Computer Science and Information Engineering National Chi Nan University Discrete Mathematics Dr. Justie Su-Tzu Juan

Chap 3 Set Theory

§3.1 Sets and Subsets (2)

Slides for a Course Based on the Text
Discrete \& Combinatorial Mathematics (5 ${ }^{\text {th }}$ Edition) by Ralph P. Grimaldi

3.1 Sets and Subsets

EX 3.7 : (1) Determine the number of subsets of the set $C=\{1$, $2,3,4\}$.
$2 \times 2 \times 2 \times 2=2^{4}=16$ (include ϕ and C)
(2) Determine the number of subsets of two elements from C.
$C(4,2)=6$
(3) $\therefore 2^{4}=C_{0}{ }^{4}+C_{1}{ }^{4}+C_{2}{ }^{4}+C_{3}{ }^{4}+C_{4}{ }^{4}=\sum_{k=0,4} C(4, k)$

Def : The subset of one element \equiv the singleton subset.
Def 3.4 : The power set of \boldsymbol{A}, denoted by $\mathscr{P}(A)\left(\right.$ or $\left.2^{A}\right)$ \equiv The collection of all subsets of A.

3.1 Sets and Subsets

EX 3.8 : $C=\{1,2,3,4\}$

$$
\mathscr{P}(\boldsymbol{C})=\{\phi,
$$

$$
\{1\},\{2\},\{3\},\{4\},
$$

$$
\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}
$$

$$
\{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\}
$$

$$
C\}
$$

Remark : For any finite set A with $|A|=n, n \geq 0$
(1) $|\mathcal{P}(A)|=2^{n}$
(2) $\forall 0 \leq k \leq n$, there are $C(n, k)$ subsets of size k.
(3) $2^{n}=\sum_{k=0}^{n} C(n, k)$

3.1 Sets and Subsets

EX 3.9: Gray Code (略)

$\begin{array}{cc} \mathbf{0} & \phi \\ \mathbf{1} & \{x\} \end{array}$	0	$0 \quad \phi$	000	000	000
	10	$0 \quad\{x\}$	100	010	001
	11	0 ($\{x, y\}$	110	011	101
	01	$0 \quad\{y\}$	010	001	100
$\mathbf{0} \left\lvert\, \begin{array}{lll}0 & \phi\end{array}\right.$	01	1 \{y,z\}	011	101	110
1 0$\{x\}$	11	$1\{x, y, z\}$	111	111	010
$\overline{1} 1$	10	$1\{x, z\}$	101	110	011
0 1 $\{y\}$	00	$1 \quad\{z\}$	001	100	111

3.1 Sets and Subsets

EX 3.10 :

Figure 3.1
(a) $\mathbf{R}, \mathbf{U}, \mathbf{R}, \mathbf{R}, \mathbf{U}, \mathbf{R}, \mathbf{R}, \mathrm{U} \Rightarrow\{2,5,8\}$ from $\{1,2,3,4,5,6,7,8\}$
(b) $\mathbf{U}, \mathbf{R}, \mathbf{R}, \mathbf{R}, \mathbf{U}, \mathbf{U}, \mathbf{R}, \mathbf{R} \Rightarrow\{1,5,6\}$ from $\{1,2,3,4,5,6,7,8\}$
(c) $\mathrm{U}, \mathrm{R}, \mathrm{U}, \mathrm{R}, \mathrm{R}, \mathrm{R}, \mathrm{U}, \mathrm{R} \hookleftarrow\{1,3,7\}$ from $\{1,2,3,4,5,6,7,8\}$

The number of paths equals the number of subsets A of
$\{1,2,3,4,5,6,7,8\}$, where $|A|=3$.
$=C(8,3)=\frac{8}{35!}=56$
("U"改" R " ${ }^{51} \Rightarrow|\boldsymbol{B}|=\mathbf{5} \Rightarrow \boldsymbol{C}(\mathbf{8}, \mathbf{5})=\frac{8!}{53!}=\mathbf{5 6}$)
(c) Fall 2023, Justie Su-Tzu Juan

3.1 Sets and Subsets

EX 3.11 : There are 2^{6} ways to write 7 as a sum of one or more

 positive integers $=$ There are 2^{6} subsets for $\{1,2,3,4,5,6\}$
(2) $\{1,2,5,6\}:(1+1+1)+1+(1+1+1)=3+1+3$

12
56
(3) $1+1+5=1+1+(1+1+1+1+1):\{3,4,5,6\}$

Table 3.1

Composition of 7	Determining Subset of $\{\mathbf{1 , 2 , \mathbf { 3 } , \mathbf { 4 } , \mathbf { 5 } , \mathbf { 6 } \}}$		
(i)	$1+1+1+1+1+1+1$	(i)	\emptyset
(ii)	$1+2+1+1+1+1$	(ii)	$\{2\}$
(iii)	$1+1+3+1+1$	(iii)	$\{3,4\}$
(iv)	$2+3+2$	(iv)	$\{1,3,4,6\}$
(v)	$4+3$	(v)	$\{1,2,3,5,6\}$
(vi)	7	(vi)	$\{1,2,3,4,5,6\}$

