 1+2+3+\ldots+k+(k+1)$ $= (\sum_{i=1}^{k} i) + (k+1),$ (by I. H.) = (k(k + 1) / 2) + (k + 1)= [k(k+1) + 2(k+1)] / 2= (k + 1)(k + 2) / 2. \therefore S(k + 1) is true.

By the Principle of Mathematical Induction, S(n) is true for all $n \in \mathbb{Z}^+$.

EX 4.2 : A wheel painted by 1 to 36 in a random manner. Show that \exists 3 consecutive numbers total 55 or more. **Sol.** (By contradiction) Assume $x_1, x_2, ..., x_{36}$ be the numbers labeled in the wheel clockwise. For the result to be false: $x_1 + x_2 + x_3 < 55$ $3 \sum_{i=1}^{36} x_i = 3 \sum_{i=1}^{36} i$ $x_2 + x_3 + x_4 < 55$ $= 3 \cdot (36 \cdot 37) / 2$ $x_3 + x_4 + x_5 < 55$ $=3\cdot 666$ = 1998 $x_{34} + x_{35} + x_{36} < 55$ $x_{35} + x_{36} + x_1 < 55$ $36 \cdot 55 = 1980$ +) $x_{36} + x_1 + x_2 < 55$. \Rightarrow 1998 < 1980 $3 \sum_{i=1}^{36} x_i < 36 \cdot 55$

EX 4.4: $\forall n \in \mathbb{Z}^+, \sum_{i=1}^n i^2 = n(n+1)(2n+1) / 6.$ **Proof.** Let S(n) : $\sum_{i=1}^{n} i^2 = n(n+1)(2n+1) / 6$. ① Basis Step: $S(1) : \sum_{i=1}^{1} i^2 = 1 = 1(1+1)(2+1) / 6 : \therefore S(1)$ is true. **②** Inductive Step: Assume S(k) is true for some $k \in \mathbb{Z}^+$, i.e. $\sum_{i=1}^{k} i^2 = k(k+1)(2k+1) / 6$. Then S(k+1): $\sum_{i=1}^{k+1} i^2 = \sum_{i=1}^{k} i^2 + (k+1)^2$ (By I. H.) = $k(k+1)(2k+1) / 6 + (k+1)^2$ = (k + 1) [k(2k + 1) / 6 + (k + 1)] $= (k + 1) (2k^2 + 7k + 6) / 6$ = (k + 1)(k + 2)(2k + 3) / 6, S(k + 1) is true \therefore By Principle of Mathematical Induction, S(n) is true $\forall n \in \mathbb{Z}^+$.

EX 4.6: Why need to establish the basis step: (no matter how easy it may be to verify it!) ex: Let S(n) : $\sum_{i=1}^{n} i = (n^2 + n + 2) / 2$. Assume S(k) is true for some $k \in \mathbb{Z}^+$, i.e. $\sum_{i=1}^{k} i = (k^2 + k + 2) / 2$. The S(k+1): $\sum_{i=1}^{k+1} i = \sum_{i=1}^{k} i + (k+1)$ $(Bv I.H.) = (k^2 + k + 2) / 2 + (k + 1)$ $= [k^{2} + k + 2 + 2(k + 1)] / 2$ $= [(k+1)^{2} + (k+1) + 2] / 2, S(k+1)$ is true! If we can find $S(n_0)$ is true for some $n_0 \in \mathbb{Z}^+$, Then S(n) is true for all $n \ge n_0 \in \mathbb{Z}^+$. But, By Ex4.1, $\sum_{i=1}^{n} i = n(n+1) / 2$. $\Rightarrow n(n+1) / 2 = \sum_{i=1}^{n} i = (n^2 + n + 1) / 2.$ $\Rightarrow 0 = 1 \rightarrow \leftarrow !!$

<u>Note</u> : See Fig. 4.2, using *n* "+", *n* "×", v.s. Fig. 4.3, using 2 "+", 3 "×".

procedure SumOfSquares1 (n: positive integer)
begin

```
sum := 0
for i := 1 to n do
    sum := sum + i<sup>2</sup>
end
```

