Computer Science and Information Engineering National Chi Nan University Discrete Mathematics Dr. Justie Su-Tzu Juan

pter 2 Fundamentals of Logic

 Quantifiers, Definitions, and the Proofs of Theorems
Slides for a Course Based on the Text
Discrete \& Combinatorial Mathematics (5 ${ }^{\text {th }}$ Edition) by Ralph P. Grimaldi

2.5
 Quantifiers, Definitions, and the Proofs of Theorems

Note : In definition, an implication can be read as a biconditional, and, only in definition.

Ex 2.51 : (1/2)
a) Universe : all quadrilaterals in the plane.

A : "If a quadrilaterals is a rectangle then it has four equals angles."
B : "If a quadrilaterals has four equal angles, then it is a rectangle."
Let $p(x): x$ is a rectangle. $q(x): x$ has four equal angles
A: $\forall x[p(x) \rightarrow q(x)]$
B: $\forall x[q(x) \rightarrow p(x)]$
Actually, they are both intending: $\forall x[p(x) \leftrightarrow q(x)]$

2.5 Quantifiers, Definitions, and the Proofs of Theorems

Ex 2.51 : (2/2)
b) Universe $=Z$

A : "For every integer n, we call n even if it is divisible by $2 . "$
Let $p(n): n$ is an even integer

$$
\begin{aligned}
q(n): n \text { is divisible by } 2 & (\text { or, } n=2 k, \text { for some integer } k) \\
& (\text { or, } \exists k[n=2 k])
\end{aligned}
$$

A: $\forall n[q(n) \rightarrow p(n)]$
Actually, $\forall n[p(n) \leftrightarrow q(n)]$

2．5 Quantifiers，Definitions，and the Proofs of Theorems

Ex 2.52 ：Universe $=\{2,4,6, \ldots, 26\}$
For all $n(n=2,4, \ldots, 26)$ ，we can write n as the sum of at most three perfect squares．
Sol．method of exhaustion：（不只一種，但我何只需要找出其中一種即可！）

$$
\begin{array}{lll}
2=1+1 & 10=9+1 & 18=16+1+1(=9+9) \\
4=4 & 12=4+4+4 & 20=16+4 \\
6=4+1+1 & 14=9+4+1 & 22=9+9+4 \\
8=4+4 & 16=16 & 24=16+4+4 \\
& & 26=25+1(=16+9+1)
\end{array}
$$

Def ：Corollary ：follow immediately from a theorem
The Rule of Universal Specification：
$\forall x$ for a given universe，$p(x)$ is true，the $p(a)$ is true for each a in the universe．

Quantifiers, Definitions, and the Proofs of Theorems

Ex 2.53 : (1/4)

```
    \forallx[m(x)->c(x)]
```

a) Universe = all people $m(\vartheta)$
$m(x): x$ is a mathematics professor, $\therefore c(\vartheta)$
$c(x): x$ has studied calculus
All mathematics professors have studied calculus.
Leona is a mathematics professor.
Therefore Leona has studied calculus.
Let $\vartheta=$ Leona (in our universe) then :
Steps
Reason

1) $\forall x[m(x) \rightarrow c(x)]$ Premise
2) $m(\vartheta)$

Premise
3) $m(\vartheta) \rightarrow c(\vartheta)$
(1) \& the Rule of Universal Specification
4) $\therefore c(\vartheta) \quad$ (2), (3) and the Rule of Detachment

2.5 Quantifiers, Definitions, and the Proofs of Theorems

Ex 2.53 : (2/4)

b) Universe $=$ all triangles in the plane

$$
\neg r(c)
$$

$$
\forall t[p(t) \rightarrow q(t)]
$$

$r(t): t$ has two angles of equal measure c : triangle $X Y Z$
See Textbook.
Reasons

1) $\forall t[p(t) \rightarrow q(t)]$ Premise
2) $p(c) \rightarrow q(c)$
(1) and the Rule of Universal Specification
3) $\forall t[q(t) \rightarrow r(t)]$ Premise
4) $q(c) \rightarrow r(c)$
(3) and the Rule of Universal Specification
5) $p(c) \rightarrow r(c)$
6) $\neg r(c)$
7) $\therefore \neg p(c)$
(2), (4) and the Law of the Syllogism

Premise
(5), (6) and Modus Tollens
(c) Fall 2023, Justie Su-Tzu Juan

2.5
 Quantifiers, Definitions, and the Proofs of Theorems

Ex 2.53 : (3/4)
c) Universe $=$ student at a particular college.
m : Mary Gusberti, a student of this college.
$j(x): x$ is a junior.
$s(x): x$ is a senior.
$p(x): x$ is enrolled in a physical education class
(No junior or senior is enrolled in a physical education class
Mary Gusberti is enrolled in a physical education class
Therefore Mary Gusberti is not a senior

$$
\text { i.e. } \begin{aligned}
& \forall x[(j(x) \vee s(x)) \rightarrow \neg p(x)] \\
& p(m) \\
& \therefore \quad \neg s(m)
\end{aligned}
$$

2.5 Quantifiers, Definitions, and t

Ex 2.53 : (4/4)
c) Sol.