(c) Fall 2023, Justie Su-Tzu Juan

3．1 Sets and Subsets

EX 3．12：For integers n, r with $n \geq r \geq 1, C(n+1, r)=C(n, r)+$ $C(n, r-1)$ ．
Sol．
Let $A=\left\{x, a_{1}, a_{2}, \ldots, a_{n}\right\}$
（1）All subsets of A that contains r elements $=C(n+1, r)$ ．
（2）$C \subseteq A$ ，where $x \in C$ and $|C|=r: C(n, r-1)$ ．
（3）$C \subseteq A$ ，where $x \notin C$ and $|C|=r: C(n, r)$ ．
\because（1）$=$（2）+ （3）
$\therefore C(n+1, r)=C(n, r)+C(n, r-1)$ ．
Another Sol．使用EX3．10之方法：
視為 $(0,0)$ 到 $(n+1-r, r)$ 之走法：共 $C(n+1, r)$
$=$ 最後一步為（i） $\mathrm{R}:(n-r, r)$ ；（ii） $\mathrm{U}:(n+1-r, r-1)$
$=C(n, r)+C(n, r-1)$ 。

3.1 Sets and Subsets

EX 3.13 : Find the number of nonnegative integer solutions of

$$
x_{1}+x_{2}+\ldots+x_{6}<10
$$

Sol.
$\forall k, 0 \leq k \leq 9$, the number of solutions to $x_{1}+x_{2}+\ldots+x_{6}=k$ is $\left({ }_{k}{ }^{5+k}\right)$.
\therefore the answer $=\left({ }_{0}^{5}\right)+\left({ }_{1}{ }^{6}\right)+\left({ }_{2}{ }^{7}\right)+\left({ }_{3}{ }^{8}\right)+\ldots+\left({ }_{9}^{14}\right)$

$$
\begin{aligned}
& =\left[\left({ }_{0}{ }^{6}\right)+\left({ }_{1}{ }^{6}\right)\right]+\left(2_{2}{ }^{7}\right)+\left(3_{3}{ }^{8}\right)+\ldots+\left({ }_{9}{ }^{14}\right) \\
& =\left[\left({ }_{1}{ }^{7}\right)+\left({ }_{2}{ }^{7}\right)\right]+\left({ }_{3}{ }^{8}\right)+\ldots+\left({ }_{9}^{14}\right) \\
& =\left[\left(\left(^{8}\right)+\left({ }_{3}{ }^{8}\right)\right]+\ldots+\left({ }_{9}{ }^{14}\right)\right. \\
& =\ldots=\left({ }_{8}^{14}\right)+\left({ }_{9}{ }^{14}\right)=\left({ }_{9}{ }^{15}\right)=5005 .
\end{aligned}
$$

3.1 Sets and Subsets

EX 3.14 : Pascal's triangle.

3.1 Sets and Subsets

Def :

a) $\mathbf{Z}=$ the set of integers $=\{0,1,-1,2,-2,3,-3, \ldots\}$
b) $\mathbf{N}=$ the set of nonnegative integers or natural numbers $=\{0,1,2,3, \ldots\}$
c) $\mathbf{Z}^{+}=$the set of positive integers $=\{1,2,3, \ldots\}=\{x \in \mathbf{Z} \mid x>0\}$
d) $\mathbf{Q}=$ the set of rational numbers $=\{a|b| a, b \in \mathbf{Z}, b \neq 0\}$
e) $\mathbf{Q}^{+}=$the set of positive rational numbers $=\{r \in \mathbf{Q} \mid r>0\}$
f) $\mathrm{Q}^{*}=$ the set of nonzero rational numbers
g) $\mathbf{R}=$ the set of real numbers
h) $\mathbf{R}^{+}=$the set of positive real numbers
i) $\mathbf{R}^{*}=$ the set of nonzero real numbers
j) $\mathbf{C}=$ the set of complex numbers $=\left\{x+y i \mid x, y \in \mathbf{R}, i^{2}=-1\right\}$
k) $\mathrm{C}^{*}=$ the set of nonzero complex numbers

1) For each $n \in \mathbf{Z}^{+}, \mathbf{Z}_{n}=\{0,1,2, \ldots, n-1\}$
m) For real numbers a, b with $a<b,[a, b]=\{x \in \mathbf{R} \mid a \leq x \leq b\}$, $(a, b)=\{x \in \mathbf{R} \mid a<x<b\},[a, b)=\{x \in \mathbf{R} \mid a \leq x<b\},(a, b]=$ $\{x \in \mathbf{R} \mid a<x \leq b\}$. The first set is called a closed interval, the second set an open interval, and the other two sets half-open intervals.

