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EX 3.7  ① Determine the number of subsets of the set C = {1, 

2, 3, 4}.

2  2  2  2 = 24 = 16 (include  and C)

② Determine the number of subsets of two elements 

from C.

C(4, 2) = 6

③ ∴ 24 = C0
4 + C1

4 + C2
4 + C3

4 + C4
4 = k = 0,4C(4, k)

Def  The subset of one element  the singleton subset.

Def 3.4  The power set of A , denoted by P (A) (or 2A) 

 The collection of all subsets of A .
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EX 3.8  C = {1, 2, 3, 4}

P (C) = {,

{1}, {2}, {3}, {4},

{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4},

{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4},

C}

Remark  For any finite set A with |A| = n, n ≥ 0     

① |P (A)| = 2n

② ∀ 0  k  n , there are C(n, k) subsets of size k.

③ 2n = n
k = 0 C(n, k)
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EX 3.9  Gray Code (略)

0     
1    {x}

0   0     
1   0    {x}

1   1   {x, y}

0   1    {y}

0 0    0       
1 0    0      {x}

1 1    0    {x, y}

0 1    0      {y}

0 1    1    {y, z}

1 1    1  {x, y, z}

1 0    1    {x, z}

0 0    1      {z}

0 0 0 

1 0 0

1 1 0

0 1 0

0 1 1

1 1 1 

1 0 1

0 0 1

0 0 0 

0 1 0

0 1 1

0 0 1

1 0 1

1 1 1 

1 1 0

1 0 0

0 0 0 

0 0 1

1 0 1

1 0 0

1 1 0

0 1 0 

0 1 1

1 1 1



EX 3.10 

(a) R, U, R, R, U, R, R, U ⇨ {2, 5, 8} from {1, 2, 3, 4, 5, 6, 7, 8}

(b) U, R, R, R, U, U, R, R ⇨ {1, 5, 6} from {1, 2, 3, 4, 5, 6, 7, 8}

(c) U, R, U, R, R, R, U, R ⇦ {1, 3, 7} from {1, 2, 3, 4, 5, 6, 7, 8}

The number of paths equals the number of subsets A of 

{1, 2, 3, 4, 5, 6, 7, 8}, where |A| = 3.

= C(8, 3) =       = 56

( “U” 改 “R” ⇨ |B| = 5 ⇨ C(8, 5)=        = 56 )
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EX 3.11  There are 26 ways to write 7 as a sum of one or more 

positive integers = There are 26 subsets for {1, 2, 3, 4, 5, 6}

1   +   1   +   1   +   1   +   1   +   1   +   1
↓               ↓                                                       ↓               ↓

1st plus sign     2nd plus sign                . . .                 5th plus sign     6th plus sign

① {1, 4, 6} : (1 + 1) + 1 + (1 + 1) + (1 + 1) = 2 + 1 + 2 + 2
1                                         4                             6

② {1, 2, 5, 6} : (1 + 1 + 1) + 1 + (1 + 1 + 1) = 3 + 1 + 3
1           2                                          5          6

③ 1 + 1 + 5 = 1 + 1 + (1 + 1 + 1 + 1 + 1) : {3, 4, 5, 6}
3          4           5           6
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EX 3.12  For integers n, r with n  r  1, C(n + 1, r) = C(n, r) + 
C(n, r – 1).

Sol.
Let A = {x, a1, a2, …, an}
① All subsets of A that contains r elements = C(n+1, r).
② C ⊆ A, where x  C and |C| = r : C(n, r – 1).
③ C ⊆ A, where x  C and |C| = r : C(n, r).

∵ ① = ② + ③
∴ C(n+1, r) = C(n, r) + C(n, r – 1).

Another Sol.
使用EX3.10之方法:
視為(0, 0)到(n + 1 – r, r)之走法:共C(n+1, r)

= 最後一步為(i) R : (n – r, r); (ii) U : (n + 1 – r, r – 1)
= C(n, r) + C(n, r – 1).
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EX 3.13  Find the number of nonnegative integer solutions of 

x1 + x2 + … + x6 < 10.

Sol.

 k, 0  k  9, the number of solutions to x1 + x2 + … + x6 = k 

is (k
5+k).

∴ the answer = (0
5) + (1

6) + (2
7) + (3

8) + … + (9
14)

= [(0
6) + (1

6)] + (2
7) + (3

8) + … + (9
14)

= [(1
7) + (2

7)] + (3
8) + … + (9

14)

= [(2
8) + (3

8)] + … + (9
14)

= … = (8
14) + (9

14) = (9
15) = 5005.
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EX 3.14  Pascal’s triangle. 
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Def 
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3.2  Set Operations and the Laws of Set Theory

Recall  ① binary operation  use two operands.