Figure 4.2

procedure SumOfSquares2 (n: positive integer)
begin
 sum := n*(n + 1)*(2*n + 1)/6
end

Figure 4.3

Ex 4.7 : [非已知公式] Consider the sum of consecutive odd positive integers:

 $= 1 = 1^2$ (2) $1 + 3 = 4 = 2^2$ 1)1 3) $1 + 3 + 5 = 9 = 3^2$ 4) $1 + 3 + 5 + 7 = 16 = 4^2$ \therefore We conjecture : S(n): $\sum_{i=1}^{n} (2i-1) = n^2$ is true. **Proof it :** (1) S(1), S(2), S(3), S(4) are true. ② Assume S(k) is true, i.e. $\sum_{i=1}^{k} (2i-1) = k^2$. Then, S(k+1): $\sum_{i=1}^{k+1} (2i-1) = \sum_{i=1}^{k} (2i-1) + (2k+1)$ (By *I.H.*) = $k^2 + 2k + 1 = (k + 1)^2$. \therefore S(k + 1) is true. **By Principle of Mathematical Induction**,

S(n) is true for all $n \in \mathbb{Z}^+$.

Table 4.1

n	4 <i>n</i>	$n^2 - 7$	n	4n	$n^2 - 7$
1	4	-6	5	20	18
2	8	-3	6	24	29
3	12	2	7	28	42
4	16	9	8	32	57

Conjecture *S*(*n*): \forall *n* ≥ 6, 4*n* < (*n*² − 7).

Proof.

Ex 4.8 : [非∑]

① S(6) is true by above table.
② Assume S(k) is true for some integer k ≥ 6, i.e. 4k < k² - 7. Consider n = k + 1: 4(k + 1) = 4k + 4 < (k² - 7) + 4 (by I.H.) ∵ ∀ k ≥ 6, 2k + 1 ≥ 13 > 4 ∴ 4(k + 1) < (k² - 7) + 4 < (k² - 7) + 2k + 1 ⇒ 4(k + 1) < (k² + 2k + 1) - 7 = (k + 1)² - 7. ∴ S(k + 1) is true.

By Principle of Mathematical Induction, S(n) is true $\forall n \ge 6$.

EX 4.9 : *Harmonic number* : $H_n = 1 + 1/2 + 1/3 + ... + 1/n$. $\forall n \in \mathbb{Z}^+$. Property: $\forall n \in \mathbb{Z}^+, \Sigma_{i=1}^n H_i = (n+1)H_n - n$. **Proof.** Let $S(n) : \sum_{i=1}^{n} H_i = (n+1)H_n - n$. (1) $n = 1 : \sum_{i=1}^{n-1} H_1 = H_1 = 1 = 2 \cdot 1 - 1 = (1+1) \cdot H_1 - 1.$ \therefore S(1) is true. ② Assume S(k) is true for some $k \in \mathbb{Z}^+$, i.e. $\sum_{i=1}^{k} H_i = (k+1)H_k - k$. Then, consider n = k + 1: $\sum_{i=1}^{k+1} H_i = \sum_{i=1}^{k} H_i + H_{k+1} = [(k+1)H_k - k] + H_{k+1} (by I.H.)$ $= (k+1)[H_{k+1} - 1/(k+1)] - k + H_{k+1}$ $= (k+2)H_{k+1} - 1 - k$ $= [(k+1)+1]H_{k+1} - (k+1)$ $\therefore S(k+1)$ is true. By the Principle of Mathematical Induction, S(n) is true $\forall n \in \mathbb{Z}^+$.