Computer Science and Information Engineering National Chi Nan University
 Discrete Mathematics Dr. Justie Su-Tzu Juan

Chap 3 Set Theory

Set Operations and the Laws of Set Theory

Slides for a Course Based on the Text
Discrete \& Combinatorial Mathematics (5 ${ }^{\text {th }}$ Edition) by Ralph P. Grimaldi

3.2 Set Operations and the Laws of Set Theory

Recall : (1) binary operation : use two operands.
(2) closed :+ under \mathbf{Z}^{+}, / under \mathbf{Q}^{+}.

Def : For $A, B \subseteq U$.
a) $A \cup B$, the union of A and $B=\{x \mid x \in A \vee x \in B\}$.
b) $A \cap B$, the intersection of A and $B=\{x \mid x \in A \wedge x \in B\}$.
c) $\boldsymbol{A} \Delta \boldsymbol{B}$, the symmetric difference of \boldsymbol{A} and \boldsymbol{B}
$\equiv\{x \mid(x \in A \vee x \in B) \wedge(x \notin A \cap B)\}$
$=\{x \mid x \in A \cup B \wedge x \notin A \cap B\}$.
Note : (1) \cup, \cap, Δ are closed binary operations on $\mathscr{P}(\boldsymbol{U})$. i.e if $A, B \subseteq \mathcal{U}, A \cup B, A \cap B, A \Delta B \subseteq U$
(2) $\mathscr{P}(\boldsymbol{U})$ is closed under these operations.

3.2 Set Operations and the Laws of Set Theory

EX $3.15: \mathcal{U}=\{1,2,3, \ldots, 9\}$,

$$
A=\{1,2,3,4,5\}, B=\{3,4,5,6,7\}, C=\{7,8,9\}
$$

a) $\boldsymbol{A} \cap \boldsymbol{B}=\{$
e) $\boldsymbol{A} \Delta \boldsymbol{B}=\{$
b) $\boldsymbol{A} \cup \boldsymbol{B}=\{$
\} f) $\boldsymbol{A} \cup \boldsymbol{C}=\{$
c) $\boldsymbol{B} \cap \boldsymbol{C}=\{$
\} g) $A \Delta C=\{$
d) $A \cap C=$

Note : $A \cap B \subseteq A \subseteq A \cup B$
(1) $x \in A \cap B \Rightarrow(x \in A \wedge x \in B) \Rightarrow x \in A$.
(2) $x \in A \Rightarrow(x \in A \vee x \in B) \Rightarrow x \in A \cup B$.

3.2 Set Operations and the Laws of Set Theory

Def 3．6：Let $S, T \subseteq U, S, T$ are called disjoint（or mutually disjoint $) \equiv S \cap T=\phi$

Thm 3.3 ：If $S, T \subseteq \mathcal{U}$ ，then S and T are disjoint $\Leftrightarrow S \cup T=S \Delta T$
Proof．（1／2）

$$
\begin{gathered}
(\Rightarrow) \forall x \in U: \text { (1) } x \in S \cup T . \\
\because S \cap T=\phi, \therefore x \notin S \cap T . \\
\therefore x \in S \Delta T . \\
\text { i.e. } S \cup T \subseteq S \Delta T . \\
\text { (2) } y \in S \Delta T \Rightarrow y \in S \cup T \wedge y \notin S \cap T . \\
\therefore y \in S \cup T . \\
\text { i.e. } S \Delta T \subseteq S \cup T .(\forall S, T \subseteq U \text { 皆成立 }) \\
\text { by (1), (2), } S \Delta T=S \cup T .
\end{gathered}
$$

S and T are disjoint $\Leftrightarrow S \cup T=S \Delta T$
 3.2 Set Operations and the Laws of Set Theory

Proof. (2/2)
(\Leftarrow) Proof by contradiction.
Assume S and T are not disjoint, $S \cap T \neq \phi$.
Let $x \in S \cap T$, then $x \in S \wedge x \in T$.
$\therefore x \in S \cup T$ and $x \in S \Delta T(=S \cup T)$.
But, $\because x \in S \cap T \wedge x \in S \cup T$ $\Rightarrow x \notin S \Delta T \rightarrow \leftarrow$
\therefore Assumption was incorrect.
i.e. S and T disjoint.

Recall : $2-5=-3 \notin$ N. But $-3 \in \mathrm{Z}$. (superset) minus or negative : the unary (or monary) operation .

3.2 Set Operations and the Laws of Set Theory

Def 3.7 : For a set $A \subseteq U$, the complement of $A, U_{-A}($ or $\bar{A})$

$$
\equiv\{x \mid x \in U \wedge x \notin A\}
$$

$$
\begin{aligned}
\text { EX 3.16: } \mathcal{U} & =\{1,2,3,4,5,6,7,8,9,10\} . \\
A & =\{1,2,3,4,5\}, B=\{3,4,5,6,7\}, C=\{7,8,9\} . \\
\bar{A} & =\{6,7,8,9,10\} . \\
\bar{B} & =\{1,2,8,9,10\} . \\
\bar{C} & =\{1,2,3,4,5,6,10\} .
\end{aligned}
$$

Note : $\forall A \subseteq \mathcal{U}, \bar{A} \subseteq \mathcal{U} . \therefore \mathscr{P}(\mathcal{U})$ is closed under the unary operation.

