Computer Science and Information Engineering National Chi Nan University

Discrete Mathematics Dr. Justie Su-Tzu Juan

Chapter 2 Fundamentals of Logic § 2.5 Quantifiers, Definitions, and the **Proofs of Theorems**

Slides for a Course Based on the Text Discrete & Combinatorial Mathematics (5th Edition) by Ralph P. Grimaldi

Note : In definition, an implication can be read as a biconditional, and, <u>only in definition</u>.

Ex 2.51 : (1/2)

a) Universe : all quadrilaterals in the plane.

- A : "If a quadrilaterals is a rectangle then it has four equals angles."
- **B** : "If a quadrilaterals has four equal angles, then it is a rectangle."

Let p(x) : x is a rectangle. q(x) : x has four equal angles A: $\forall x [p(x) \rightarrow q(x)]$

B: $\forall x [q(x) \rightarrow p(x)]$

Actually, they are both intending: $\forall x \ [p(x) \leftrightarrow q(x)]$

Ex 2.51 : (2/2) b) Universe = Z

> A : "For every integer *n*, we call *n* even if it is divisible by 2." Let p(n) : n is an even integer q(n) : n is divisible by 2 (or, n = 2k, for some integer *k*) (or, $\exists k \ [n = 2k]$)

A: $\forall n \ [q(n) \rightarrow p(n)]$ Actually, $\forall n \ [p(n) \leftrightarrow q(n)]$

Ex 2.52: Universe = $\{2, 4, 6, ..., 26\}$
For all n (n = 2, 4, ..., 26), we can write n as the sum of
at most three perfect squares.Sol.method of exhaustion : ($\pi R - \hbar$, eta HRR = 4, eta HRR

<u>Def</u> : *Corollary* : follow immediately from a *theorem*

The Rule of Universal Specification:

 $\forall x \text{ for a given universe, } p(x) \text{ is true, the } p(a) \text{ is true for each } a \text{ in the universe.}$

Ex 2.53 : (1/4)		$\forall x \ [m(x) \rightarrow c(x)]$
a) Universe = all	people	<i>m</i> (<i>9</i>)
m(x): x is	a mathematics professo	or, $\overline{c(\mathcal{G})}$
c(x): x has	s studied calculus	
All mathema	tics professors have stu	died calculus.
Leona is a m	athematics professor.	
Therefore Le	ona has studied calculu	1S.
Let $\mathcal{G} = $ Leon	a (in our universe)	then :
Steps	Reason	
1) $\forall x [m(x) -$	$\rightarrow c(x)$] Premise	
$2) m(\mathcal{G})$	Premise	
3) $m(\mathcal{G}) \rightarrow c(\mathbf{u})$		Universal Specification
$4) \therefore c(9)$	(2), (3) and the R	lule of Detachment

p(t) : t has $q(t) : t is a$ $r(t) : t has$	riangles in the plane two sides of equal length n isosceles triangle two angles of equal measure a two angles of equal measure ngle <i>XYZ</i>	
Step	Reasons	
$1) \; \forall t \; [p(t) \rightarrow q(t)]$	Premise	
2) $p(c) \rightarrow q(c)$	(1) and the Rule of Universal Specifica	ation
3) $\forall t [q(t) \rightarrow r(t)]$	Premise	
4) $q(c) \rightarrow r(c)$	(3) and the Rule of Universal Specifica	ation
5) $\overline{p(c)} \rightarrow r(c)$	(2), (4) and the Law of the Syllogism	
$6) \neg r(c)$	Premise	
7) $\therefore \neg p(c)$	(5), (6) and Modus Tollens (c) Fall 2023, Justie Su-Tzu Juan	6

Ex 2.53 : (3/4)

c) Universe = student at a particular college.