EX 4.10 : [Binary Search] ∀ n ≥ 0, let A_n ⊂ R, where |A_n| = 2ⁿ. And the elements of A_n are listed in ascending order. r ∈ R, prove that: "determine r ∈ A_n or not must compare ≤ n + 1 elements in A_n". Proof. (1/2)
Let S(n)="determine r ∈ A_n or not, compare ≤ n+1 elements in A_n".
① n = 0: A₀ = {a}, and only 1 comparison is needed. 1 = 0 + 1, ∴ S(0) is true.
② Assume S(k) is true. For some k ≥ 0, consider n = k + 1:

(2) Assume S(k) is true. For some $k \ge 0$, consider n = k + 1: $A_{k+1} \subset \mathbb{R}$ where $|A_{k+1}| = 2^{k+1}$. Let $A_{k+1} = B_k \cup C_k$, where $|B_k| = |C_k| = 2^k$ and the element of B_k , C_k are in ascending order with $\forall b \in B_k$, $\forall c \in C_k$, b < cNow: a) First we compare r and x = the largest element x in B_k . b) If $r \le x$, then $r \notin C_k$. c) If r > x, then $r \notin B_k$.

Proof. (2/2)

Both (*b*), (*c*) imply, $: |B_k| = |C_k| = 2^k$, by *I*. *H*.

we can determine where $r \in B_k(C_k)$ by making $\leq k + 1$ additional comparisons.

∴ at most (k + 1) + 1 comparisons are made, i.e. S(k+1) is true. By the P. of Math. Induction, the general result follows.

EX 4.11: Program verification. (略)

while $n \neq 0$ do	
begin	
$x := x^*y$	
n := n - 1	
end	
answer := x	

 $S(n) = \forall x, y \in \mathbb{R}$, if the program reaches the top of the while loop with $n \in \mathbb{N}$, after the loop is bypassed (for n = 0) or the two loop instructions are executed n (> 0) times, then the value of the real variable *answer* is $x(y^n)$.

Figure 4.4

Sol.

 $S(n) = \forall x, y \in \mathbb{R}$, if the program reaches the top of the while loop with $n \in \mathbb{N}$, after the loop is bypassed (for n = 0) or the two loop instructions are executed n (> 0) times, then the value of the real variable answer is $x(y^n)$. S(0) is true. Since when n = 0, answer $= x = x(1) = x(y^0)$. S(k) is true $\Rightarrow S(k + 1)$ is true. 利用 " x_1 "!

已知:

while $n \neq 0$ do begin x := x*yn := n - 1end answer := x

1. The value of y is unchanged

- 2. The value of x is $x_1 = x(y^1) = xy$.
- 3. The value on *n* is (k + 1) 1 = k.

Figure 4.4

By *I.H.*, after the while loop for x_1 , y and n = k is bypassed (for k = 0) or two loop instructions are executed k (> 0) times, then *answer* = $x_1(y^k) = (xy)(y^k) = x(y^{k+1}).$

(c) Fall 2023, Justie Su-Tzu Juan

EX 4.13 : S(n) : n can be written as a sum of 3's and/or 8's. Prove S(n) is true for all $n \ge 14$.

Proof.

(1) n = 14: 14 = 3 + 3 + 8, S (14) is true. ② Assume S(k) is true. For some $k \ge 14$, i.e. $\exists a, b \in \mathbb{Z}^+ \cup \{0\}$ such that $k = a \cdot 3 + b \cdot 8$. Consider n = k + 1: By *I*. *H*.: $k + 1 = a \cdot 3 + b \cdot 8 + 1$ for some $a, b \in \mathbb{Z}^+ \cup \{0\}$. Case 1: if $b \neq 0$: then $k + 1 = a \cdot 3 + (b - 1)8 + 9$ $= (a+3) \cdot 3 + (b-1) \cdot 8.$ Case 2: if b = 0: i.e. $k + 1 = a \cdot 3 + 1$ for some $a \in \mathbb{Z}^+$. $: k \ge 14 : a \ge 5$, i.e. $(a - 5) \in \mathbb{Z}^+ \cup \{0\}$. $\therefore k+1=(a-5)\cdot 3+2\cdot 8.$ By Case 1 & 2, S(k + 1) is true.

By the Principle of Mathematical Induction, S(n) is true for all $n \ge 14$.

Thm 4.2: Principle of Strong Mathematical Induction : (Finite Induction Principle – Alternative Form): Let S(n) denote an open mathematical statement that involves the variable $n \in \mathbb{Z}^+$. Let $n_0, n_1 \in \mathbb{Z}^+$ with $n_0 \leq n_1$, basis step a) If $S(n_0), S(n_0 + 1), \dots, S(n_1 - 1), S(n_1)$ are true; and inductive step b) If whenever $S(n_0), S(n_0 + 1), \dots, S(k - 1), S(k)$ are true for some $k \in \mathbb{Z}^+$, where $k \geq n_1$, then S(k + 1) is also true. then S(n) is true $\forall n \geq n_0$.