Step

Reason

1) $\forall x[(j(x) \vee s(x)) \rightarrow \neg p(x)]$ Premise
2) $p(m)$
3) $(j(m) \vee s(m)) \rightarrow \neg p(m)$

Premise
(1) and the Rule of Universal Specification
4) $p(m) \rightarrow \neg(j(m) \vee s(m))$
5) $p(m) \rightarrow(\neg j(m) \wedge \neg S(m))$
6) $\neg j(m) \wedge \neg s(m)$
7) $\therefore \neg s(m)$
(3) and $(q \rightarrow t) \Leftrightarrow(\neg t \rightarrow \neg p)$, and Law of Double Negation
(4) and DeMorgan's Law
(2), (5) and the Rule of

Detachment
(6) and the Rule of Conjunctive Simplification
(c) Fall 2023, Justie Su-Tzu Juan

2.5 Quantifiers, Definitions, and the Proofs of Theorems

Note : the Rule of Universal Specification + Modus Ponens, Modus Tollens $c:$ a member of the fixed universe $p(x), q(x)$: open statements defined for this universe
(1) $\forall x[p(x) \rightarrow q(x)]$
$p(c)$
$\therefore q(c)$
(2) $\forall x[p(x) \rightarrow q(x)]$
$\neg q(c)$
$\therefore \neg p(c)$

2.5 Quantifiers, Definitions, and the Proofs of Theorems

Ex (1/2) : Universe = all polygons in the plane c : quadrilateral $E F G H$, where $\angle E=91^{\circ}$
$p(x): x$ is a square $q(x): x$ has four sides
(1') All squares have four sides,
Quadrilateral EFGH has four sides
Therefore quadrilateral $E F G H$ is a square
(1")
$\forall x[p(x) \rightarrow q(x)]$
$q(c)$
$\therefore p(c) \longleftarrow$ false
$\because \forall x[p(x) \rightarrow q(x)]$ and c is a polygon in the plane
$\therefore p(c) \rightarrow q(c)$, but $[p(c) \rightarrow q(c)] \wedge q(c) \rightarrow p(c)$
\therefore invalid!!
(converse)

2.5 Quantifiers, Definitions, and the Proofs of Theorems

Ex (2/2) :
(2') All squares have four sides
Quadrilateral EFGH is not a square
Therefore quadrilateral $\boldsymbol{E F G H}$ does not have four sides
(2")

$$
\begin{aligned}
& \forall x[p(x) \rightarrow q(x)] \\
& \neg p(c) \\
\therefore & \neg q(c)
\end{aligned}
$$

$\because \forall x[p(x) \rightarrow q(x)]$ and c is a polygon in the plane
$\therefore p(c) \rightarrow q(c)$, but $[(p(c) \rightarrow q(c)) \wedge \neg p(c)] \rightarrow \neg q(c)$
\therefore invalid!!
(inverse)

2.5
 Quantifiers, Definitions, and the Proofs of Theorems

 The Rule of Universal Generalization:(1) If $\boldsymbol{p}(\boldsymbol{c})$ is true for any arbitrarily chosen element \boldsymbol{c} from our universe, then $\forall x p(x)$ is true.
(2) Similar results hold for the cases of two or three or more variables.

Ex 2.54 : Let $p(x), r(x)$ be open statements that are defined for a given universe.

Steps	Reasons	$\forall x[q(x) \rightarrow r(x)]$
(1) $\forall x[p(x) \rightarrow q(x)]$	Premise	$\therefore \forall x[p(x) \rightarrow r(x)]$
(2) $p(c) \rightarrow q(c)$	(1) \& the Rule of Universal Specification	
(3) $\forall x[q(x) \rightarrow r(x)]$	Premise	
(4) $q(c) \rightarrow r(c)$	(3) and the Rule of Universal Specification	
(5) $p(c) \rightarrow r(c)$	(2), (4) and the Law of the Syllogism	
(6) $\therefore \forall x[p(x) \rightarrow r(x)]$ (5) \& the Rule of Universal Generalization		

2.5 Quantifiers, Definitions, and the Proofs of Theorems

Ex 2.55 :
(a) Universe : all real number
$p(x): 3 x-7=20, \quad q(x): 3 x=27, \quad r(x): x=9$