② closed  + under  Z+, / under Q+.

Def  For A, B ⊆ U .

a) A ∪ B, the union of A and B = {x | x ∈ A  x ∈ B}.

b) A ∩ B, the intersection of A and B = {x | x ∈ A  x ∈ B}.

c) A ∆ B, the symmetric difference of A and B

 {x | (x ∈ A  x ∈ B)  (x ∉ A ∩ B)} 

= {x | x ∈ A ∪ B  x ∉ A ∩ B}.

Note : ① ∪, ∩, ∆ are closed binary operations on P (U ).

i.e   if A, B ⊆ U, A ∪ B, A ∩ B, A ∆ B ⊆ U

② P (U ) is closed under these operations.
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3.2  Set Operations and the Laws of Set Theory

EX 3.15 : U = {1, 2, 3, … , 9}, 

A = {1, 2, 3, 4, 5}, B = {3, 4, 5, 6, 7}, C = {7, 8, 9}

a) A ∩ B = {                         } e) A ∆ B = {                              }

b) A ∪ B = {                         } f) A ∪ C = {                             }

c) B ∩ C = {                         } g) A ∆ C = {                              }

d) A ∩ C =

Note : A ∩ B ⊆ A ⊆ A ∪ B 

① x ∈ A ∩ B  (x ∈ A  x ∈ B)  x ∈ A.  

② x ∈ A  (x ∈ A  x ∈ B)  x ∈ A ∪ B. 
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3.2  Set Operations and the Laws of Set Theory

Def 3.6  Let S, T ⊆ U, S, T are called disjoint (or mutually 
disjoint)  S ∩ T = 

Thm 3.3  If S, T ⊆ U, then 
S and T are disjoint  S ∪ T = S ∆ T

Proof. (1/2) 
() ∀ x ∈ U : ① x ∈ S ∪ T.

∵ S ∩ T = , ∴ x ∉ S ∩ T.

∴ x ∈ S ∆ T.

i.e. S ∪ T ⊆ S ∆ T.

② y ∈ S ∆ T  y ∈ S ∪ T  y ∉ S ∩ T.

∴ y ∈ S ∪ T.

i.e. S ∆ T ⊆ S ∪ T. (∀ S, T ⊆ U 皆成立)

by ①, ②,  S ∆ T = S ∪ T.
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3.2  Set Operations and the Laws of Set Theory

Proof. (2/2) 

() Proof by contradiction.

Assume S and T are not disjoint, S ∩ T  . 

Let x ∈ S ∩ T, then x ∈ S  x ∈ T.      

∴ x ∈ S ∪ T and x ∈ S ∆ T (= S ∪ T).

But, ∵ x ∈ S ∩ T  x ∈ S ∪ T

 x ∉ S ∆ T 

∴ Assumption was incorrect.

i.e. S and T disjoint. 

Recall  2 – 5 = –3 ∉ N. But –3 ∈ Z. (superset)

minus or negative : the unary (or monary) operation .
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3.2  Set Operations and the Laws of Set Theory

Def 3.7  For a set A ⊆ U, the complement of A, U – A (or Ā ) 

 {x | x ∈ U  x ∉ A}

EX 3.16  U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.    

A = {1, 2, 3, 4, 5}, B = {3, 4, 5, 6, 7}, C={7, 8, 9}.

= {6, 7, 8, 9, 10}.

= {1, 2, 8, 9, 10}.

= {1, 2, 3, 4, 5, 6, 10}.

Note  ∀ A ⊆ U, Ā ⊆ U. ∴ P (U) is closed under the unary 

operation.
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Def 3.8  For A, B ⊆ U, the (relative) complement of A in B, 

B – A  {x | x ∈ B  x ∉ A}.

