Computer Science and Information Engineering National Chi Nan University Discrete Mathematics Dr. Justie Su-Tzu Juan

Chap 3 Set Theory

I Sets and Subsets (2)

Slides for a Course Based on the Text Discrete & Combinatorial Mathematics (5th Edition) by Ralph P. Grimaldi

EX 3.7 : ① Determine the number of subsets of the set $C = \{1, 2, 3, 4\}$.

 $2 \times 2 \times 2 \times 2 = 2^4 = 16$ (include ϕ and *C*)

② Determine the number of subsets of two elements from *C*.

$$C(4, 2) = 6$$

3 $\therefore 2^4 = C_0^4 + C_1^4 + C_2^4 + C_3^4 + C_4^4 = \sum_{k=0,4} C(4,k)$

Def : The subset of one element = the *singleton* subset.

<u>Def 3.4</u> : The *power set* of A , denoted by $\mathscr{P}(A)$ (or 2^A) ≡ The collection of all subsets of A .

$$\underline{EX 3.8}: C = \{1, 2, 3, 4\} \\
 $\mathcal{P}(C) = \{\phi, \\
 \{1\}, \{2\}, \{3\}, \{4\}, \\
 \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \\
 \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}, \\
 C\}$$$

Remark : For any finite set *A* with $|A| = n, n \ge 0$

EX 3.9: Gray Code (略)

		00	0	ϕ	000	000	000
0	ϕ	10	0	<i>{x}</i>	100	010	001
1	<i>{x}</i>	11	0	$\{x, y\}$	110	011	101
		01	0	{y}	010	001	100
0 0	ϕ	01	1	$\{y, z\}$	011	101	110
10	<i>{x}</i>	11	1	$\{x, y, z\}$	111	111	010
1 1	$\{x, y\}$	10	1	$\{x,z\}$	101	110	011
0 1	<i>{y}</i>	00	1	<i>{z}</i>	001	100	111

EX 3.10:

(a) R, U, R, R, U, R, R, U \Rightarrow {2, 5, 8} from {1, 2, 3, 4, 5, 6, 7, 8} (b) U, R, R, R, U, U, R, R \Rightarrow {1, 5, 6} from {1, 2, 3, 4, 5, 6, 7, 8} (c) U, R, U, R, R, R, U, R \Leftrightarrow {1, 3, 7} from {1, 2, 3, 4, 5, 6, 7, 8} The number of paths equals the number of subsets A of {1, 2, 3, 4, 5, 6, 7, 8}, where |A| = 3. = $C(8, 3) = \frac{8}{35!} = 56$ ("U" 改 "R" $\Rightarrow |B| = 5 \Rightarrow C(8, 5) = \frac{8}{53!} = 56$)

(c) Fall 2023, Justie Su-Tzu Juan

EX 3.11 : There are 2⁶ ways to write 7 as a sum of one or more positive integers = There are 2⁶ subsets for {1, 2, 3, 4, 5, 6}

+ 1 + 1 + 1 + 1 + 1 + 1

Table 3.1

	Composition of 7	Determining Subset of {1, 2, 3, 4, 5, 6}		
(i)	1 + 1 + 1 + 1 + 1 + 1 + 1	(i)	ø	
(ii)	1 + 2 + 1 + 1 + 1 + 1	(ii)	{2}	
(iii)	1 + 1 + 3 + 1 + 1	(iii)	{3, 4}	
(iv)	2 + 3 + 2	(iv)	$\{1, 3, 4, 6\}$	
(v)	4 + 3	(v)	$\{1, 2, 3, 5, 6\}$	
(vi)	7	(vi)	$\{1, 2, 3, 4, 5, 6\}$	

EX 3.12 : For integers *n*, *r* with $n \ge r \ge 1$, C(n + 1, r) = C(n, r) + C(n, r - 1). Sol.