3.2 Set Operations and the Laws of Set Theory

Def 3.8: For $A, B \subseteq \mathcal{U}$, the (relative) complement of A in B,

$$
B-A \equiv\{x \mid x \in B \wedge x \notin A\}
$$

EX $3.17: \mathcal{U}=\{1,2,3, \ldots, 9\}$,

$$
\begin{aligned}
& A=\{1,2,3,4,5\}, B=\{3,4,5,6,7\}, C=\{7,8,9\} \\
& \begin{array}{lll}
\text { a) } B-A=\{6,7\} & \text { b) } A-B=\{1,2\} & \text { c) } A-C=A \\
\text { d) } C-A=C & \text { e) } A-A=\phi & \text { f) } U-A=\bar{A}
\end{array}
\end{aligned}
$$

3.2 Set Operations and the Laws of Set Theory

EX 3.18 : $u=R$,

$$
A=[1,2], B=[1,3)
$$

a) $A=\{x \mid 1 \leq x \leq 2\} \subseteq\{x \mid 1 \leq x<3\}=B$
b) $\boldsymbol{A} \cup \boldsymbol{B}=\{x \mid 1 \leq x<3\}=\boldsymbol{B}$
c) $\boldsymbol{A} \cap \boldsymbol{B}=\{x \mid 1 \leq x \leq 2\}=A$
d) $\bar{B}=(-\infty, 1) \cup[3,+\infty) \subseteq(-\infty, \mathbf{1}) \cup(2,+\infty)=\bar{A}$

Thm 3.4 : For any sets $A, B \subseteq \mathcal{U}$. TFSAE:
a) $A \subseteq B$
b) $\boldsymbol{A} \cup \boldsymbol{B}=\boldsymbol{B}$
c) $A \cap B=A$
d) $\bar{B} \subseteq \bar{A}$

3.2 Set Operations and the Laws of Set Theory

Proof. (1/2) (prove that $(a) \Rightarrow(b) \Rightarrow(c) \Rightarrow(d) \Rightarrow(a))$
i) $(a) \Rightarrow(b) \quad A \subseteq B \Rightarrow A \cup B=B$
(1) $\boldsymbol{B} \subseteq \boldsymbol{A} \cup \boldsymbol{B}:$ trivial.
(2) $A \cup B \subseteq B: \forall x, x \in A \cup B \Rightarrow x \in A \vee x \in B$ $\because A \subseteq B, \therefore x \in A \Rightarrow x \in B$ i.e. $x \in A \vee x \in B \Rightarrow x \in B$ $\therefore \forall x, x \in A \cup B \Rightarrow x \in B$.
by (1) (2), $\boldsymbol{A} \cup \boldsymbol{B}=\boldsymbol{B}$.
ii) $(\mathrm{b}) \Rightarrow$ (c) $\quad A \bigcup B=B \Rightarrow A \cap B=A$
(1) $A \cap B \subseteq A$: trivial
(2) $A \subseteq A \cap B: \forall y \in A$,
$\because A \cup B=B, \therefore y \in A \Rightarrow y \in A \cup B \Rightarrow y \in B$.
$\therefore y \in A \Rightarrow y \in A \wedge y \in B \Rightarrow y \in A \cap B$.
by (1) (2), $\boldsymbol{A}=\boldsymbol{A} \cap \boldsymbol{B}$.
(c) Fall 2023, Justie Su-Tzu Juan

3.2 Set Operations and the Laws of Set Theory

Proof. (2/2)

$$
\begin{align*}
& \text { iii) } \text { (c) } \Rightarrow \text { (d) : } \quad A \cap B=A \Rightarrow \bar{B} \subseteq \bar{A} \\
& \because A \cap B \subseteq B, \forall x[x \in A \cap B \Rightarrow x \in B] \text {. } \\
& \forall z[z \in \bar{B} \Leftrightarrow z \notin \boldsymbol{B}] \text {. } \\
& \because z \notin B \Rightarrow z \notin A \cap B \Leftrightarrow z \notin A \Leftrightarrow z \in \bar{A}, \\
& \therefore \forall z[z \in \bar{B} \Rightarrow z \in \bar{A}] \text {, that is, } \bar{B} \subseteq \bar{A} \text {. } \\
& \text { iv) }(\mathbf{d}) \Rightarrow \text { (a) : } \\
& \bar{B} \subseteq \bar{A} \Rightarrow A \subseteq B \\
& \forall w, w \in A \Leftrightarrow w \notin \bar{A},------ \tag{1}\\
& \text { If } \boldsymbol{w} \notin \boldsymbol{B} \text {, then } \boldsymbol{w} \in \overline{\boldsymbol{B}} \text {, } \\
& \therefore \mathrm{By}(\mathrm{~d}), w \in \bar{B} \Rightarrow w \in \bar{A} . \tag{2}\\
& \text { By (1)(2), } w \notin \bar{A} \wedge w \in \bar{A} . \rightarrow \leftarrow \\
& \therefore w \in B \text {. (If) } \\
& \text { i.e. } A \subseteq B \text {. }
\end{align*}
$$