EX 3.17  U = {1, 2, 3, … , 9}, 

A = {1, 2, 3, 4, 5}, B = {3, 4, 5, 6, 7}, C = {7, 8, 9}

a) B – A = {6 , 7} b) A – B = {1 , 2} c) A – C = A

d) C – A = C e) A – A =  f) U – A = Ā
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EX 3.18  U = R,    

A = [1, 2], B = [1, 3)

a) A = {x | 1  x  2}  {x | 1  x < 3} = B

b) A ∪ B = {x | 1  x < 3} = B

c) A ∩ B = {x | 1  x  2} = A

d) B = ( – , 1 ) ∪ [ 3, +  )  ( – , 1 ) ∪ ( 2, +  ) = Ā

Thm 3.4  For any sets A, B ⊆ U. TFSAE: 

a) A ⊆ B                     b) A ∪ B = B

c) A ∩ B = A              d) B ⊆ Ā
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3.2  Set Operations and the Laws of Set Theory

Proof. (1/2) ( prove that (a)  (b)  (c)  (d)  (a) )

i) (a)  (b)

① B ⊆ A ∪ B : trivial.  

② A ∪ B ⊆ B : ∀ x, x ∈ A ∪ B  x ∈ A  x ∈ B

∵ A ⊆ B,  ∴ x ∈ A  x ∈ B

i.e. x ∈ A  x ∈ B  x ∈ B

∴ ∀ x, x ∈ A ∪ B  x ∈ B.

by ① ②,  A ∪ B = B.

ii) (b)  (c) 

① A ∩ B ⊆ A : trivial  

② A ⊆ A ∩ B : ∀ y ∈ A, 

∵ A ∪ B = B, ∴ y ∈ A  y ∈ A ∪ B  y ∈ B.

∴ y ∈ A  y ∈ A  y ∈ B  y ∈ A ∩ B.

by ① ②,  A = A ∩ B.
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3.2  Set Operations and the Laws of Set Theory

Proof. (2/2)

iii) (c)  (d) : 

∵ A ∩ B ⊆ B, ∀ x [x ∈ A ∩ B  x ∈ B].

∀ z [ z ∈ B  z ∉ B ]. 

∵ z ∉ B  z ∉ A ∩ B  z ∉ A  z ∈ Ā,

∴ ∀ z [ z ∈ B  z ∈ Ā ], that is, B ⊆ Ā.

iv) (d)  (a) : 

∀ w, w ∈ A  w ∉ Ā. ------- ①

If w ∉ B, then w ∈ B,

∴ By (d), w ∈ B  w ∈ Ā. ------- ②

By ①②, w ∉ Ā  w ∈ Ā.  

∴ w ∈ B. ( If )

i.e. A ⊆ B.
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The Laws of Set Theory
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The Laws of Set Theory
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3.2  Set Operations and the Laws of Set Theory

Def 3.9  Let s be a statement dealing  with the equality of two set 

expressing. Each may  involve ≥ 1 sets, ≥ 1 , U, ∩, ∪.

The dual of s, sd is obtained from s by replacing

(1)   U ;                      (2) ∩  ∪.

Thm 3.5  The Principle of Duality : Let s denote a theorem 

dealing with the equality of two set expressions 

(involving only the set operations ∩ and ∪ as described 

in Def 3.9). Then sd is also a theorem .
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3.2  Set Operations and the Laws of Set Theory

Note  Thm 3.5 cannot be applied to particular situation. 

ex : U = {1, 2, 3, 4, 5}, A = {1, 2, 3, 4}, B = {1, 2, 3, 5}, 

C = {1, 2}, D = {1, 3}

s : A ∩ B = {1, 2, 3} = C ∪ D.

but , sd cannot hold : A ∪ B = C ∩ D. 

A ∪ B = {1, 2, 3, 4, 5}; C ∩ D = {1}.

EX 3.19  The dual for the statement A ⊆ B = ?

A ⊆ B  A ∪ B = B, (by Thm 3.4)

the dual for A ∪ B = B is A ∩ B = B.

A ∩ B = B  B ⊆ A,

∴ the dual for A ⊆ B is B ⊆ A.
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3.2  Set Operations and the Laws of Set Theory

Def  English logician John Venn (1834 – 1923) : Venn diagram :
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3.2  Set Operations and the Laws of Set Theory

ex  ① A ∩ B = Ā ∪ B
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3.2  Set Operations and the Laws of Set Theory

② (A ∪ B ) ∩ C = (Ā ∩ B) ∪ C

(A ∪ B) ∩ C : 6, 7, 8                                                      

(A ∪ B) ∩ C : 1, 2, 3, 4, 5 ----- ①

(Ā ∩ B)          : 1, 4

(Ā ∩ B) ∪ C : 1, 2, 3, 4, 5 ----- ②

① = ②
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3.2  Set Operations and the Laws of Set Theory

Def  membership table

ex  ① A, B ⊆ U. ∀x ∈ U : 

a) x ∉ A, x ∉ B   b) x ∉ A, x ∈ B   c) x ∈ A, x ∉ B   d) x ∈ A, x ∈ B :
0                  0                           0                  1                          1                0              1                 1

( ·)               ( + )
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1 1 1 1

A Ā

0 1
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3.2  Set Operations and the Laws of Set Theory

② A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
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3.2  Set Operations and the Laws of Set Theory

Remark  ① Venn 較 membership 簡單.
② 兩者皆為引起興趣用,尤其對不熟悉證明的讀者; 

但兩者皆沒有明確說明邏輯及理由.