> Let $A = \{x, a_1, a_2, ..., a_n\}$ (1) All subsets of A that contains r elements = C(n+1, r). (2) $C \subseteq A$, where $x \in C$ and |C| = r : C(n, r-1). (3) $C \subseteq A$, where $x \notin C$ and |C| = r : C(n, r). \therefore (1) = (2) + (3) $\therefore C(n+1, r) = C(n, r) + C(n, r-1)$.

Another Sol.

使用<u>EX3.10</u>之方法: 視為(0,0)到(n+1-r,r)之走法:共C(n+1,r)= 最後一步為(i) R : (n-r,r); (ii) U : (n+1-r,r-1)= C(n,r) + C(n,r-1).

EX 3.13 : Find the number of nonnegative integer solutions of $x_1 + x_2 + ... + x_6 < 10$.

Sol.

 $\forall k, 0 \le k \le 9$, the number of solutions to $x_1 + x_2 + \ldots + x_6 = k$ is $\binom{5+k}{k}$.

 $\therefore \text{ the answer} = \binom{5}{0} + \binom{6}{1} + \binom{7}{2} + \binom{8}{3} + \dots + \binom{9^{14}}{9^{14}}$ $= [\binom{6}{0} + \binom{6}{1}] + \binom{7}{2} + \binom{8}{3} + \dots + \binom{9^{14}}{9^{14}}$ $= [\binom{7}{1} + \binom{7}{2}] + \binom{8}{3} + \dots + \binom{9^{14}}{9^{14}}$ $= [\binom{2^8}{2} + \binom{8}{3}] + \dots + \binom{9^{14}}{9^{14}}$ $= \dots = \binom{8^{14}}{8} + \binom{9^{14}}{9^{14}} = \binom{9^{15}}{9^{15}} = 5005.$

EX 3.14 : **Pascal's triangle.**

(c) Fall 2023, Justie Su-Tzu Juan

Def :

a) \mathbf{Z} = the set of *integers* = {0, 1, -1, 2, -2, 3, -3, ...}

- **b**) N = the set of *nonnegative integers* or *natural numbers* = {0, 1, 2, 3, ... }
- c) \mathbf{Z}^+ = the set of *positive integers* = {1, 2, 3, ...} = {x \in \mathbf{Z} | x > 0}
- **d**) **Q** = the set of rational numbers = $\{a/b | a, b \in \mathbf{Z}, b \neq 0\}$
- e) \mathbf{Q}^+ = the set of *positive rational numbers* = { $r \in \mathbf{Q} | r > 0$ }

f) Q^* = the set of *nonzero rational numbers*

- g) \mathbf{R} = the set of *real numbers*
- **h**) \mathbf{R}^+ = the set of *positive real numbers*
- i) \mathbf{R}^* = the set of *nonzero real numbers*
- **j**) **C** = the set of complex numbers = $\{x + yi | x, y \in \mathbf{R}, i^2 = -1\}$

k) **C*** = the set of *nonzero complex numbers*

- 1) For each $n \in \mathbb{Z}^+$, $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$
- m) For real numbers a, b with a < b, $[a, b] = \{x \in \mathbb{R} | a \le x \le b\}$, $(a, b) = \{x \in \mathbb{R} | a < x < b\}$, $[a, b) = \{x \in \mathbb{R} | a \le x < b\}$, $(a, b] = \{x \in \mathbb{R} | a \le x \le b\}$. The first set is called a *closed interval*, the second set an *open interval*, and the other two sets *half-open intervals*.

Computer Science and Information Engineering National Chi Nan University Discrete Mathematics

Dr. Justie Su-Tzu Juan

Chap 3 Set Theory

3.2 Set Operations and the Laws of Set Theory

Slides for a Course Based on the Text Discrete & Combinatorial Mathematics (5th Edition) by Ralph P. Grimaldi

Recall : ① *binary operation* : use two *operands*. ② *closed* : + under Z⁺, / under Q⁺.