1) If $3 x-7=20$, then $3 x=27$.
2) If $3 x=27$, then $x=9$.

$$
\forall x[p(x) \rightarrow q(x)]
$$

3) Therefore, if $3 x-7=20$, then $x=9 . \therefore \forall x[p(x) \rightarrow r(x)]$
(b) Universe : all quadrilaterals in plane geometry
"Since every square is a rectangle, and every rectangle is a parallelogram, it follows that every square is a parallelogram" $p(x): x$ is a square $q(x): x$ is a rectangle $r(x): x$ is a parallelogram $\quad \forall x[p(x) \rightarrow q(x)]$
By Ex 2.54 : $\frac{\forall x[q(x) \rightarrow r(x)]}{\therefore \forall x[p(x) \rightarrow r(x)]} \frac{\text { (2) }}{\therefore \text { (3) }}$

2.5 Quantifiers, Definitions, and the Proofs of Theorems

Ex 2.56 (1/2): $\forall x[p(x) \vee q(x)]$

$$
\forall x[(\neg p(x) \wedge q(x)) \rightarrow r(x)]
$$

$$
\therefore \forall x[\neg r(x) \rightarrow p(x)]
$$

Let c be an element in the universe assigned for the argument. Assume $\neg r(c)$ as an additional premise.

Steps
(1) $\forall x[p(x) \vee q(x)]$
(2) $p(c) \vee q(c)$
(3) $\forall x[(\neg p(x) \wedge q(x)) \rightarrow r(x)]$ Premise
(4) $[\neg p(c) \wedge q(c)] \rightarrow r(c)$
(3) \& the Rule of Universal

Specification
(5) $\neg r(c) \rightarrow \neg[\neg p(c) \wedge q(c)]$
(6) $\neg r(c) \rightarrow[p(c) \vee \neg q(c)]$

Reasons

Premise

(1) \& the Rule of Universal

Specification
(4) and $s \rightarrow t \Leftrightarrow \neg t \rightarrow \neg s$
(5), DeMorgan's Law \& the Law of

Double Negation
(c) Fall 2023, Justie Su-Tzu Juan

2．5 Quantifiers，Definitions，and the Proofs of Theorems

Ex 2.56 （2／2）：

Steps
（7）$\neg r(c)$
（8）$p(c) \vee \neg q(c)$
（9）$[p(c) \vee q(c)] \wedge[p(c) \vee \neg q(c)]$
（10）$p(c) \vee[q(c) \wedge \neg q(c)]$
（11）$p(c)$
（12）$\therefore \forall x[\neg r(x) \rightarrow p(x)]$

Conjunction

Reasons

Premise（assumed）
（7），（6）and Modus Ponens
（2），（8）and the Rule of
（9）\＆the Distributive Law of \vee over＾
（10）\＆Inverse \＆Identity Law
（7），（11）\＆the Rule of Universal
Generalization

Remark ：

1）For convenience ：using the letter x instead of c
2）將省略步驟以免過於珖碎，除非必要

2.5 Quantifiers, Definitions, and the Proofs of Theorems

Def 2.8: 1) Let \boldsymbol{n} be an integer. We call \boldsymbol{n} even if \boldsymbol{n} is divisible by 2. i.e. $\exists r \in Z$ s.t. $n=2 r$.
2) We call n odd if $\exists s \in Z$ s.t. $n=2 s+1$.

Theorem 2.2 : $\forall k, l \in Z$, if k, l are both odd, then $k+l$ is even. Proof.

1) $\because k, l$ are odd,
$\therefore \exists a, b \in Z$ s.t. $k=2 a+1, l=2 b+1$ (by Def 2.8)
2) Then $k+l=(2 a+1)+(2 b+1)=2(a+b+1)$
3) $\because a, b \in Z \quad \therefore a+b+1=c$ is an integer
i.e. $k+l=2 c$,
by Def 2.8, $k+l$ is even.

2.5 Quantifiers, Definitions, and the Proofs of Theorems

Remark :

1) In Step (1), k, l : chosen in an arbitrary manner.
\therefore by the Rule of Universe Generalization, the result obtained is true for all odd integers.
2) Use the Rule of Universe Specification twice in step (1): (l 同)
i) n is an odd integer $\rightarrow n=2 r+1$ for some integer r.
ii) k is a specific, arbitrarily chosen odd integer.
iii) Therefore $\boldsymbol{k}=\mathbf{2 a + 1} \mathbf{1}$ for some integer a.
3) $k=l \leftrightarrow \quad a=\frac{(k-1)}{2}=\frac{(l-1)}{2}=b$,
but $\because k$ may not equal to l,
\therefore use the different variable a, b.