③ 當 set 之數過大 ( > 3 ),則很難畫.
④ element argument 是較其他兩者嚴謹的.

Ex 3.20  Simplify (A ∪ B) ∩ C ∪ B.

Sol.             (A ∪ B) ∩ C ∪ B

= ((A ∪ B) ∩ C) ∩ B)

= ((A ∪ B) ∩ C) ∩ B)           

= (A ∪ B) ∩ (C ∩ B) 

= (A ∪ B) ∩ (B ∩ C) 

= [(A ∪ B) ∩ B)] ∩ C  

= B ∩ C
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3.2  Set Operations and the Laws of Set Theory

Ex 3.21  Express A – B in terms of ∪ and ‾ .

Sol.          A – B = A ∩ B = Ā ∪ B = Ā ∪ B.

Ex 3.22  A ∆ B = A ∆ B = Ā ∆ B

Proof.

A ∆ B = (A ∪ B) – (A ∩ B) = (A ∪ B) ∪ (A ∩ B)(by Ex 3.21)

= (A ∩ B) ∪ (A ∪ B) = (A ∩ B) ∪ (Ā ∩ B) 

= [(A ∩ B) ∪ Ā] ∩ [(A ∩ B) ∪ B)]

= [(A ∪ Ā)∩ (B ∪ Ā)] ∩ [(A ∪ B) ∩ (B ∪ B)]

= [U ∩ (B ∪ Ā)] ∩ [(A ∪ B) ∩ U)]

= (B ∪ Ā) ∩ (A ∪ B) = (Ā ∪ B) ∩ (Ā ∩ B) 

= (Ā ∪ B) – (Ā ∩ B) = Ā ∆ B.

= (A ∪ B) ∩ (Ā ∪ B) = (A ∪ B) ∩ (A ∩ B) = A ∆ B.
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3.2  Set Operations and the Laws of Set Theory

Def 3.10  Let I be a nonempty set and U a universe.

∀í∈ I, let Ai ⊆ U. Then I is called an index set (or set 

of indices), and ∀í∈ I , íis called an index :

 Ai = {x | x ∈ Ai for at least one í∈ I }, and 
í∈ I

 Ai = {x | x ∈ Ai for every í∈ I } 
í∈ I

Note  ① x ∈  Ai  ∃í∈ I (x ∈ Ai ). 
í∈ I

② x ∈  Ai  ∀í∈ I (x ∈ Ai ). 
í∈ I

③ x ∉  Ai  ∀í∈ I (x ∉ Ai ). 
í∈ I

④ x ∉  Ai  ∃í∈ I (x ∉ Ai ). 
í∈ I
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3.2  Set Operations and the Laws of Set Theory

Note  ⑤ If I = Z+ :

Ex 3.23  Let I = {3, 4, 5, 6, 7}. 

∀i ∈ I, let Ai = {1, 2, 3, …, i} ⊆ U = Z+.

①  Ai = 7
í= 3 Ai = {1, 2, 3, …, 7} = A7.í∈ I

②  Ai = {1, 2, 3} = A3.í∈ I

Ex 3.24  Let U = R and I = R+, ∀r ∈ R, Ar = [–r, r], then

① r ∈ I   Ar = R.

② r ∈ I Ar = {0}.



























1

21

1

21

i

ii
Zi

i

ii
Zi

AAAA

AAAA
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3.2  Set Operations and the Laws of Set Theory

Note  Venn diagram and membership table are useless when 

dealing with generalized union and intersection.

Thm 3.6  Generalized De Morgan’s laws :

Let I be an index set where ∀i ∈ I, Ai ⊆ U. Then

a)  Ai =  Ai b)  Ai =  Aií∈ I                    í∈ I                                                  í∈ I                   í∈ I

Proof.