<u>Remark</u> : As <u>Thm 4.1</u>, n_0 need not actually be a positive integer. It may be 0 or negative integer.

EX 4.14 : As EX 4.13, $\forall n \in \mathbb{Z}^+$ where $n \ge 14$, S(n): *n* can be written as a sum of 3's and/or 8's. **Proof.** (1: 14 = 3 + 3 + 8; 15 = 3 + 3 + 3 + 3 + 3; 16 = 8 + 8.: S(14), S(15), S(16) are true. $(n_0 = 14, n_1 = 16)$ **2** Assume S(14), S(15), ..., S(k-1), S(k) are true for some $k \in \mathbb{Z}^+$ with $k \ge 16$. Now if n = k + 1, then $n \ge 17$ and k + 1 = (k - 2) + 3. :: $n_0 = 14 \le k - 2 \le k$, :: S(k - 2) is true. (by I.H.) i.e. (k-2) can be written as a sum of 3's and/or 8's; so k + 1 = (k - 2) + 3 can also be written in this form. \therefore S(k+1) is true. \therefore S(n) is true for all $n \ge 14$ by the Principle of

Strong Mathematical Induction.

Ex 4.15 : [Using more than one prior result] Let $a_0 = 1$, $a_1 = 2$, $a_2 = 1$ 3 and $a_n = a_{n-1} + a_{n-2} + a_{n-3} \forall n \in \mathbb{Z}^+$ where $n \ge 3$. (i.e. $a_3 = a_2 + a_1 + a_0 = 3 + 2 + 1 = 6$ $a_4 = a_3 + a_2 + a_1 = 6 + 3 + 2 = 11$ $a_5 = a_4 + a_3 + a_2 = 11 + 6 + 3 = 20$ Prove: $a_n \leq 3^n \forall n \in \mathbb{N}$. **Proof.** (1/2)Let $S'(n) : a_n \leq 3^n \forall n \in \mathbb{N}$. (1) i) $a_0 = 1 = 3^0 \le 3^0$ ii) $a_1 = 2 \le 3 = 3^1$ iii) $a_2 = 3 \le 9 = 3^2$. :: S'(0), S'(1), S'(2) are true. ② Assume S'(0), S'(1), S'(2), ..., S'(k-1), S'(k) are true for some $k \in \mathbb{Z}^+$ where $k \ge 2$.

Proof. (2/2) For *n* =

For
$$n = k + 1 \ge 3$$
, $a_{k+1} = a_k + a_{k-1} + a_{k-2}$
 $\le 3^k + 3^{k-1} + 3^{k-2}$
 $\le 3^k + 3^k + 3^k = 3(3^k) = 3^{k+1}$.
 $\therefore [S'(k-2) \land S'(k-1) \land S'(k)] \Rightarrow S'(k+1)$.
By the Principle of Strong Mathematical Induction,

 $a_n \leq 3^n \forall n \in \mathbb{N}.$

Computer Science and Information Engineering National Chi Nan University Discrete Mathematics Dr. Justie Su-Tzu Juan

Chap 4 Properties the Integers: Mathematical Induction § 4.2 Recursive Definitions

Slides for a Course Based on the Text Discrete & Combinatorial Mathematics (5th Edition) by Ralph P. Grimaldi

Def: ① *explicit* formula. ex : $b_n = 2n \forall n \in \mathbb{N}$. ② *recursive definition*. ex : $\begin{cases} a_n = a_{n-1} + a_{n-2} + a_{n-3}, \forall n \in \mathbb{Z}^+, n \ge 3. \\ a_0 = 1, a_1 = 2, a_2 = 3. \end{cases}$ ex : 比較 : $b_6 = 2 \cdot 6 = 12$ $a_6 = a_5 + a_4 + a_3$ $= [(a_4 + a_3 + a_2) + (a_3 + a_2 + a_1) + (a_2 + a_1 + a_0)]$ $= \dots$