2.5 Quantifiers, Definitions, and the Proofs of Theorems

Ex 2.57 : Universe : Z

If n is an integer, then $n^{2}=n .\left(\forall n\left[n^{2}=n\right]\right)$
Sol.
$n=0, n^{2}=0^{2}=0=n$.
$n=1, n^{2}=1^{2}=1=n$.
But, we can not conclude $n^{2}=n, \forall n$
We can not consider the choice of 0 (or 1) as an arbitrarily chosen integer!!
If $n=2, n^{2}=4 \neq 2=n$, is one counterexample!
\therefore the given statement is false!!
($n=0$ or $n=1$ is enough to say: $\exists n\left[n^{2}=n\right]$.)

2.5 Quantifiers, Definitions, and the Proofs of Theorems

Theorem 2.3 : \forall integer k, l, if k, l are both odd, then $k \cdot l$ is also odd.
Proof.
$\because k, l$ are both odd,
$\therefore \exists a, b \in Z$ s.t. $k=2 a+1, l=2 b+1$ (by Def 2.8)
$\therefore k \cdot l=(2 a+1)(2 b+1)=4 a b+2 a+2 b+1$
$=2(2 a b+a+b)+1$
where $2 a b+a+b \in Z$
Therefore, by Def 2.8, $k \cdot l$ is odd.

2.5
 Quantifiers, Definitions, and the Proofs of Theorems

Theorem $2.4(1 / 2):$ If m is an even integer, then $m+7$ is odd. Proof. (by three methods)

1) By a direct argument:
$\because m$ is even $\quad \therefore \exists a \in Z$ s.t. $m=2 a$.
Then $m+7=2 a+7=2(a+3)+1$.
$\because a+3 \in Z \quad \therefore m+7$ is odd.
2) Prove by the contrapositive method:

Suppose $m+7$ is not odd, hence even.
$\therefore \exists b \in Z$ s.t. $m+7=2 b$,
then $m=2 b-7=2 b-8+1=2(b-4)+1$.
$\because b-4 \in Z \quad \therefore m=2(b-4)+1$ is odd.
Therefore, If m is an even integer, then $m+7$ is odd.
$(\because \forall m[p(m) \rightarrow q(m)] \Leftrightarrow \forall m[\neg q(m) \rightarrow \neg p(m)])$

2.5
 Quantifiers, Definitions, and the Proofs of Theorems

Theorem $2.4(2 / 2):$ If m is an even integer, then $m+7$ is odd. Proof. (by three methods)
3) Proof by "the method of proof by contradiction":

Assume m is even and that $m+7$ is also even.
$\therefore \exists c \in Z$ s.t. $m+7=2 c$,
then $m=2 c-7=2(c-4)+1$.
$\because c-4 \in Z \quad \therefore m$ is odd $\quad \rightarrow \leftarrow$
(\because no integer can be both even and odd!!)
i.e. $m+7$ is even is a false assumption,
$\therefore m+7$ is odd.

2.5
 Quantifiers, Definitions, and the Proofs of Theorems

Ex : If we want to prove : $\forall m[p(m) \rightarrow q(m)]$

1) Prove this result by the contrapositive method:

$$
\text { prove : } \forall m[\neg q(m) \rightarrow \neg p(m)]
$$

2) Prove by the method of proof by contradiction: prove : assume $\forall m[p(m) \rightarrow q(m)]$ is false will implies F_{0} i.e. $\exists m[p(m) \wedge \neg q(m)] \rightarrow F_{0}$

Compared	Assumption	Result Derived
Contrapositive	$\neg q(m)$	$\neg p(m)$
Contradiction	$p(m) \wedge \neg q(m)$	F_{0}

2．5 Quantifiers，Definitions，and the Proofs of Theorems

Note：用（2）（3）似乎較麻煩，但當我們企圖找出一個反例時，已等於完成（2）or（3）。

Thm 2．5：\forall positive integer x, y ，if $x y>25$ ，then $x>5$ or $y>5$ ． Proof．

By the method of contrapositive．
Suppose $0<x \leq 5$ and $0<y \leq 5$ ，
then $0<x y \leq 5 \times 5=25$ ．
$\therefore x y$ does not exceed 25 ．
$\because[\neg(x>5) \wedge \neg(y>5)] \rightarrow(x y \leq 25)$ $\Leftrightarrow(x y>25) \rightarrow[(x>5) \vee(y>5)]$ ．
Hence if $x y>25$ ，then $x>5$ or $y>5$ ．

Computer Science and Information Engineering National Chi Nan University

Discrete Mathematics

Dr. Justie Su-Tzu Juan

Chap 3 Set Theory

3.1 Sets and Subsets

ion
Discrete \& Combinatorial Mathematics (5 ${ }^{\text {th }}$ Edition) by Ralph P. Grimaldi

3.1 Sets and Subsets

Def : (1) Set : a well-defined collection of objects.
(2) element (or member) : these objects.
(3) Well-define : for any element, can be determined whether it is in the set or not.
ex : The set of outstanding major league pitchers for the 1990s.