Def : For $A, B \subseteq \mathcal{U}$. a) $A \cup B$, the *union* of A and $B = \{x \mid x \in A \lor x \in B\}$. b) $A \cap B$, the *intersection* of A and $B = \{x \mid x \in A \land x \in B\}$. c) $A \Delta B$, the *symmetric difference* of A and B $\equiv \{x \mid (x \in A \lor x \in B) \land (x \notin A \cap B)\}$ $= \{x \mid x \in A \cup B \land x \notin A \cap B\}$.

Note: ① ∪, ∩, ∆ are *closed* binary operations on 𝒫(𝒰).
i.e if A, B ⊆ 𝔅, A ∪ B, A ∩ B, A ∆ B ⊆ 𝔅
② 𝒫(𝔅) is *closed* under these operations.

 $\underline{EX \ 3.15}: \mathcal{U} = \{1, 2, 3, \dots, 9\},\$ $A = \{1, 2, 3, 4, 5\}, B = \{3, 4, 5, 6, 7\}, C = \{7, 8, 9\}$ $a) A \cap B = \{ \\ b) A \cup B = \{ \\ c) B \cap C = \{ \\ d) A \cap C = \}$ $B \cap C = \{ \\ d) A \cap C = \{ \\ c \in A \\ c$

 $\underbrace{\text{Note}}_{A \cap B} : A \cap B \subseteq A \subseteq A \cup B$ $(1) \ x \in A \cap B \Rightarrow (x \in A \land x \in B) \Rightarrow x \in A.$ $(2) \ x \in A \Rightarrow (x \in A \lor x \in B) \Rightarrow x \in A \cup B.$

 $\begin{array}{l} \underline{\text{Def 3.6}} : \text{Let } S, T \subseteq \mathcal{U}, S, T \text{ are called } \underline{\textit{disjoint}} \text{ (or mutually} \\ \underline{\textit{disjoint}} \text{)} \equiv S \cap T = \phi \end{array}$

```
Thm 3.3 : If S, T \subseteq \mathcal{U}, then
                  S and T are disjoint \Leftrightarrow S \cup T = S \Delta T
Proof. (1/2)
        (\Rightarrow) \forall x \in \mathcal{U} : \textcircled{1} x \in S \cup T.
                                        \therefore S \cap T = \phi, \therefore x \notin S \cap T.
                                        \therefore x \in S \Delta T.
                                       i.e. S \cup T \subseteq S \Delta T.
                                  \textcircled{0} y \in S \Delta T \Longrightarrow y \in S \cup T \land y \notin S \cap T.
                                        \therefore y \in S \cup T.
                                       i.e. S \Delta T \subseteq S \cup T. (∀ S, T \subseteq U 皆成立)
                      by (1), (2), S \Delta T = S \cup T.
```

S and T are disjoint \Leftrightarrow S \cup T = S Δ T

3.2 Set Operations and the Laws of Set Theory

Proof. (2/2) (\Leftarrow) Proof by contradiction. Assume *S* and *T* are not disjoint, $S \cap T \neq \phi$. Let $x \in S \cap T$, then $x \in S \land x \in T$. $\therefore x \in S \cup T$ and $x \in S \land T (= S \cup T)$. But, $\because x \in S \cap T \land x \in S \cup T$ $\Rightarrow x \notin S \land T \rightarrow \leftarrow$

> ... Assumption was incorrect. i.e. *S* and *T* disjoint.

<u>Recall</u> : 2 – 5 = −3 ∉ N. But –3 ∈ Z. (*superset*) minus or negative : the *unary* (or *monary*) *operation*.

Def 3.7 : For a set $A \subseteq \mathcal{U}$, the *complement* of A, $\mathcal{U} - A$ (or \overline{A}) ≡ { $x \mid x \in \mathcal{U} \land x \notin A$ }

$$\underline{EX \ 3.16}: \mathcal{U} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.$$

$$A = \{1, 2, 3, 4, 5\}, B = \{3, 4, 5, 6, 7\}, C = \{7, 8, 9\}.$$

$$\overline{A} = \{6, 7, 8, 9, 10\}.$$

$$\overline{B} = \{1, 2, 8, 9, 10\}.$$

$$\overline{C} = \{1, 2, 3, 4, 5, 6, 10\}.$$

<u>Note</u> : $\forall A \subseteq \mathcal{U}, \overline{A} \subseteq \mathcal{U}$. ∴ $\mathscr{P}(\mathcal{U})$ is closed under the unary operation.