(3) *a basis for the recursion*. ex : $a_0 = 1$, $a_1 = 2$, $a_2 = 3$ *the recursive process*.

ex : $a_n = a_{n-1} + a_{n-2} + a_{n-3} \forall n \in \mathbb{Z}^+, n \ge 3.$

EX4.16 : Given any statements $p_1, p_2, ..., p_n, p_{n+1}$, we define 1) the conjunction of p_1, p_2 by $p_1 \land p_2$, and 2) the conjunction of $p_1, p_2, ..., p_n, p_{n+1}$ for $n \ge 2$ by $p_1 \land p_2 \land ... \land p_n \land p_{n+1} \Leftrightarrow (p_1 \land p_2 \land ... \land p_n) \land p_{n+1}$

<u>ex</u> : Let $n \in \mathbb{Z}^+$ where $n \ge 3$, let $r \in \mathbb{Z}^+$ with $1 \le r < n$. Then S(n) : For any statements $p_1, p_2, ..., p_r, p_{r+1}, ..., p_n,$ $(p_1 \land p_2 \land ... \land p_r) \land (p_{r+1} \land ... \land p_n) \Leftrightarrow$ $p_1 \land p_2 \land ... \land p_r \land p_{r+1} \land ... \land p_n.$

Proof. (1/2)

- (1) S(3) is hold by the associative law of \wedge .
- **(2)** Assume S(k) is true for $k \ge 3$ and all $1 \le r \le k$,

Now, Consider S(k + 1):

Proof. (2/2)case 1. If r = k, then $(p_1 \land p_2 \land \ldots \land p_k) \land p_{k+1} \Leftrightarrow p_1 \land p_2 \land \ldots \land p_k \land p_{k+1}$ is true from our recursive definition. case 2. For $1 \le r \le k$, we have $(p_1 \wedge p_2 \wedge \ldots \wedge p_r) \wedge (p_{r+1} \wedge \ldots \wedge p_k \wedge p_{k+1})$ $\Leftrightarrow (p_1 \land p_2 \land \ldots \land p_r) \land [(p_{r+1} \land \ldots \land p_k) \land p_{k+1}]$ $\Leftrightarrow [(p_1 \land p_2 \land \ldots \land p_r) \land (p_{r+1} \land \ldots \land p_k)] \land p_{k+1}$ (by I. H.) \Leftrightarrow $(p_1 \land p_2 \land \ldots \land p_r \land p_{r+1} \land \ldots \land p_k) \land p_{k+1}$ $\Leftrightarrow p_1 \wedge p_2 \wedge \ldots \wedge p_{k+1}$ ∴ by the Principle of Mathematical Induction, S(n) is true for all $n \in \mathbb{Z}^+$ where $n \ge 3$.

EX4.17 : [U] Consider $A_1, A_2, ..., A_{n+1}$, where $A_i \subseteq \mathcal{U} \forall 1 \le i \le n+1$, we define their union recursively: 1) The union of A_1, A_2 is $A_1 \cup A_2$. 2) The union of $A_1, A_2, ..., A_n, A_{n+1}$, for $n \ge 2$ is $A_1 \cup A_2 \cup ... \cup A_n \cup A_{n+1} = (A_1 \cup A_2 \cup ... \cup A_n) \cup A_{n+1}$.

ex : "Generalized Associative Law for U":
If
$$n, r \in \mathbb{Z}^+$$
, with $n \ge 3$ and $1 \le r < n$, then
 $S(n) = (A_1 \cup A_2 \cup \ldots \cup A_r) \cup (A_{r+1} \cup \ldots \cup A_n)$
 $= A_1 \cup \ldots \cup A_r \cup A_{r+1} \cup \ldots \cup A_n$.
Where $A_i \subseteq \mathcal{U}$ for all $1 \le i \le n$.