Def : (1) Capital letters : Sets.
(2) Lowercase letters : elements.
(3) $x \in A: x$ is an element of A.
(4) $x \notin A$: if not.

3.1 Sets and Subsets

EX 3.1 :
(1) $\{1,2,3,4,5\}$
$=\{x \mid x$ is an integer and $1 \leq x \leq 5\}$
(" \mid " is read "such that".)
("\{x| ...\}" are read "the set of all x such that ...")
$=\{x \mid 1 \leq x \leq 5\}$ where $\mathcal{U}=$ all integer
(" \because " is "universe of discourse")
(2) $\{x \mid 1 \leq x \leq 5\}$ where $\mathcal{U}=$ all real number.
(3) $\{x \mid 1 \leq x \leq 5\}$ where $U=$ even integer.

$$
=\{2,4\}
$$

3.1 Sets and Subsets

Ex 3.2 : $\boldsymbol{U}=\{1,2, \ldots\}$, positive integers.

$$
\text { a) } \begin{aligned}
A & =\{1,4, \mathbf{9}, \ldots, \mathbf{6 4}, \mathbf{8 1}\}=\left\{x^{2} \mid x \in \mathcal{U}, x^{2}<100\right\} \\
& =\left\{x^{2} \mid x \in \mathcal{U} \wedge x^{2}<100\right\} . \\
\text { b) } B & =\left\{\mathbf{1 , 4 , 9 , 1 6 \} = \{ y ^ { 2 } | y \in \mathcal { U } , y ^ { 2 } < 2 0 \}}\right. \\
& =\left\{y^{2} \mid y \in \mathcal{U}, y^{2}<23\right\}=\left\{y^{2} \mid y \in \mathcal{U} \wedge y^{2}<17\right\} . \\
\text { c) } C & =\{2,4,6,8, \ldots\}=\{2 k \mid k \in \mathcal{U}\} .
\end{aligned}
$$

Def : (1) $\boldsymbol{A}, \boldsymbol{B}$: finite set C : infinite set
(2) $|A|$: cardinality (or size) : the number of elements in A.

$$
\underline{\text { ex }}:|A|=9,|B|=4 .
$$

3.1 Sets and Subsets

Def 3.1: C, D are sets from U.
(1) C is a subset of $D, C \subseteq D$, or $D \supseteq C \equiv$ $\forall x[x \in C \Rightarrow x \in D]$
(2) C is a proper subset of $D, C \subset D$, or $D \supset C \equiv$ $C \subseteq D \wedge \exists x[x \in D \wedge x \notin C]$

Note : (1) $C \subset D \Rightarrow C \subseteq D$
(2) $C \subseteq D \Rightarrow|C| \leq|D|$
(3) $C \subset D \Rightarrow|C|<|D|$
(4) $C \subseteq D \nRightarrow C \subset D$

$$
\underline{\text { ex }}: U=\{1,2,3,4,5\}, C=\{1,2\}, \text { and } D=\{1,2\} .
$$

3．1 Sets and Subsets

EX 3.3 ：In ANSI FORTRAN：

（1）Variable：第一個為字母，後接續至多共5個字母或數字：V

$$
\begin{aligned}
\mid \mathcal{Y} & =26+26(36)+26(36)^{2}+\ldots+26(36)^{5} \\
& =1,617,038,306 .
\end{aligned}
$$

（2）Integer variable ：

$$
\begin{aligned}
& \text { 第一個為字母為I, J, K, L, M, N其中之一: } A \\
& |A|=6+6(36)+6(36)^{2}+\ldots+6(36)^{5} \\
& =373,162,686 .
\end{aligned}
$$

3.1 Sets and Subsets

EX 3.4: $\mathcal{U}=\{1,2,3,4,5\}, A=\{1,2\}, B=\left\{x \mid x^{2} \in \mathcal{U}\right\}$
(1) $B=\{1,2\}=A$.
(2) $\boldsymbol{A} \subseteq \boldsymbol{B}, \boldsymbol{B} \subseteq A$.

Def 3.2 : The sets C and D are said to be equal, $C=D$, $\equiv C \subseteq D$ and $D \subseteq C$.