3.2 Set Operations and the Laws of Set Theory

The Laws of Set Theory

The Laws of Set Theory

For any sets A, B, and C taken from a universe \because

1) $\overline{\bar{A}}=A$
2) $\overline{\overline{A \cup B}}=\bar{A} \cap \bar{B}$
3) $A \cup B=B \cup A$
$A \cap B=B \cap A$
4) $A \cup(B \cup C)=(A \cup B) \cup C$
$A \cap(B \cap C)=(A \cap B) \cap C$
5) $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$ Distributive Laws $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

Law of Double Complement
DeMorgan's Laws

Commutative Laws

Associative Laws

3.2 Set Operations and the Laws of Set Theory

The Laws of Set Theory

6) $A \cup A=A$
$A \cap A=A$
7) $A \cup \emptyset=A$
$A \cap \because=A$
8) $A \cup \bar{A}=थ$
$A \cap \bar{A}=\emptyset$
9) $A \cup ひ=थ$
$A \cap \emptyset=\varnothing$
10) $A \cup(A \cap B)=A$
$A \cap(A \cup B)=A$

Idempotent Laws

Identity Laws

Inverse Laws

Domination Laws

Absorption Laws

3.2 Set Operations and the Laws of Set Theory

Def 3.9 : Let s be a statement dealing with the equality of two set expressing. Each may involve ≥ 1 sets, $\geq 1 \phi, U, \cap, \cup$.
The dual of s, s^{d} is obtained from s by replacing
(1) $\phi \longleftrightarrow U$;
(2) $\cap \longleftrightarrow \cup$.

Thm 3.5 : The Principle of Duality : Let s denote a theorem dealing with the equality of two set expressions (involving only the set operations \cap and \cup as described in Def 3.9). Then s^{d} is also a theorem .

3.2 Set Operations and the Laws of Set Theory

Note : Thm 3.5 cannot be applied to particular situation.

$$
\begin{array}{rl}
\text { ex }: ~ & U=\{1,2,3,4,5\}, A \\
C & =\{1,2,3,4\}, B=\{1,2,3,5\}, \\
s & : A \cap B=\{1,2,3\} \\
=C \cup D \cup D \\
\text { but } \left., s^{d} \text { cannot hold }: A \cup B=C 1,3\right\} \\
A & \in B=\{1,2,3,4,5\} ; C \cap D=\{1\} .
\end{array}
$$

EX 3.19 : The dual for the statement $A \subseteq B=$?
$A \subseteq B \Leftrightarrow A \cup B=B,($ by Thm 3.4) the dual for $A \cup B=B$ is $A \cap B=B$.
$A \cap B=B \Leftrightarrow \boldsymbol{B} \subseteq A$,
\therefore the dual for $A \subseteq B$ is $B \subseteq A$.

3.2 Set Operations and the Laws of Set Theory

Def : English logician John Venn (1834-1923) : Venn diagram :

(a)

(c)

3.2 Set Operations and the Laws of Set Theory

ex : (1) $\overline{A \cap B}=\bar{A} \cup \bar{B}$
$\overline{A \cap B}$

(a)
$\bar{A} \overline{B A} \bar{B}$

(d)

3.2 Set Operations and the Laws of Set Theory

(2) $(\overline{A \cup B}) \cap \boldsymbol{C}=(\bar{A} \cap \bar{B}) \cup \bar{C}$

Figure 3.7
$(A \cup B) \cap C: 6,7,8$
$(A \cup B) \cap C: 1,2,3,4,5$
$(\bar{A} \cap \bar{B}) \quad: 1,4$
$(\bar{A} \cap \bar{B}) \cup \bar{C}: 1,2,3,4,5----$ (2)
(1) $=$ (2)
(c) Fall 2023, Justie Su-Tzu Juan

3.2 Set Operations and the Laws of Set Theory

Def : membership table
ex : (1) $A, B \subseteq \mathcal{U} . \forall x \in U:$
$\begin{array}{llll}\text { a) } x \notin A, x \notin B & \text { b) } x \notin A, x \in B & \text { c) } x \in A, x \notin B & \text { d) } x \in A, x \in B:\end{array}$ $\begin{array}{lllllllll}0 & 0 & 0 & 1 & 1 & 0 & 1 & 1\end{array}$
(•)

\boldsymbol{A}	\boldsymbol{B}	$\boldsymbol{A} \cap \boldsymbol{B}$	$\boldsymbol{A} \cup \boldsymbol{B}$
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