<u>Def 3.8</u> : For $A, B \subseteq \mathcal{U}$, the (*relative*) *complement* of A in B, $B - A \equiv \{x \mid x \in B \land x \notin A\}.$

$$\underline{EX \ 3.17}: \mathcal{U} = \{1, 2, 3, \dots, 9\},\$$

$$A = \{1, 2, 3, 4, 5\}, B = \{3, 4, 5, 6, 7\}, C = \{7, 8, 9\}$$

$$a) B - A = \{6, 7\} \qquad b) A - B = \{1, 2\} \qquad c) A - C = A$$

$$d) C - A = C \qquad e) A - A = \phi \qquad f) \mathcal{U} - A = \overline{A}$$

EX 3.18: $\mathcal{U} = \mathbf{R}$, A = [1, 2], B = [1, 3) **a**) $A = \{x \mid 1 \le x \le 2\} \subseteq \{x \mid 1 \le x < 3\} = B$ **b**) $A \cup B = \{x \mid 1 \le x < 3\} = B$ **c**) $A \cap B = \{x \mid 1 \le x \le 2\} = A$ **d**) $\overline{B} = (-\infty, 1) \cup [3, +\infty) \subseteq (-\infty, 1) \cup (2, +\infty) = \overline{A}$

Thm 3.4 : For any sets $A, B \subseteq \mathcal{U}$. TFSAE:a) $A \subseteq B$ b) $A \cup B = B$ c) $A \cap B = A$ d) $\overline{B} \subseteq \overline{A}$

Proof. (1/2) (prove that $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d) \Rightarrow (a)$) i) (a) \Rightarrow (b) $A \subset B \Rightarrow A \cup B = B$ (1) $B \subseteq A \cup B$: trivial. $\textcircled{O} A \cup B \subseteq B : \forall x, x \in A \cup B \Rightarrow x \in A \lor x \in B$ $\therefore A \subseteq B, \ \therefore x \in A \Rightarrow x \in B$ i.e. $x \in A \lor x \in B \Rightarrow x \in B$ $\therefore \forall x, x \in A \cup B \Rightarrow x \in B.$ by (1) (2), $A \cup B = B$. ii) (b) \Rightarrow (c) $A \cup B = B \Rightarrow A \cap B = A$ $\bigcirc A \cap B \subseteq A$: trivial $\textcircled{O} A \subseteq A \cap B : \forall y \in A,$ $\therefore A \cup B = B, \therefore y \in A \Rightarrow y \in A \cup B \Rightarrow y \in B.$ \therefore $y \in A \Rightarrow y \in A \land y \in B \Rightarrow y \in A \cap B.$ by (1) (2), $A = A \cap B$.

(c) Fall 2023, Justie Su-Tzu Juan

Proof. (2/2) iii) (c) \Rightarrow (d) : $A \cap B = A \Rightarrow \overline{B} \subseteq \overline{A}$ $\therefore A \cap B \subseteq B, \forall x [x \in A \cap B \Rightarrow x \in B].$ $\forall z \ [z \in \overline{B} \Leftrightarrow z \notin B].$ $\because z \notin B \Rightarrow z \notin A \cap B \Leftrightarrow z \notin A \Leftrightarrow z \in \overline{A},$ $\therefore \forall z \ [z \in \overline{B} \Rightarrow z \in \overline{A}], \text{ that is, } \overline{B} \subseteq \overline{A}.$ iv) (d) \Rightarrow (a) : $\overline{B} \subseteq \overline{A} \Rightarrow A \subseteq B$ $\forall w, w \in A \Leftrightarrow w \notin \overline{A}$. ----- (1) If $w \notin B$, then $w \in \overline{B}$, \therefore By (d), $w \in \overline{B} \Rightarrow w \in \overline{A}$. ----- ② By (1)(2), $w \notin \overline{A} \land w \in \overline{A}$. $\rightarrow \leftarrow$ $\therefore w \in B.$ (If) i.e. $A \subseteq B$.