Note : Neither order nor repetition is relevant for a general set .

$$
\begin{aligned}
\text { ex : } & \{1,2,3\} \\
& =\{3,1,2\} \\
& =\{2,2,1,3\} \\
& =\{1,2,1,3,1\}
\end{aligned}
$$

3.1 Sets and Subsets

Remark : (1) $\boldsymbol{A} \nsubseteq B, A$ is not a subset of $B \Leftrightarrow$ $\exists x[(x \in A) \wedge(x \notin B)]$
(2) $A \neq B \Leftrightarrow(A \notin B) \vee(B \nsubseteq A)$
(3) $C \subset D \Leftrightarrow(C \subseteq D) \wedge(C \neq D)$

Proof.

$$
\begin{aligned}
\text { (1) } A \nsubseteq B & \Leftrightarrow \neg \forall x[x \in A \Rightarrow x \in B] \\
& \Leftrightarrow \exists x \neg[x \in A \Rightarrow x \in B] \\
& \Leftrightarrow \exists x \neg[\neg(x \in A) \vee(x \in B)] \\
& \Leftrightarrow \exists x[(x \in A) \wedge \neg(x \in B)] \\
& \Leftrightarrow \exists x[(x \in A) \wedge(x \notin B)] \\
\text { (2) } A \neq B & \Leftrightarrow \neg(A \subseteq B \wedge B \subseteq A) \\
& \Leftrightarrow \neg(A \subseteq B) \vee \neg(B \subseteq A) \\
& \Leftrightarrow(A \nsubseteq B) \vee(B \nsubseteq A)
\end{aligned}
$$

3.1 Sets and Subsets

EX $3.5: \mathcal{U}=\{1,2,3,4,5,6, x, y,\{1,2\},\{1,2,3\},\{1,2,3,4\}\}$.
a) $A=\{1,2,3,4\}$

$$
|A|=4
$$

i) $A \subseteq U$; \quad ii) $A \subset U$;
iii) $A \in U$;
iv) $\{A\} \subseteq U$;
v) $\{A\} \subset \mathcal{U}$;
vi) $\{A\} \notin U$;
b) $B=\{5,6, x, y, A\}=\{5,6, x, y,\{1,2,3,4\}\}$ $|B|=5$
i) $A \in B$;
iv) $\{A\} \notin B$;
ii) $\{A\} \subseteq B$;
v) $A \nsubseteq B$;
iii) $\{A\} \subset B$;
vi) $A \not \subset B$;

3.1 Sets and Subsets

Thm 3.1: Let $A, B, C \subseteq \mathcal{U}$. (that is $A \subseteq U$ and $B \subseteq U$ and $C \subseteq U$)
a) $A \subseteq B$ and $B \subseteq C \Rightarrow A \subseteq C$.
b) $A \subset B$ and $B \subseteq C \Rightarrow A \subset C$.
c) $A \subseteq B$ and $B \subset C \Rightarrow A \subset C$.
d) $A \subset B$ and $B \subset C \Rightarrow A \subset C$.

Proof. (1/2)
(element arguments)
a) $\forall x \in U, x \in A$
$\because A \subseteq B, \therefore x \in A \Rightarrow x \in B$
$\because B \subseteq C, \therefore x \in B \Rightarrow x \in C$
By the law of the syllogism, $x \in A \Rightarrow x \in C$
i. e. $A \subseteq C$

Proof. (2/2)
b) (1) $\because A \subset B, \therefore x \in A \Rightarrow x \in B$
$\because B \subseteq C, \therefore x \in B \Rightarrow x \in C$
By the law of the syllogism, $x \in A \Rightarrow x \in C$
i. e. $A \subseteq C$
(2) $\because A \subset B, \therefore \exists b[b \in B \wedge b \notin A]$
$\Rightarrow b \in B$
$\because B \subseteq C, \therefore b \in B \Rightarrow b \in C$
$\because[b \in B \wedge b \notin A] \Rightarrow b \notin A$
$\Rightarrow \exists b[b \in C \wedge b \notin A]$
i. e. $A \subset C$
c), d) exercise.

3.1 Sets and Subsets

EX 3.6: Let $\mathcal{U}=\{\mathbf{1 , 2 , 3 , 4 , 5 \}}, A=\{1,2,3\}, B=\{\mathbf{3}, \mathbf{4}\}$, $C=\{1,2,3,4\}$.
a) $A \subseteq C$
b) $A \subset C$
c) $B \subset C$
d) $A \subseteq A$
e) $\boldsymbol{B} \nsubseteq A$
f) $A \not \subset A$

Def 3.3 : The null set (or empty set), ϕ (or \{\})
\equiv The set containing no elements.