Proof. ① S(3) is true from the associative law of \cup . ② Assuming the truth of S(k) for some $k \in \mathbb{Z}^+$, where $k \geq 3$ and $1 \leq r < k$. Now consider n = k + 1: case 1. r = k: $(A_1 \cup A_2 \cup \dots \cup A_k) \cup A_{k+1} = A_1 \cup A_2 \cup \dots \cup A_k \cup A_{k+1}$ **:** The given recursive definition. case 2. $1 \le r \le k$: $(A_1 \cup A_2 \cup \ldots \cup A_r) \cup (A_{r+1} \cup \ldots \cup A_k \cup A_{k+1})$ = $(A_1 \cup A_2 \cup \dots \cup A_r) \cup [(A_{r+1} \cup \dots \cup A_k) \cup A_{k+1}]$ $= [(A_1 \cup ... \cup A_r) \cup (A_{r+1} \cup ... \cup A_k)] \cup A_{k+1}$ $(by I. H.) = (A_1 \cup ... \cup A_r \cup A_{r+1} \cup ... \cup A_k) \cup A_{k+1}$ $= A_1 \cup \dots \cup A_r \cup A_{r+1} \cup \dots \cup A_k \cup A_{k+1}$ ∴ By the Principle of Mathematical Induction, S(n) is true for all integer $n \ge 3$. (c) Fall 2023, Justie Su-Tzu Juan 33

<u>Note</u> : [∩] Consider $A_1, A_2, ..., A_{n+1}$, where $A_i \subseteq \mathcal{U} \forall 1 \le i \le n+1$, we define their intersection recursively: 1) The intersection of A_1, A_2 is $A_1 \cap A_2$. 2) For $n \ge 2$, the intersection of $A_1, A_2, ..., A_n, A_{n+1}$ is $A_1 \cap A_2 \cap ... \cap A_n \cap A_{n+1}$ $= (A_1 \cap A_2 \cap ... \cap A_n) \cap A_{n+1}$.

EX4.18 : Let $n \in \mathbb{Z}^+$ Where $n \geq 2$, and let $A_1, A_2, \ldots, A_n, \subseteq \mathcal{U}$ then $\overline{A_1 \cap A_2 \cap \ldots \cap A_n} = \overline{A_1} \cup \overline{A_2} \cup \ldots \cup \overline{A_n}$ **Proof.** Let $S(n) = \overline{A_1 \cap A_2 \cap \ldots \cap A_n} = \overline{A_1} \cup \overline{A_2} \cup \ldots \cup \overline{A_n}, n \in \mathbb{Z}^+$. ① n = 2, $\overline{A_1 \cap A_2} = \overline{A_1} \cup \overline{A_2}$, \because the second of DeMorgan's Laws. ② Assume for some n = k, where $k \ge 2$: $\overline{A_1 \cap A_2 \cap \ldots \cap A_k} = \overline{A_1} \cup \overline{A_2} \cup \ldots \cup \overline{A_k}$ Now consider $n = k + 1 (\geq 3)$: $A_1 \cap A_2 \cap \ldots \cap A_k \cap A_{k+1} = (A_1 \cap A_2 \cap \ldots \cap A_k) \cap A_{k+1}$ $= \overline{(A_1 \cap A_2 \cap \ldots \cap A_k)} \cup \overline{A_{k+1}} = (\overline{A_1} \cup \overline{A_2} \cup \ldots \cup A_k) \cup \overline{A_{k+1}}$ $=\overline{A_1}\cup\overline{A_2}\cup\ldots\cup\overline{A_k}\cup\overline{A_{k+1}}$ (by *I. H.*) ∴ By the Principle of Mathematical Induction, The generalized DeMorgan Law for $n \ge 2$ obtained.