The Laws of Set Theory

The Laws of Set Theory

For any sets A, B, and C taken from a universe \mathcal{U}

- 1) $\overline{\overline{A}} = A$
- 2) $\overline{\overline{A \cup B}} = \overline{A} \cap \overline{B}$ $\overline{\overline{A \cap B}} = \overline{A} \cup \overline{B}$
- 3) $A \cup B = B \cup A$
 - $A \cap B = B \cap A$
- 4) $A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$
- 5) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Law of Double Complement DeMorgan's Laws

Commutative Laws

Associative Laws

Distributive Laws

The Laws of Set Theory

6) $A \cup A = A$ $A \cap A = A$ 7) $A \cup \emptyset = A$ $A \cap \mathcal{U} = A$ 8) $A \cup \overline{A} = \mathcal{U}$ $A \cap \overline{A} = \emptyset$ 9) $A \cup \mathcal{U} = \mathcal{U}$ $A \cap \emptyset = \emptyset$ 10) $A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$ Idempotent Laws

Identity Laws

Inverse Laws

Domination Laws

Absorption Laws

Def 3.9: Let s be a statement dealing with the equality of two set
expressing. Each may involve ≥ 1 sets, $\geq 1 \ \phi, \ U, \ \cap, \ \cup$.The dual of s, s^d is obtained from s by replacing
 $(1) \ \phi \leftarrow \rightarrow \ U$; $(2) \ \cap \leftarrow \rightarrow \ \cup$.

Thm 3.5 : *The Principle of Duality* : Let *s* denote a theorem dealing with the equality of two set expressions (involving only the set operations \cap and \cup as described in Def 3.9). Then *s*^{*d*} is also a theorem .

Note : <u>Thm 3.5</u> cannot be applied to particular situation.

$$\underline{ex}: \mathcal{U} = \{1, 2, 3, 4, 5\}, A = \{1, 2, 3, 4\}, B = \{1, 2, 3, 5\}, C = \{1, 2\}, D = \{1, 3\}$$
$$s: A \cap B = \{1, 2, 3\} = C \cup D.$$
$$but, s^d \text{ cannot hold } : A \cup B = C \cap D.$$
$$A \cup B = \{1, 2, 3, 4, 5\}; C \cap D = \{1\}.$$

EX 3.19 : The dual for the statement $A \subseteq B = ?$ $A \subseteq B \Leftrightarrow A \cup B = B$, (by Thm 3.4) the dual for $A \cup B = B$ is $A \cap B = B$. $A \cap B = B \Leftrightarrow B \subseteq A$,

 \therefore the dual for $A \subseteq B$ is $B \subseteq A$.

Def : English logician John Venn (1834 – 1923) : *Venn diagram* :

 $\underline{\mathbf{ex}}: \textcircled{1} \overline{A \cap B} = \overline{A} \cup \overline{B}$

 $\overline{A \cap B}$

 $\overline{A} \overline{B} \overline{B}$

$\textcircled{O}(\overline{A \cup B}) \cap \overline{C} = (\overline{A} \cap \overline{B}) \cup \overline{C}$

Figure 3.7

 $(A \cup B) \cap C : 6, 7, 8$ $(\overline{A \cup B}) \cap C : 1, 2, 3, 4, 5 \dots 1)$ $(\overline{A} \cap \overline{B}) : 1, 4$ $(\overline{A} \cap \overline{B}) \cup \overline{C} : 1, 2, 3, 4, 5 \dots 2)$ (1) = (2)

(c) Fall 2023, Justie Su-Tzu Juan

Def : *membership table*

 $\underbrace{\operatorname{ex}}_{a}: \textcircled{0} A, B \subseteq \mathcal{U}. \forall x \in \mathcal{U}:$ $\underbrace{a}_{x \notin A, x \notin B} \quad b)_{x \notin A, x \in B} \quad c)_{x \in A, x \notin B} \quad d)_{x \in A, x \in B}:$

(•) (+)

A	B	$A \cap B$	$A \cup B$
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

 $\textcircled{O} A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ Table 3.3

Remark : ① Venn 較 membership 簡單.