Note : (1) $|\phi|=0$,

$$
\text { (2) }\{0\} \neq \phi ;\{\phi\} \neq \phi .
$$

3.1 Sets and Subsets

Thm 3.2 : For any universe, let $A \subseteq \mathcal{U}$. Then
(1) $\phi \subseteq A$.
(2) If $A \neq \phi$, then $\phi \subset A$.

Proof.
(1) proof by contradiction :

Assume $\phi \nsubseteq A, \therefore \exists x \in \mathcal{U},[(x \in \phi) \wedge(x \notin A)]$
But $x \in \phi$ is impossible !!
$\therefore \phi \subseteq A$
(2) If $A \neq \phi$, then $\exists a \in A$.
$\because \forall x \in \mathcal{U}, x \notin \phi, \therefore a \notin \phi$
$\therefore \phi \subset A$

3.1 Sets and Subsets

EX 3.7 : (1) Determine the number of subsets of the set $C=\{1$, $2,3,4\}$.
$2 \times 2 \times 2 \times 2=2^{4}=16$ (include ϕ and C)
(2) Determine the number of subsets of two elements from C.
$C(4,2)=6$
(3) $\therefore 2^{4}=C_{0}{ }^{4}+C_{1}{ }^{4}+C_{2}{ }^{4}+C_{3}{ }^{4}+C_{4}{ }^{4}=\sum_{k=0,4} C(4, k)$

Def : The subset of one element \equiv the singleton subset.
Def 3.4 : The power set of \boldsymbol{A}, denoted by $\mathscr{P}(\boldsymbol{A})\left(\right.$ or $\left.2^{A}\right)$ \equiv The collection of all subsets of A.

3.1 Sets and Subsets

EX 3.8 : $C=\{1,2,3,4\}$

$$
\mathscr{P}(\boldsymbol{C})=\{\phi,
$$

$$
\{1\},\{2\},\{3\},\{4\},
$$

$$
\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\},
$$

$$
\{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\}
$$

$$
C\}
$$

Remark : For any finite set A with $|A|=n, n \geq 0$
(1) $|\mathscr{P}(A)|=2^{n}$
(2) $\forall 0 \leq k \leq n$, there are $C(n, k)$ subsets of size k.
(3) $2^{n}=\sum_{k=0}^{n} C(n, k)$

3.1 Sets and Subsets

EX 3.9: Gray Code (略)

3.1 Sets and Subsets

EX 3.10 :

Figure 3.1
(a) $\mathbf{R}, \mathbf{U}, \mathbf{R}, \mathbf{R}, \mathbf{U}, \mathbf{R}, \mathbf{R}, \mathrm{U} \Rightarrow\{2,5,8\}$ from $\{1,2,3,4,5,6,7,8\}$
(b) $\mathbf{U}, \mathbf{R}, \mathbf{R}, \mathbf{R}, \mathbf{U}, \mathbf{U}, \mathbf{R}, \mathbf{R} \Rightarrow\{1,5,6\}$ from $\{1,2,3,4,5,6,7,8\}$
(c) $\mathrm{U}, \mathrm{R}, \mathrm{U}, \mathrm{R}, \mathrm{R}, \mathrm{R}, \mathrm{U}, \mathrm{R} \hookleftarrow\{1,3,7\}$ from $\{1,2,3,4,5,6,7,8\}$

The number of paths equals the number of subsets A of
$\{1,2,3,4,5,6,7,8\}$, where $|A|=3$.
$=C(8,3)=\frac{8!}{35!}=56$
("U"改" ${ }^{\text {R }}$ "! $\Rightarrow|\boldsymbol{B}|=\mathbf{5} \Rightarrow \boldsymbol{C}(\mathbf{8}, \mathbf{5})=\frac{8!}{53!}=\mathbf{5 6}$)
(c) Fall 2023, Justie Su-Tzu Juan

3.1 Sets and Subsets

EX 3.11 : There are 2^{6} ways to write 7 as a sum of one or more

 positive integers $=$ There are 2^{6} subsets for $\{1,2,3,4,5,6\}$
(2) $\{1,2,5,6\}:(1+1+1)+1+(1+1+1)=3+1+3$

$$
12
$$

$$
5 \quad 6
$$

(3) $1+1+5=1+1+(1+1+1+1+1):\{3,4,5,6\}$

Table 3.1

Composition of 7	Determining Subset of $\{\mathbf{1 , 2 , \mathbf { 3 } , \mathbf { 4 } , \mathbf { 5 } , \mathbf { 6 } \}}$		
(i)	$1+1+1+1+1+1+1$	(i)	\emptyset
(ii)	$1+2+1+1+1+1$	(ii)	$\{2\}$
(iii)	$1+1+3+1+1$	(iii)	$\{3,4\}$
(iv)	$2+3+2$	(iv)	$\{1,3,4,6\}$
(v)	$4+3$	(v)	$\{1,2,3,5,6\}$
(vi)	7	(vi)	$\{1,2,3,4,5,6\}$