 Remark : +, ·亦可如此定義。事實上,之前已用過了(EX4.1,

 EX4.3)
 但之後將可清楚定義。

ex: ① Define the sequence of harmonic numbers $H_1, H_2, ...,$ by 1) $H_1 = 1$; and 2) $\forall n \ge 1, H_{n+1} = H_n + \left(\frac{1}{n+1}\right)$

```
② Define n! by
1) 0! = 1; and
2) ∀ n ≥ 0, (n + 1) ! = (n + 1) ⋅ n !
```

③ The sequence b_n = 2n, n ∈ N can be defined recursively by
1) b₀ = 0; and
2) ∀ n ≥ 0, b_{n+1} = b_n + 2

EX4.19 : *The Fibonacci numbers* may be defined recursively by 1) $F_0 = 0, F_1 = 1$; and 2) $F_n = F_{n-1} + F_{n-2}$, for $n \in \mathbb{Z}^+$ with $n \ge 2$. $F_2 = F_1 + F_0 = 1 + 0 = 1$ $F_3 = F_2 + F_1 = 1 + 1 = 2$ $F_4 = F_3 + F_2 = 2 + 1 = 3$ $F_5 = F_4 + F_3 = 3 + 2 = 5$ 觀察: $F_0^2 + F_1^2 + F_2^2 + F_3^2 + F_4^2$ $= 0^{2} + 1^{2} + 1^{2} + 2^{2} + 3^{2} = 15 = 3 \cdot 5$ $F_0^2 + F_1^2 + F_2^2 + F_3^2 + F_4^2 + F_5^2$ $= 0^{2} + 1^{2} + 1^{2} + 2^{2} + 3^{2} + 5^{2} = 40 = 5 \cdot 8$

ex: $\forall n \in \mathbb{Z}^+, \Sigma_{i=0,n} F_i^2 = F_n \cdot F_{n+1}$ **Proof.** (1) For n = 1, $\sum_{i=0, 1} F_i^2 = F_0^2 + F_1^2 = 0^2 + 1^2 = 1 = 1 \cdot 1 = F_1 \cdot F_2$ The conjecture is true. ② Assume $n = k, \sum_{i=0, k} F_i^2 = F_k \cdot F_{k+1}$. Now, consider $n = k + 1 (\geq 2)$: $\sum_{i=0, k+1} F_i^2 = \sum_{i=0, k} F_i^2 + F_{k+1}^2 = (F_k \cdot F_{k+1}) + F_{k+1}^2 \text{ (by I. H.)}$ $= F_{k+1} \cdot (F_k + F_{k+1}) = F_{k+1} \cdot F_{k+2}$ \therefore The truth of the case for n = k + 1 follows from the case for n = k. By the Principle of Mathematical Induction, the given

conjecture is true for all $n \in \mathbb{Z}^+$.

EX4.20 : *Lucas numbers*: defined recursively by

1)
$$L_0 = 2, L_1 = 1$$
; and
2) $L_n = L_{n-1} + L_{n-2}$, for $n \in \mathbb{Z}^+$ with $n \ge 2$.
2, 1, 3, 4, 7, 11, 18, 29, ...

ex:
$$\forall n \in \mathbb{Z}^+, L_n = F_{n-1} + F_{n+1}$$

Proof.(1/2)
(1) when $n = 1$ and $n = 2$:
 $L_1 = 1 = 0 + 1 = F_0 + F_2 = F_{1-1} + F_{1+1}$, and
 $L_2 = 3 = 1 + 2 = F_1 + F_3 = F_{2-1} + F_{2+1}$,
∴ The result is true for $n = 1$ and $n = 2$.

Proof.(2/2) ② Assume $L_n = F_{n-1} + F_{n+1}$ $\forall n = 1, 2, ..., k-1, k$, where $k \ge 2$ and then consider L_{k+1} : $L_{k+1} = L_k + L_{k-1} = (F_{k-1} + F_{k+1}) + (F_{k-2} + F_k)$ (by *I. H.*) $= (F_{k-1} + F_{k-2}) + (F_{k+1} + F_k)$ $= F_k + F_{k+2} = F_{(k+1)-1} + F_{(k+1)+1}$ \therefore By the Principle of Strong Mathematical Induction,