- *m* : Mary Gusberti, a student of this college.
- j(x): x is a junior.
- s(x) : x is a senior.
- p(x): x is enrolled in a physical education class
- No junior or senior is enrolled in a physical education class

Mary Gusberti is enrolled in a physical education class Therefore Mary Gusberti is not a senior

i.e.
$$\forall x [(j(x) \lor s(x)) \rightarrow \neg p(x)]$$

$$p(m)$$

$$\vdots \neg s(m)$$

§ 2.5 Quantifiers, Definition	ns, and t $p(m)$ $\forall x [(j(x) \lor s(x)) \rightarrow \neg p(x)]$
	$\therefore \neg s(m)$
Ex 2.53 : (4/4)	
c) Sol.	
Step	Reason
$1) \forall x [(j(x) \lor s(x)) \to \neg p(x)]$	c)] Premise
2) $p(m)$	Premise
3) $(j(m) \lor s(m)) \rightarrow \neg p(m)$	(1) and the Rule of Universal Specification
4) $p(m) \rightarrow \neg (j(m) \lor s(m))$	(3) and $(q \rightarrow t) \Leftrightarrow (\neg t \rightarrow \neg p)$, and Law of Double Negation
$5) \ p(m) \rightarrow (\neg j(m) \land \neg s(m))$) (4) and DeMorgan's Law
6) $\neg j(m) \land \neg s(m)$	(2), (5) and the Rule of Detachment
7) : $\neg s(m)$	(6) and the Rule of Conjunctive Simplification

(c) Fall 2023, Justie Su-Tzu Juan

Note : the Rule of Universal Specification + Modus Ponens, Modus Tollens

c : a member of the fixed universe

p(x), q(x): open statements defined for this universe

Ex (1/2): Universe = all polygons in the plane c : quadrilateral *EFGH*, where $\angle E = 91^{\circ}$ p(x): x is a square q(x) : x has four sides (1') All squares have four sides, Quadrilateral EFGH has four sides Therefore quadrilateral *EFGH* is a square (1") $\forall x \ [p(x) \rightarrow q(x)]$ q(c) $\overline{ \cdot \cdot p(c) } \leftarrow \text{false}$ $\therefore \forall x \ [p(x) \rightarrow q(x)] \text{ and } c \text{ is a polygon in the plane}$ $\therefore p(c) \rightarrow q(c), \text{ but } [p(c) \rightarrow q(c)] \land q(c) \not\rightarrow p(c)$

- ... invalid!!
- (converse)

Ex (2/2): (2') All squares have four sides Quadrilateral *EFGH* is not a square Therefore quadrilateral *EFGH* does not have four sides (2") $\forall x [p(x) \rightarrow q(x)]$ $\neg p(c)$ $\therefore \neg q(c)$ $\therefore \forall x [p(x) \rightarrow q(x)]$ and *c* is a polygon in the plane

- $\therefore p(c) \rightarrow q(c), \text{ but } [(p(c) \rightarrow q(c)) \land \neg p(c)] \not\rightarrow \neg q(c)$
- ... invalid!!

(inverse)

2.5 Quantifiers, Definitions, and the Proofs of Theorems *The Rule of Universal Generalization* :

(1) If p(c) is true for any <u>arbitrarily</u> chosen element c from our universe, then ∀x p(x) is true.
(2) Similar results hold for the cases of two or three or more variables.

Ex 2.54: Let p(x), r(x) be open statements that are
defined for a given universe. $\forall x [p(x) \rightarrow q(x)]$ StepsReasons $\forall x [q(x) \rightarrow r(x)]$

StepsReasons $\forall x [q(x) \rightarrow r(x)]$ (1) $\forall x [p(x) \rightarrow q(x)]$ Premise $\therefore \forall x [p(x) \rightarrow r(x)]$ (2) $p(c) \rightarrow q(c)$ (1) & the Rule of Universal Specification(3) $\forall x [q(x) \rightarrow r(x)]$ Premise(4) $q(c) \rightarrow r(c)$ (3) and the Rule of Universal Specification(5) $p(c) \rightarrow r(c)$ (2), (4) and the Law of the Syllogism(6) $\therefore \forall x [p(x) \rightarrow r(x)]$ (5) & the Rule of Universal Generalization

(c) Fall 2023, Justie Su-Tzu Juan

Ex 2.55 : (a) Universe : all real number $p(x): 3x - 7 = 20, \quad q(x): 3x = 27, \quad r(x): x = 9$ $\forall x [p(x) \rightarrow q(x)]$ 1) If 3x - 7 = 20, then 3x = 27. $\forall x [q(x) \rightarrow r(x)]$ 2) If 3x = 27, then x = 9. 3) Therefore, if 3x - 7 = 20, then x = 9. $\therefore \forall x [p(x) \rightarrow r(x)]$ (b) Universe : all quadrilaterals in plane geometry "Since every square is a rectangle, and every rectangle is a parallelogram, it follows that every square is a parallelogram" p(x): x is a square q(x): x is a rectangle r(x): x is a parallelogram $\forall x [p(x) \rightarrow q(x)]$ (1)By Ex 2.54: $\forall x [q(x) \rightarrow r(x)]$ ② $\therefore \forall x [p(x) \rightarrow r(x)] \ \therefore \ \textcircled{3}$