(a) ∀x ∈ U : x ∈ í∈ I Ai  x ∉ í∈ I  Ai

 x ∉ Ai, for all i ∈ I

 x ∈ Ai, for all i ∈ I

 x ∈ í∈ I   Ai

(b) exercise.  加做第20題
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3.3  Counting and Venn Diagrams

Thm  (Chap 8)

① |A ∪ B| = |A| + |B| – |A ∩ B|; 

If A and B are disjoint  |A ∪ B| = |A| + |B|.

② |Ā ∩ B| = |A ∪ B| = |U| – |A ∪ B| = |U| – |A| – |B| + |A ∩ B|.
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3.3  Counting and Venn Diagrams

Thm  (Chap 8)

③ |A ∪ B ∪ C| = |A| +|B| + |C| – |A ∩ B| – |A ∩ C| – |B ∩ C| 

+ |A ∩ B ∩ C|.

④ |Ā ∩ B ∩ C | = |A ∪ B ∪ C | = |U| – |A ∪ B ∪ C | 

= |U| – |A| – |B| – |C| + |A ∩ B| + |B ∩ C|

+ |C ∩ A| – |A ∩ B ∩ C|.

A B

U
C
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§ 3.4  A First Word on Probability

Def  ① experiment E、sample space S、event A ( S)、
elementary event a ( A). Let |S| = n.

② Pr(a) = The probability that a occurs = =          

Pr(A) = The probability that A occurs = =    

Ex3.28 ~ Ex3.36 see book.
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§ 3.4  A First Word on Probability

Ex3.31  5 cards from a standard deck of 52 cards.  (52
5) = 2598960  

What is the probability:

(a) Three aces and two jacks; (b) three aces and a pair; 

(c) a full house?

Sol.

(a) (4
3) = 4 for aces, (4

2) = 6 for jacks.

Let A = the event where Tanya draws three aces and two jacks. 

|A| = (4
3) (

4
2) = 46; Pr(A) = 24 / 2598960 ≈ 0.000009234.

(b) (4
3) = 4 for aces, (12

1) (
4
2) = 126 = 72 for a pair.

Let B = the event where Tanya draws three aces and a pair. 

|B| = (4
3) (

12
1) (

4
2) = 472; Pr(B) = 288 / 2598960 ≈ 0.000110814.

(c) (13
1) (

4
3) = 134 for three something, (12

1) (
4
2) = 126 = 72 for a pair

Let C = the event where Tanya draws a full house. 

|C| = (13
1) (

4
3) (

12
1) (

4
2) = 13288 = 3744; 

Pr(C) = 3744 / 2598960 ≈ 0.001440576.
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§ 3.4  A First Word on Probability

Def  Cartesian product, or cross product, of A and B = A  B

= {(a, b) | a  A, b  B }.

 ordered pairs : the element of A  B. (form : (a, b))

 (a, b) = (c, d) if and only if a = c and b = d. 

Ex3.32  A = { 1, 2, 3} and B = {x, y}, then

A  B = {(1, x), (1, y), (2, x), (2, y), (3, x), (3, y)}

B  A = {(x, 1), (y, 1), (x, 2), (y, 2), (x, 3), (y, 3)}

(1, x)  A  B , (1, x)  B  A

|A  B| = 32 = 6 = |A| |B| = |B| |A| = |B  A|.
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§ 3.4  A First Word on Probability

Ex3.37  120 passengers on airline: 

48: wine; 78: mixed drink; 66: iced tea;

36: 2 beverages; 24: 3 beverages.

自120 位中任選2 位; what is the probability that: 

a) Event A : they both want only iced tea?

b) Event B : they both enjoy exactly two of the three 

beverage offerings?
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§ 3.4  A First Word on probability

Sol. (1/2)

a + b + c = 36

24 – a – b = 24 + c – 36 = c – 12 ≥ 0

42 – a – c = 42 + b – 36 = b + 6 ≥ 0

54 – b – c = 54 + a – 36 = a + 18 ≥ 0

and 120 = (c – 12) + (b + 6) + (a + 18) + a + b + c + 24 + d 

= 362 + 12 + 24 + d = 108 + d

∴ d = 12 

(8 unknowns 6 equations ∴ infinite selected)

ex:

let a = b = 12, then c = 12, 42 – a – c = b + 6 = 18.

let a = b = 10, then c = 16, 42 – a – c = b + 6 = 16.
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§ 3.4  A First Word on probability

Sol. (2/2)

In Book:

|S| = (     ) = 7140

|A| = (     ) = 153

|B| = (     ) = 630

∴ Pr (A) =        , Pr (B) =     . 
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