A	\bar{A}
0	1
1	0

3.2 Set Operations and the Laws of Set Theory

$$
\text { (2) } A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Table 3.3

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	$\boldsymbol{B} \cap \boldsymbol{C}$	$\boldsymbol{A} \cup(\boldsymbol{B} \cap \boldsymbol{C})$	$\boldsymbol{A} \cup \boldsymbol{B}$	$\boldsymbol{A} \cup \boldsymbol{C}$	$(\boldsymbol{A} \cup \boldsymbol{B}) \cap(\boldsymbol{A} \cup \boldsymbol{C})$
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

3．2 Set Operations and the Laws of Set Theory

Remark：（1）Venn 較 membership 簡單。
（2）雨者皆為引起興趣用，尤其對不熟悉證明的讀者；但雨者皆没有明確說明邏輯及理由。
（3）當 set 之數過大 (>3) ，則很難畫。
（4）element argument 是較其他雨者嚴謹的。
Ex 3.20 ：Simplify $(\overline{\boldsymbol{A} \cup B) \cap \boldsymbol{C}} \cup \overline{\boldsymbol{B}}$.
Sol．

$$
\begin{aligned}
& (A \cup B) \cap C \cup \bar{B} \\
& =((\overline{\bar{A} \cup \boldsymbol{B}) \cap \bar{C}}) \cap \overline{\bar{B}}) \\
& =((\boldsymbol{A} \cup \boldsymbol{B}) \cap \boldsymbol{C}) \cap \boldsymbol{B}) \\
& =(\boldsymbol{A} \cup \boldsymbol{B}) \cap(\boldsymbol{C} \cap \boldsymbol{B}) \\
& =(\boldsymbol{A} \cup B) \cap(B \cap C) \\
& =[(\boldsymbol{A} \cup B) \cap B)] \cap C \\
& =B \cap C
\end{aligned}
$$

3.2 Set Operations and the Laws of Set Theory

Ex 3.21 : Express $\overline{A-B}$ in terms of \cup and $^{-}$.
$\overline{\text { Sol. }} \quad \overline{A-B}=\overline{A \cap \bar{B}}=\bar{A} \cup \bar{B}=\bar{A} \cup B$.
Ex $3.22: \overline{A \Delta B}=A \Delta \bar{B}=\bar{A} \Delta B$
Proof.

$$
\begin{aligned}
\overline{\boldsymbol{A} \Delta \boldsymbol{B}} & =(\overline{\boldsymbol{A} \cup \boldsymbol{B})-(\boldsymbol{A} \cap \bar{B})}=(\overline{\boldsymbol{A} \cup \bar{B}}) \cup(\boldsymbol{A} \cap \boldsymbol{B})(\mathrm{by} \operatorname{Ex} 3.21) \\
& =(\boldsymbol{A} \cap \boldsymbol{B}) \cup(\overline{\boldsymbol{A} \cup \boldsymbol{B}})=(\boldsymbol{A} \cap \boldsymbol{B}) \cup(\overline{\boldsymbol{A}} \cap \overline{\boldsymbol{B}}) \\
& =[(\boldsymbol{A} \cap \boldsymbol{B}) \cup \overline{\boldsymbol{A}}] \cap[(\bar{A} \cap \boldsymbol{B}) \cup \overline{\boldsymbol{B}})] \\
& =[(\boldsymbol{A} \cup \overline{\boldsymbol{A}}) \cap(\boldsymbol{B} \cup \overline{\boldsymbol{A}})] \cap[(\boldsymbol{A} \cup \overline{\boldsymbol{B}}) \cap(\boldsymbol{B} \cup \overline{\boldsymbol{B}})] \\
& =[\boldsymbol{U} \cap(\boldsymbol{B} \cup \overline{\boldsymbol{A}})] \cap[(\boldsymbol{A} \cup \overline{\boldsymbol{B}}) \cap \boldsymbol{U})] \\
& =(\boldsymbol{B} \cup \overline{\boldsymbol{A}}) \cap(\boldsymbol{A} \cup \overline{\boldsymbol{B}})=(\overline{\boldsymbol{A}} \cup \boldsymbol{B}) \cap(\overline{\boldsymbol{A}} \cap \boldsymbol{B}) \\
& =(\boldsymbol{A} \cup \overline{\boldsymbol{B}}) \cap(\overline{\boldsymbol{A}} \cup \boldsymbol{B})=(\boldsymbol{A} \cup \overline{\boldsymbol{B}})-(\overline{\boldsymbol{A}} \cap \boldsymbol{B})=\overline{\boldsymbol{A}} \Delta \overline{\boldsymbol{B}})=\boldsymbol{A} \Delta \overline{\boldsymbol{B}} .
\end{aligned}
$$

3.2 Set Operations and the Laws of Set Theory

Def 3.10 : Let I be a nonempty set and \mathcal{U} a universe. $\forall i \in I$, let $A_{i} \subseteq U$. Then I is called an index set (or set of indices), and $\forall i \in I$, i is called an index :
$\cup_{i \in I} A_{i}=\left\{x \mid x \in A_{i}\right.$ for at least one $\left.i \in I\right\}$, and $\cap_{i \in I} A_{i}=\left\{x \mid x \in A_{i}\right.$ for every $\left.i \in I\right\}$