Ex 2.56 (1/2) : $\forall x [p(x) \lor q(x)]$;)]
$\forall x [(\neg p(x) \land$	
	p(x)] iverse assigned for the argument.
Assume $\neg r(c)$ as an addition	-
Steps	Reasons
(1) $\forall x [p(x) \lor q(x)]$	Premise
$(2) p(c) \vee q(c)$	(1) & the Rule of Universal
	Specification
(3) $\forall x [(\neg p(x) \land q(x)) \rightarrow r(x)]$] Premise
$(4) \left[\neg p(c) \land q(c)\right] \rightarrow r(c)$	(3) & the Rule of Universal
	Specification
$(5) \neg r(c) \rightarrow \neg [\neg p(c) \land q(c)]$	(4) and $s \to t \Leftrightarrow \neg t \to \neg s$
$(6) \neg r(c) \rightarrow [p(c) \lor \neg q(c)]$	(5), DeMorgan's Law & the Law of
	Double Negation

(c) Fall 2023, Justie Su-Tzu Juan

Ex 2.56 (2/2) :	
Steps	Reasons
$(7) \neg r(c)$	Premise (assumed)
(8) $p(c) \lor \neg q(c)$	(7), (6) and Modus Ponens
$(9) [p(c) \lor q(c)] \land [p(c) \lor \neg q(c)]$	(c)](2), (8) and the Rule of Conjunction
$(10) p(c) \lor [q(c) \land \neg q(c)]$	(9) & the Distributive Law of ∨ over ∧
(11) p(c)	(10) & Inverse & Identity Law
(12) $\therefore \forall x [\neg r(x) \rightarrow p(x)]$	(7), (11) & the Rule of Universal Generalization

Remark :

1) For convenience : using the letter x instead of c

2) 將省略步驟以免過於瑣碎,除非必要 (c) Fall 2023, Justie Su-Tzu Juan

Def 2.8 : 1) Let *n* be an integer. We call *n* even if *n* is divisible by 2. i.e. ∃ *r* ∈ Z s.t. *n* = 2*r*.
2) We call *n* odd if ∃ *s* ∈ Z s.t. *n* = 2*s* + 1.

Theorem 2.2 : $\forall k, l \in \mathbb{Z}$, if k, l are both odd, then k + l is even. **Proof.**

1) \therefore k, l are odd,

∴ $\exists a, b \in Z$ s.t. k = 2a + 1, l = 2b + 1 (by <u>Def 2.8</u>) 2) Then k + l = (2a + 1) + (2b + 1) = 2(a + b + 1)3) ∴ $a, b \in Z$ ∴ a + b + 1 = c is an integer i.e. k + l = 2c, by Def 2.8, k + l is even.

Remark :

- 1) In Step (1), k, l: chosen in an arbitrary manner.
 - ... by the Rule of Universe Generalization, the result obtained is true for all odd integers.
- 2) Use the Rule of Universe Specification twice in step (1): (*l* 同)

i) *n* is an odd integer → n = 2r + 1 for some integer *r*.
ii) *k* is a specific, arbitrarily chosen odd integer.
iii) Therefore k = 2a + 1 for some integer a.

3)
$$k = l \iff a = \frac{(k-1)}{2} = \frac{(l-1)}{2} = b$$
,
but $\therefore k$ may not equal to l ,
 \therefore use the different variable a, b .

(c) Fall 2023, Justie Su-Tzu Juan

Ex 2.57 : Universe : Z If *n* is an integer, then $n^2 = n$. ($\forall n \ [n^2 = n]$) Sol. $n = 0, n^2 = 0^2 = 0 = n.$ $n = 1, n^2 = 1^2 = 1 = n.$ But, we can not conclude $n^2 = n$, $\forall n$ We can not consider the choice of 0 (or 1) as an arbitrarily chosen integer!! If n = 2, $n^2 = 4 \neq 2 = n$, is one counterexample! ... the given statement is false!! $(n = 0 \text{ or } n = 1 \text{ is enough to say: } \exists n [n^2 = n].)$

Theorem 2.3 : \forall integer k, l, if k, l are both odd, then $k \cdot l$ is also odd.