(c) Fall 2023, Justie Su-Tzu Juan

3．1 Sets and Subsets

EX 3.12 ：For integers n, r with $n \geq r \geq 1, C(n+1, r)=C(n, r)+$ $C(n, r-1)$ ．
Sol．
Let $A=\left\{x, a_{1}, a_{2}, \ldots, a_{n}\right\}$
（1）All subsets of A that contains r elements $=C(n+1, r)$ ．
（2）$C \subseteq A$ ，where $x \in C$ and $|C|=r: C(n, r-1)$ ．
（3）$C \subseteq A$ ，where $x \notin C$ and $|C|=r: C(n, r)$ ．
\because（1）$=$（2）+ （3）
$\therefore C(n+1, r)=C(n, r)+C(n, r-1)$ ．
Another Sol．使用EX3．10之方法：
視為 $(0,0)$ 到 $(n+1-r, r)$ 之走法：共 $C(n+1, r)$
$=$ 最後一步為（i）R：$(n-r, r)$ ；（ii） $\mathrm{U}:(n+1-r, r-1)$
$=C(n, r)+C(n, r-1)$ ．

3.1 Sets and Subsets

EX 3.13 : Find the number of nonnegative integer solutions of

$$
x_{1}+x_{2}+\ldots+x_{6}<10
$$

Sol.
$\forall k, 0 \leq k \leq 9$, the number of solutions to $x_{1}+x_{2}+\ldots+x_{6}=k$ is $\left({ }_{k}{ }^{5+k}\right)$.
\therefore the answer $=\left({ }_{0}{ }^{5}\right)+\left({ }_{1}{ }^{6}\right)+\left(2^{7}\right)+\left({ }_{3}{ }^{8}\right)+\ldots+\left({ }_{9}{ }^{14}\right)$

$$
\begin{aligned}
& =\left[\left(0_{0}{ }^{6}\right)+\left(1^{6}\right)\right]+\left(2^{7}\right)+\left(3^{8}\right)+\ldots+\left({ }_{9}{ }^{14}\right) \\
& =\left[\left({ }_{1}{ }^{7}\right)+\left({ }_{2}{ }^{7}\right)\right]+\left({ }_{3}{ }^{8}\right)+\ldots+\left(9^{14}\right) \\
& =\left[\left(\left(^{8}\right)+\left({ }_{3}^{8}\right)\right]+\ldots+\left({ }_{9}{ }^{14}\right)\right. \\
& =\ldots=\left({ }_{8}^{14}\right)+\left({ }_{9}{ }^{14}\right)=\left({ }_{9}{ }^{15}\right)=5005 .
\end{aligned}
$$

3.1 Sets and Subsets

EX 3.14 : Pascal's triangle.

3.1 Sets and Subsets

Def :

a) $\mathbf{Z}=$ the set of integers $=\{0,1,-1,2,-2,3,-3, \ldots\}$
b) $\mathbf{N}=$ the set of nonnegative integers or natural numbers $=\{0,1,2,3, \ldots\}$
c) $\mathbf{Z}^{+}=$the set of positive integers $=\{1,2,3, \ldots\}=\{x \in \mathbf{Z} \mid x>0\}$
d) $\mathbf{Q}=$ the set of rational numbers $=\{a|b| a, b \in \mathbf{Z}, b \neq 0\}$
e) $\mathbf{Q}^{+}=$the set of positive rational numbers $=\{r \in \mathbf{Q} \mid r>0\}$
f) $\mathbf{Q}^{*}=$ the set of nonzero rational numbers
g) $\mathbf{R}=$ the set of real numbers
h) $\mathbf{R}^{+}=$the set of positive real numbers
i) $\mathbf{R}^{*}=$ the set of nonzero real numbers
j) $\mathbf{C}=$ the set of complex numbers $=\left\{x+y i \mid x, y \in \mathbf{R}, i^{2}=-1\right\}$
k) $\mathbf{C}^{*}=$ the set of nonzero complex numbers
l) For each $n \in \mathbf{Z}^{+}, \mathbf{Z}_{n}=\{0,1,2, \ldots, n-1\}$
m) For real numbers a, b with $a<b,[a, b]=\{x \in \mathbf{R} \mid a \leq x \leq b\}$, $(a, b)=\{x \in \mathbf{R} \mid a<x<b\},[a, b)=\{x \in \mathbf{R} \mid a \leq x<b\},(a, b]=$ $\{x \in \mathbf{R} \mid a<x \leq b\}$. The first set is called a closed interval, the second set an open interval, and the other two sets half-open intervals.