Note: (1) $x \in \cup_{i \in I} A_{i} \Leftrightarrow \exists i ́ \in I\left(x \in A_{i}\right)$.
(2) $x \in \cap_{i \in I} A_{i} \Leftrightarrow \forall i \in I\left(x \in A_{i}\right)$.
(3) $x \notin \cup \cup_{i \in I} \Leftrightarrow \forall i \in I\left(x \notin A_{i}\right)$.
(4) $x \notin \cap A_{i \in I} \Leftrightarrow \exists i ́ \in I\left(x \notin A_{i}\right)$.

3.2 Set Operations and the Laws of Set Theory

Note: (5) If $I=\mathrm{Z}^{+}: \cup_{i \in Z^{+}} A_{i}=A_{1} \cup A_{2} \cup \cdots=\bigcup_{i=1}^{\infty} A_{i}$

$$
\cap_{i \in \mathbb{I}^{+}} A_{i}=A_{1} \cap A_{2} \cap \cdots=\bigcap_{i=1}^{\infty} A_{i}
$$

Ex 3.23 : Let $I=\{3,4,5,6,7\}$.
$\forall i \in I$, let $A_{i}=\{\mathbf{1 , 2 , 3}, \ldots, i\} \subseteq U=\mathbf{Z}^{+}$.
(1) $\cup_{i \in 1} A_{i}=\cup_{i=3}^{\top} A_{i}=\{1,2,3, \ldots, 7\}=A_{7}$.
(2) $\cap A_{i}=\{1,2,3\}=A_{3}$.

Ex 3.24 : Let $\mathcal{U}=\mathbf{R}$ and $I=\mathbf{R}^{+}, \forall r \in \mathbf{R}, A_{r}=[-r, r]$, then
(1) $\cup_{r \in I} A_{r}=\mathrm{R}$.
(2) $\cap_{r \in I} A_{r}=\{0\}$.
(c) Fall 2023, Justie Su-Tzu Juan

3．2 Set Operations and the Laws of Set Theory

Note ：Venn diagram and membership table are useless when dealing with generalized union and intersection．

Thm 3．6 ：Generalized De Morgan＇s laws ： Let I be an index set where $\forall i \in I, A_{i} \subseteq U$ ．Then

$$
\begin{array}{ll}
\text { a) } \overline{\bigcup_{i \in I} A_{i}}=\bigcap_{i \in I} \overline{A_{i}} & \text { b) } \overline{\bigcap_{\in I} A_{i}}=\bigcup_{i \in I} \overline{A_{i}}
\end{array}
$$

Proof．
（a）$\forall x \in \mathcal{U}: x \in \overline{\cup_{i \in I} A_{i}} \Leftrightarrow x \notin \cup_{i \in I} A_{i}$
$\Leftrightarrow x \notin A_{i}$ ，for all $i \in I$
$\Leftrightarrow x \in \overline{A_{i}}$ ，for all $i \in I$
$\Leftrightarrow x \in \cap_{i \in I} \bar{A}_{i}$
（b）exercise．加做第20題

Computer Science and Information Engineering National Chi Nan University Discrete Mathematics Dr. Justie Su-Tzu Juan

Chap 3 Set Theory
 Counting and Venn Diagrams

Slides for a Course Based on the Text
Discrete \& Combinatorial Mathematics (5 ${ }^{\text {h }}$ Edition) by Ralph P. Grimaldi

3.3 Counting and Venn Diagrams

Thm : (Chap 8)
(1) $|\boldsymbol{A} \cup B|=|A|+|B|-|\boldsymbol{A} \cap B| ;$

If A and B are disjoint $\Leftrightarrow|A \cup B|=|A|+|B|$.
(2) $|\bar{A} \cap \bar{B}|=|\overline{\boldsymbol{A} \cup B}|=|\mathcal{U}|-|\boldsymbol{A} \cup B|=|\mathcal{U}|-|A|-|B|+|\boldsymbol{A} \cap B|$.

(c) Fall 2023, Justie Su-Tzu Juan

3.3 Counting and Venn Diagrams

Thm : (Chap 8)
(3) $|A \cup B \cup C|=|A|+|B|+|C|-|A \cap B|-|A \cap C|-|B \cap C|$ $+|A \cap B \cap C|$.
(4) $|\bar{A} \cap \bar{B} \cap \bar{C}|=|\overline{A \cup B \cup C}|=|\mathcal{U}|-|\boldsymbol{A} \cup B \cup C|$
$=|\mathcal{U}|-|A|-|B|-|C|+|A \cap B|+|B \cap C|$
$+|C \cap A|-|A \cap B \cap C|$.