Proof.

- : *k*, *l* are both odd,
- $\therefore \exists a, b \in \mathbb{Z} \text{ s.t. } k = 2a + 1, l = 2b + 1 \text{ (by } \underline{\text{Def 2.8}}\text{)}$
- : $k \cdot l = (2a + 1)(2b + 1) = 4ab + 2a + 2b + 1$

= 2(2ab + a + b) + 1

where $2ab + a + b \in Z$

Therefore, by Def 2.8, $k \cdot l$ is odd.

Theorem 2.4 (1/2) : If *m* is an even integer, then m + 7 is odd. **Proof.** (by three methods)

1) By a direct argument:

 $\therefore m \text{ is even } \therefore \exists a \in \mathbb{Z} \text{ s.t. } m = 2a.$ Then m + 7 = 2a + 7 = 2(a + 3) + 1.

 $\therefore a + 3 \in Z$ $\therefore m + 7$ is odd.

2) Prove by the contrapositive method: Suppose *m* + 7 is not odd, hence even.

 $\therefore \exists b \in \mathbb{Z} \text{ s.t. } m + 7 = 2b,$

then m = 2b - 7 = 2b - 8 + 1 = 2(b - 4) + 1.

: $b - 4 \in Z$: m = 2(b - 4) + 1 is odd.

Therefore, If *m* is an even integer, then *m* + 7 is odd. ($\because \forall m [p(m) \rightarrow q(m)] \Leftrightarrow \forall m [\neg q(m) \rightarrow \neg p(m)])$ **Theorem 2.4** (2/2) : If *m* is an even integer, then m + 7 is odd. **Proof.** (by three methods)

- 3) Proof by "the method of proof by contradiction": Assume *m* is even and that m + 7 is also even.
 - $\therefore \exists c \in Z \text{ s.t. } m + 7 = 2c,$

then m = 2c - 7 = 2(c - 4) + 1.

 $\therefore c - 4 \in Z \quad \therefore m \text{ is odd} \quad \rightarrow \leftarrow$

(:.' no integer can be both even and odd!!)

i.e. m + 7 is even is a false assumption,

 $\therefore m + 7$ is odd.

Ex : If we want to prove : ∀m [p(m) → q(m)]
1) Prove this result by the contrapositive method: prove : ∀m [¬q(m) → ¬p(m)]
2) Prove by the method of proof by contradiction: prove : assume ∀m [p(m) → q(m)] is false will implies F₀ i.e. ∃m [p(m) ∧ ¬q(m)] → F₀

Compared	Assumption	Result Derived
Contrapositive	$\neg q(m)$	$\neg p(m)$
Contradiction	$p(m) \wedge \neg q(m)$	F ₀

Note: 用(2)(3)似乎較麻煩, 但當我們企圖找出一個反例時, 已等 於完成(2) or (3).

<u>Thm 2.5</u> : \forall positive integer *x*, *y*, if *xy* > 25, then *x* > 5 or *y* > 5. **Proof.**

By the method of contrapositive. Suppose $0 < x \le 5$ and $0 < y \le 5$, then $0 < xy \le 5 \times 5 = 25$.

- ... xy does not exceed 25.
- $\therefore [\neg (x > 5) \land \neg (y > 5)] \rightarrow (xy \le 25)$ $\Leftrightarrow (xy > 25) \rightarrow [(x > 5) \lor (y > 5)].$ Hence if xy > 25, then x > 5 or y > 5.

Computer Science and Information Engineering National Chi Nan University Discrete Mathematics

Dr. Justie Su-Tzu Juan

Chap 3 Set Theory § 3.1 Sets and Subsets

Slides for a Course Based on the Text Discrete & Combinatorial Mathematics (5th Edition) by Ralph P. Grimaldi

<u>Def</u>: ① Set: a well-defined collection of objects.
② element (or member): these objects.
③ Well-define: for any element, can be determined whether it is in the set or not.

ex : The set of outstanding major league pitchers for the 1990s.