- ② 兩者皆為引起興趣用,尤其對不熟悉證明的讀者; 但兩者皆沒有明確說明邏輯及理由.
- ③ 當 set 之數過大 (>3), 則很難畫.
- ④ element argument 是較其他兩者嚴謹的.

Ex 3.20 : Simplify $(\overline{A \cup B}) \cap \overline{C} \cup \overline{B}$.

Sol.

$$(A \cup B) \cap C \cup B$$

= $((\overline{A \cup B}) \cap \overline{C}) \cap \overline{B})$
= $((A \cup B) \cap C) \cap B)$
= $(A \cup B) \cap (C \cap B)$
= $(A \cup B) \cap (B \cap C)$
= $[(A \cup B) \cap B)] \cap C$

<u>Compare</u> : (<u>EX 2.17</u>)

$$\neg [\neg [(p \lor q) \land r] \lor \neg q] \Leftrightarrow q \land r$$

 $= B \cap C$

Ex 3.21 : Express $\overline{A-B}$ in terms of \bigcup and $\overline{}$. Sol. $\overline{A-B} = \overline{A} \cap \overline{B} = \overline{A} \cup \overline{B} = \overline{A} \cup B$.

Ex 3.22 : $\overline{A \ \Delta B} = A \ \Delta \overline{B} = \overline{A} \ \Delta B$ **Proof.**

 $\overline{A \ \Delta B} = (\overline{A \ \cup B}) - (\overline{A \cap B}) = (\overline{A \ \cup B}) \cup (A \cap B) (by \underline{Ex \ 3.21})$ $= (A \cap B) \cup (\overline{A \cup B}) = (A \cap B) \cup (\overline{A \cap B})$ $= [(A \cap B) \cup \overline{A}] \cap [(A \cap B) \cup \overline{B})]$ $= [(A \cup \overline{A}) \cap (B \cup \overline{A})] \cap [(A \cup \overline{B}) \cap (B \cup \overline{B})]$ $= [\mathcal{U} \cap (B \cup \overline{A})] \cap [(A \cup \overline{B}) \cap \mathcal{U})]$ $= (B \cup \overline{A}) \cap (A \cup \overline{B}) = (\overline{A} \cup B) \cap (\overline{A \cap B}) = \overline{A} \ \Delta B.$ $= (A \cup \overline{B}) \cap (\overline{A} \cup B) = (A \cup \overline{B}) \cap (\overline{A \cap B}) = A \ \Delta \overline{B}.$

Def 3.10 : Let *I* be a nonempty set and \mathcal{U} a universe. $\forall i \in I$, let $A_i \subseteq \mathcal{U}$. Then I is called an *index set* (or *set* of indices), and $\forall i \in I$, *i* is called an *index* : $\bigcup A_i = \{x \mid x \in A_i \text{ for at least one } i \in I \}, \text{ and } i \in I \}$ $\cap A_i = \{x \mid x \in A_i \text{ for every } i \in I\}$ í∈I Note : ① $x \in \bigcup A_i \Leftrightarrow \exists i \in I \ (x \in A_i)$. $\textcircled{2} x \in \bigcap A_i \Leftrightarrow \forall i \in I \ (x \in A_i).$ $(3) x \notin \bigcup A_i \Leftrightarrow \forall i \in I \ (x \notin A_i).$ (4) $x \notin \cap A_i \Leftrightarrow \exists i \in I \ (x \notin A_i)$.