(c) Fall 2023, Justie Su-Tzu Juan

Computer Science and Information Engineering National Chi Nan University Discrete Mathematics Dr. Justie Su-Tzu Juan

Chap 3 Set Theory

 §3.4 A First Word on Probability

Slides for a Course Based on the Text
Discrete \& Combinatorial Mathematics (5 ${ }^{\text {h }}$ Edition) by Ralph P. Grimaldi

3.4 A First Word on Probability

Def : (1) experiment \mathcal{E} • sample space S •event $A(\subseteq S)$, elementary event $a(\in A)$. Let $|S|=n$.
(2) $\operatorname{Pr}(a)=$ The probability that a occurs $=\frac{1}{n}=\frac{\mid\{a| |}{|S|}$

$$
\operatorname{Pr}(A)=\text { The probability that } A \text { occurs }=\frac{|A|}{n}=\frac{|A|}{|S|}
$$

Ex3.28 ~ Ex3.36: see book.

3.4 A First Word on Probability

Ex3.31:5 cards from a standard deck of 52 cards. $\left({ }_{5}^{52}\right)=2598960$ What is the probability:
(a) Three aces and two jacks; (b) three aces and a pair;
(c) a full house?

Sol.
(a) $\binom{4}{3}=\mathbf{4}$ for aces, $\binom{4}{2}=\mathbf{6}$ for jacks.

Let $A=$ the event where Tanya draws three aces and two jacks.
$\therefore|A|=\binom{4}{3}\binom{4}{2}=4 \cdot 6 ; \operatorname{Pr}(A)=24 / 2598960 \approx 0.000009234$.
(b) $\binom{4}{3}=\mathbf{4}$ for aces, $\binom{12}{1}\binom{4}{2}=\mathbf{1 2 \cdot 6}=\mathbf{7 2}$ for a pair.

Let $\boldsymbol{B}=$ the event where Tanya draws three aces and a pair.
$\therefore|B|=\binom{4}{3}\binom{12}{1}\binom{4}{2}=4 \cdot 72 ; \operatorname{Pr}(B)=288 / 2598960 \approx 0.000110814$.
(c) $\binom{13}{1}\binom{4}{3}=\mathbf{1 3 . 4}$ for three something, $\binom{12}{1}\binom{4}{2}=\mathbf{1 2 . 6}=\mathbf{7 2}$ for a pair

Let $C=$ the event where Tanya draws a full house.
$\therefore|C|=\binom{13}{1}\binom{4}{3}\binom{12}{1}\binom{4}{2}=\mathbf{1 3} \cdot 288=3744$;

3.4 A First Word on Probability

Def : (3) Cartesian product, or cross product, of \boldsymbol{A} and $B=A \times B$

$$
=\{(a, b) \mid a \in A, b \in B\}
$$

(4) ordered pairs : the element of $\boldsymbol{A} \times \boldsymbol{B}$. (form : $(\boldsymbol{a}, \boldsymbol{b})$)
(5) $(a, b)=(c, d)$ if and only if $a=c$ and $b=d$.

Ex3.32 : $A=\{1,2,3\}$ and $B=\{x, y\}$, then

$$
\begin{aligned}
& A \times B=\{(1, x),(1, y),(2, x),(2, y),(3, x),(3, y)\} \\
& B \times A=\{(x, 1),(y, 1),(x, 2),(y, 2),(x, 3),(y, 3)\} \\
&(1, x) \in A \times B,(1, x) \notin B \times A \\
&|A \times B|=3 \cdot 2=6=|A||B|=|B||A|=|B \times A|
\end{aligned}
$$

3．4 A First Word on Probability

Ex3．37： 120 passengers on airline： 48：wine；78：mixed drink；66：iced tea； 36： 2 beverages；24： 3 beverages．
自 120 位中任選 2 位；what is the probability that：
a）Event A ：they both want only iced tea？
b）Event B ：they both enjoy exactly two of the three
 beverage offerings？

3.4 A First Word on probability

Sol. (1/2)

$$
\begin{aligned}
& a+b+c=36 \\
& 24-a-b=24+c-36=c-12 \geq 0 \\
& 42-a-c=42+b-36=b+6 \geq 0 \\
& 54-b-c=54+a-36=a+18 \geq 0
\end{aligned}
$$

$$
\text { and } 120=(c-12)+(b+6)+(a+18)+a+b+c+24+d
$$

$$
=36 \cdot 2+12+24+d=108+d
$$

$\therefore d=12$
(8 unknowns 6 equations \therefore infinite selected)
ex:
let $\mathrm{a}=b=12$, then $c=12,42-a-c=b+6=18$. let $\mathrm{a}=b=10$, then $c=16,42-a-c=b+6=16$.

3.4 A First Word on probability

Sol. (2/2)
In Book:
$|S|=\binom{120}{2}=7140$
$|A|=\binom{18}{2}=153$

$|B|=\binom{36}{2}=630$
$\therefore \operatorname{Pr}(\boldsymbol{A})=\frac{51}{2380}, \operatorname{Pr}(\boldsymbol{B})=\frac{3}{34}$.