<u>Def</u>: ① Capital letters : Sets.
② Lowercase letters : elements.
③ x ∈ A : x is an element of A.
④ x ∉ A : if not.

 $\underbrace{\text{EX 3.1}}_{\textcircled{0}}:$ $\underbrace{\left\{1,2,3,4,5\right\}}_{=\left\{x \mid x \text{ is an integer and } 1 \le x \le 5\right\}}_{\left(\begin{array}{c} "\mid " \text{ is read "such that".} \right)}_{\left(\begin{array}{c} "\{x \mid ...\}" \text{ are read "the set of all } x \text{ such that } ..."\right)}_{=\left\{x \mid 1 \le x \le 5\right\}} \text{ where } \mathcal{U} = \text{ all integer } ("\mathcal{U}" \text{ is "universe of discourse"})}$

② {x | 1 ≤ x ≤ 5} where \mathcal{U} = all real number.

③ { $x \mid 1 \le x \le 5$ } where \mathcal{U} = even integer. = {2, 4}

Ex 3.2 :
$$\mathcal{U} = \{1, 2, ...\}$$
, positive integers.
a) $A = \{1, 4, 9, ..., 64, 81\} = \{x^2 \mid x \in \mathcal{U}, x^2 < 100\}$
 $= \{x^2 \mid x \in \mathcal{U} \land x^2 < 100\}$.
b) $B = \{1, 4, 9, 16\} = \{y^2 \mid y \in \mathcal{U}, y^2 < 20\}$
 $= \{y^2 \mid y \in \mathcal{U}, y^2 < 23\} = \{y^2 \mid y \in \mathcal{U} \land y^2 < 17\}$.
c) $C = \{2, 4, 6, 8, ...\} = \{2k \mid k \in \mathcal{U}\}$.

<u>Def</u>: ① *A*, *B*: *finite* set *C*: *infinite* set
② |*A*|: *cardinality* (or *size*): the number of elements in *A*.

 $\underline{\mathbf{ex}}$: |A| = 9, |B| = 4.

Def 3.1 : *C*, *D* are sets from *U*. (1) *C* is a *subset* of *D*, *C* ⊆ *D*, or *D* ⊇ *C* ≡ $\forall x [x \in C \Rightarrow x \in D]$ (2) *C* is a *proper subset* of *D*, *C* ⊂ *D*, or *D* ⊃ *C* ≡ $C \subseteq D \land \exists x [x \in D \land x \notin C]$

```
\underbrace{Note}: \textcircled{O} C \subseteq D \Rightarrow C \subseteq D
\textcircled{O} C \subseteq D \Rightarrow |C| \leq |D|
\textcircled{O} C \subseteq D \Rightarrow |C| < |D|
\textcircled{O} C \subseteq D \Rightarrow |C| < |D|
\textcircled{O} C \subseteq D \Rightarrow C \subseteq D
\underbrace{ex}: \mathcal{U} = \{1, 2, 3, 4, 5\}, C = \{1, 2\}, \text{ and } D = \{1, 2\}.
```

EX 3.3 : In ANSI FORTRAN:

① Variable: 第一個為字母,後接續至多共5個字母或數字: V
 |𝒴| = 26 + 26(36) + 26(36)² + ... + 26(36)⁵
 = 1,617,038,306.

② Integer variable :

第一個為字母為I, J, K, L, M, N其中之一:A |A| = 6 + 6(36) + 6(36)² + ... + 6(36)⁵ = 373,162,686.

EX 3.4 :
$$\mathcal{U} = \{1, 2, 3, 4, 5\}, A = \{1, 2\}, B = \{x \mid x^2 \in \mathcal{U}\}$$

(1) $B = \{1, 2\} = A$.
(2) $A \subseteq B, B \subseteq A$.

<u>Def 3.2</u> : The sets *C* and *D* are said to be *equal*, *C* = *D*, ≡ *C* ⊆ *D* and *D* ⊆ *C*.