 $L_n = F_{n-1} + F_{n+1} \forall n \in \mathbb{Z}^+.$

EX4.21 : ① Define the binomial coefficients recursively by : $\int_{n+1}^{n} \binom{n}{r} = 1; \binom{n}{r} = 0, \quad \text{if } r < 0 \text{ or } r > n;$ $\binom{n+1}{r} = \binom{n}{r} + \binom{n}{r-1}, \text{ if } n \ge r \ge 0$ **(2)** For $m \in \mathbb{Z}^+$, $k \in \mathbb{N}$, the *Eulerian number* $a_{m,k}$ are defined recursively by $a_{0,0} = 1; a_{m,k} = 0, \text{ if } k < 0 \text{ or } k \ge m;$ $a_{m,k} = (m-k)a_{m-1,k-1} + (k+1)a_{m-1,k}, \text{ if } 0 \le k \le m-1.$ **Row Sum** *a*_{1,0} 1 (m = 1)1 = 1! $a_{2,0}$ | $a_{2,1}$ | 2 = 2!(m = 2) $a_{3,0}$ 1 4 (m = 3)6 = 3!*a*_{4,0} 1 1 1 1 1 (m=4)24 = 4!(m=5) $a_{5,0}$ **1 26 66** $a_{5,3}$ **26** 120 = 5!1

Conjecture : $\sum_{k=0}^{m-1} a_{m,k} = m! \forall m \in \mathbb{Z}^+$ **Proof.** (1) For $1 \le m \le 5$, it's true. ② Assume the result is true for some fixed $m (\geq 1)$ Now, consider m + 1: $\sum_{k=0}^{m} a_{m+1,k} = \sum_{k=0}^{m} \left[(m-k+1)a_{m,k-1} + (k+1)a_{m,k} \right]$ $= [(m + 1)a_{m,-1} + a_{m,0}] + [m a_{m,0} + 2a_{m,1}] +$ $[(m-1)a_{m,1} + 3a_{m,2}] + ... + [3a_{m,m-3} + (m-1)a_{m,m-2}] +$ $[2a_{m,m-2} + m a_{m,m-1}] + [a_{m,m-1} + (m+1) a_{m,m}]$ $\therefore a_{m,-1} = 0 = a_{m,m}$ $\therefore \sum_{k=0}^{m} a_{m+1,k} = [a_{m,0} + m a_{m,0}] + [2a_{m,1} + (m-1)a_{m,1}]$ + ... + $[(m-1)a_{m,m-2} + 2a_{m,m-2}] + [m a_{m,m-1} + a_{m,m-1}]$ $= (m + 1) \sum_{k=0}^{m-1} a_{m,k} = (m + 1) m ! = (m + 1) ! (by I. H.)$: the result is true for all $m \ge 1$ by the Principle of Math. Ind. (c) Fall 2023, Justie Su-Tzu Juan 42

EX4.22 : [implicit] Define the set *X* recursively by

1) $1 \in X$; and

2) For each $a \in X$, $a + 2 \in X$

Claim that X consists (precisely) of all positive odd integers **Proof.(1/2)**

Let $Y = \{2n + 1 \mid n \in \mathbb{N}\}.$

 $\underline{\text{Claim}}: X = Y \text{ (i.e. } X \subseteq Y \text{ and } Y \subseteq X)$

Proof.

① $Y \subseteq X : \forall a \in Y \Rightarrow a = 2n + 1$ for some $n (\land a \in X)$

let S(n) : 2n + 1 ∈ X, ∀ n ∈ N.
i) S(0) : 2 · 0 + 1 = 1 ∈ X is true.
ii) Assume S(k) is true for some k ≥ 0,
i.e. 2k + 1 is an element in X.

Proof.(2/2)By (2) of the recursive definition of X; $(2k+1)+2=2(k+1)+1 \in X$ \therefore S(k + 1) is also true. : S(n) is true by the Principle of Mathematical Induction for all $n \in \mathbb{N}$. $\bigcirc X \subseteq Y: (1): 1 = 2 \cdot 0 + 1 \in Y.$ (2): If $b \in X$ and $b \in Y$ is true, then there exist some $k \ge 0$, s.t. b = 2k + 1. Consider $b + 2 \in X$, $b + 2 = (2k + 1) + 2 = 2(k + 1) + 1 \in Y$ $\therefore b \in Y$ by the Principle of Mathematical Induction for all $b \in X$. So, $X \subset Y$. \therefore By (1), (2) $X \subseteq Y$ and $Y \subseteq X \Longrightarrow X = Y$.