$$\underbrace{\text{Note}}_{i \in Z^{+}} : \textcircled{5} \text{ If } I = Z^{+} : \bigcup_{i \in Z^{+}} A_{i} = A_{1} \cup A_{2} \cup \dots = \bigcup_{i=1}^{\infty} A_{i} \\ \bigcap_{i \in Z^{+}} A_{i} = A_{1} \cap A_{2} \cap \dots = \bigcap_{i=1}^{\infty} A_{i} \\ \underbrace{\text{Ex 3.23}}_{i \in I} : \text{Let } I = \{3, 4, 5, 6, 7\}. \\ \forall i \in I, \text{ let } A_{i} = \{1, 2, 3, \dots, i\} \subseteq \mathcal{U} = Z^{+}. \\ \textcircled{5} \bigcup_{i \in I} A_{i} = \bigcup_{i=3}^{7} A_{i} = \{1, 2, 3, \dots, 7\} = A_{7}.$$

$$(2)_{i\in I}A_i = \{1, 2, 3\} = A_3.$$

 $\underline{\text{Ex 3.24}}: \text{Let } \mathcal{U} = \text{R and } I = \text{R}^+, \forall r \in \text{R}, A_r = [-r, r], \text{ then}$ $(1) \cup_{r \in I} A_r = \text{R}.$ $(2) \cap_{r \in I} A_r = \{0\}.$

(c) Fall 2023, Justie Su-Tzu Juan

Note : Venn diagram and membership table are useless when dealing with generalized union and intersection.

Thm 3.6: Generalized De Morgan's laws :Let I be an index set where $\forall i \in I, A_i \subseteq \mathcal{U}$. Thena) $\overline{\bigcup_{i \in I} A_i} = \bigcap_{i \in I} \overline{A_i}$ b) $\overline{\bigcap_{i \in I} A_i} = \bigcup_{i \in I} \overline{A_i}$

Proof.

(a)
$$\forall x \in \mathcal{U} : x \in \overline{\bigcup_{i \in I} A_i} \Leftrightarrow x \notin \bigcup_{i \in I} A_i$$

 $\Leftrightarrow x \notin A_i, \text{ for all } i \in I$
 $\Leftrightarrow x \in \overline{A_i}, \text{ for all } i \in I$
 $\Leftrightarrow x \in \bigcap_{i \in I} \overline{A_i}$

(b) exercise. 加做第20題

Computer Science and Information Engineering National Chi Nan University Discrete Mathematics Dr. Justie Su-Tzu Juan

Chap 3 Set Theory

Counting and Venn Diagrams

Slides for a Course Based on the Text Discrete & Combinatorial Mathematics (5th Edition) by Ralph P. Grimaldi

3.3 Counting and Venn Diagrams

$$\begin{array}{l} \underline{\ hm} : (\text{Chap 8}) \\ \hline \textcircled{0} |A \cup B| = |A| + |B| - |A \cap B|; \\ \text{If } A \text{ and } B \text{ are disjoint} \Leftrightarrow |A \cup B| = |A| + |B|. \end{array}$$

 $\textcircled{2}|\overline{A} \cap \overline{B}| = |\overline{A \cup B}| = |\mathcal{U}| - |A \cup B| = |\mathcal{U}| - |A| - |B| + |A \cap B|.$

3.3 Counting and Venn Diagrams

Thm: (Chap 8) **③** $|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|.$

$(\textcircled{A} \cap \overline{B} \cap \overline{C}) = |\overrightarrow{A} \cup B \cup C| = |\mathcal{U}| - |A \cup B \cup C|$ $= |\mathcal{U}| - |A| - |B| - |C| + |A \cap B| + |B \cap C|$

 $+ |C \cap A| - |A \cap B \cap C|.$

(c) Fall 2023, Justie Su-Tzu Juan

Computer Science and Information Engineering National Chi Nan University Discrete Mathematics Dr. Justie Su-Tzu Juan

Chap 3 Set Theory

First Word on Probability

Slides for a Course Based on the Text Discrete & Combinatorial Mathematics (5th Edition) by Ralph P. Grimaldi

Def: ① experiment £ · sample space S · event A (⊆ S) · elementary event a (∈ A). Let /S/ = n.
② Pr(a) = The probability that a occurs = 1/n = |{a}| / |S|
Pr(A) = The probability that A occurs = |A| / |S|

Ex3.28 ~ Ex3.36: see book.

Ex3.31 : 5 cards from a standard deck of 52 cards. $\binom{52}{5} = 2598960$ What is the probability:

(a) Three aces and two jacks; (b) three aces and a pair;(c) a full house?

Sol.

(a) $\binom{4}{3} = 4$ for aces, $\binom{4}{2} = 6$ for jacks. Let A = the event where Tanya draws three aces and two jacks. $|A| = \binom{4}{3}\binom{4}{2} = 4.6$; $Pr(A) = 24 / 2598960 \approx 0.000009234$. (b) $\binom{4}{3} = 4$ for aces, $\binom{12}{1}\binom{4}{2} = 12.6 = 72$ for a pair. Let *B* = the event where Tanya draws three aces and a pair. $|B| = \binom{4}{3} \binom{12}{1} \binom{4}{2} = 4.72; Pr(B) = 288 / 2598960 \approx 0.000110814.$ (c) $\binom{13}{1}\binom{4}{3} = 13.4$ for three something, $\binom{12}{1}\binom{4}{2} = 12.6 = 72$ for a pair Let *C* = the event where Tanya draws a full house. $\therefore |C| = \binom{13}{1} \binom{4}{3} \binom{12}{1} \binom{4}{2} = 13.288 = 3744;$ $Pr(C) = 3744 / 2598960 \approx 0.001440576.$ (c) Fall 2023, Justie Su-Tzu Juan $\approx 0.001440576.$ 40

Def : ③ *Cartesian product*, or *cross product*, of A and $B = A \times B$ = { $(a, b) | a \in A, b \in B$ }.

(a, b) = (c, d) if and only if a = c and b = d.

 $\underline{\text{Ex3.32}} : A = \{ 1, 2, 3 \} \text{ and } B = \{x, y\}, \text{ then} \\ A \times B = \{(1, x), (1, y), (2, x), (2, y), (3, x), (3, y)\} \\ B \times A = \{(x, 1), (y, 1), (x, 2), (y, 2), (x, 3), (y, 3)\} \\ (1, x) \in A \times B, (1, x) \notin B \times A \\ |A \times B| = 3 \cdot 2 = 6 = |A| |B| = |B| |A| = |B \times A|.$

Ex3.37 : 120 passengers on airline:

- 48: wine; 78: mixed drink; 66: iced tea;
- 36: 2 beverages; 24: 3 beverages.
- 自120 位中任選2 位; what is the probability that:
- a) Event A : they both want only iced tea?
- **b**) Event *B* : they both enjoy exactly two of the three

§ 3.4 A First Word on probability Wine a 42–*a*–*c* 24 - a - b**Sol.** (1/2)24 a + b + c = 36h С $24 - a - b = 24 + c - 36 = c - 12 \ge 0$ 54–*b*–*c* $42 - a - c = 42 + b - 36 = b + 6 \ge 0$ Mixec d $54 - b - c = 54 + a - 36 = a + 18 \ge 0$

and 120 = (c - 12) + (b + 6) + (a + 18) + a + b + c + 24 + d= $36 \cdot 2 + 12 + 24 + d = 108 + d$

d = 12

(8 unknowns 6 equations . . infinite selected)

ex:

let a = b = 12, then c = 12, 42 - a - c = b + 6 = 18. let a = b = 10, then c = 16, 42 - a - c = b + 6 = 16.

Sol. (2/2) **In Book:** $|S| = (\frac{120}{2}) = 7140$ $|A| = (\frac{18}{2}) = 153$ $|B| = (\frac{36}{2}) = 630$:. $Pr(A) = \frac{51}{2380}$, $Pr(B) = \frac{3}{34}$. Wine

12

0

I.T.

Aixed

18

12

12

24

30

12