Note : Neither order nor repetition is relevant for a general set .

$$\underline{ex} : \{1, 2, 3\} \\ = \{3, 1, 2\} \\ = \{2, 2, 1, 3\} \\ = \{1, 2, 1, 3, 1\}$$

Remark : ① $A \not\subseteq B$, A is *not* a subset of $B \Leftrightarrow$ $\exists x \ [(x \in A) \land (x \notin B)]$ $\textcircled{2} A \neq B \Leftrightarrow (A \not\subseteq B) \lor (B \not\subseteq A)$ $(C \subset D \Leftrightarrow (C \subset D) \land (C \neq D))$ **Proof.** $(1) A \not\subseteq B \Leftrightarrow \neg \forall x \ [x \in A \Rightarrow x \in B]$ $\Leftrightarrow \exists x \neg [x \in A \Rightarrow x \in B]$ $\Leftrightarrow \exists x \neg [\neg (x \in A) \lor (x \in B)]$ $\Leftrightarrow \exists x \ [(x \in A) \land \neg (x \in B)]$ $\Leftrightarrow \exists x [(x \in A) \land (x \notin B)]$ $(2) A \neq B \Leftrightarrow \neg (A \subset B \land B \subset A)$ $\Leftrightarrow \neg (A \subset B) \lor \neg (B \subset A)$ \Leftrightarrow $(A \not\subset B) \lor (B \not\subset A)$

EX 3.5 : $\mathcal{U} = \{1, 2, 3, 4, 5, 6, x, y, \{1, 2\}, \{1, 2, 3\}, \{1, 2, 3, 4\}\}.$ a) $A = \{1, 2, 3, 4\}$ |A| = 4i) $A \subseteq \mathcal{U}$; iii) $A \in \mathcal{U}$; ii) $A \subset \mathcal{U}$; iv) $\{A\} \subseteq \mathcal{U}$; $\mathbf{v} \{A\} \subset \mathcal{U};$ vi) $\{A\} \notin \mathcal{U}$; b) $B = \{5, 6, x, y, A\} = \{5, 6, x, y, \{1, 2, 3, 4\}\}$ |B| = 5i) $A \in B$; ii) $\{A\} \subseteq B$; iii) $\{A\} \subset B;$ v) $A \not\subseteq B$; iv) $\{A\} \notin B$; vi) $A \not\subset B$;

(c) Fall 2023, Justie Su-Tzu Juan

```
Thm 3.1 : Let A, B, C \subseteq \mathcal{U}. (that is A \subseteq \mathcal{U} and B \subseteq \mathcal{U} and C \subseteq \mathcal{U})
    a) A \subseteq B and B \subseteq C \Rightarrow A \subseteq C.
    b) A \subset B and B \subseteq C \Rightarrow A \subset C.
    c) A \subseteq B and B \subset C \Rightarrow A \subset C.
    d) A \subset B and B \subset C \Rightarrow A \subset C.
Proof. (1/2)
            (element arguments)
        a) \forall x \in \mathcal{U}, x \in A
                 \therefore A \subseteq B, \therefore x \in A \Rightarrow x \in B
                 \therefore B \subseteq C, \therefore x \in B \Rightarrow x \in C
                  By the law of the syllogism, x \in A \Rightarrow x \in C
                  i. e. A \subseteq C
```

b) $A \subset B$ and $B \subseteq C \Rightarrow A \subset C$

c), d) exercise.

 $\underline{EX 3.6} : \text{Let } \mathcal{U} = \{1, 2, 3, 4, 5\}, A = \{1, 2, 3\}, B = \{3, 4\}, \\
 C = \{1, 2, 3, 4\}. \\
 a) A \subseteq C \qquad b) A \subset C \qquad c) B \subset C \\
 d) A \subseteq A \qquad e) B \notin A \qquad f) A \not\subset A$

<u>Def 3.3</u> : The *null set* (or *empty set*), ϕ (or {}) ≡ The set containing no elements.

 $\underline{\text{Note}}: \textcircled{1} | \phi | = 0, \\
\textcircled{2} \{0\} \neq \phi; \{\phi\} \neq \phi.$

```
Thm 3.2: For any universe, let A \subseteq \mathcal{U}. Then

(1) \phi \subseteq A.

(2) If A \neq \phi, then \phi \subset A.

Proof.

(1) proof by contradiction :

Assume \phi \not\subseteq A, \therefore \exists x \in \mathcal{U}, [(x \in \phi) \land (x \notin A)]

But x \in \phi is impossible !!

\therefore \phi \subseteq A
```

② If $A \neq \phi$, then $\exists a \in A$.

- $\because \forall x \in \mathcal{U}, x \notin \phi, \therefore a \notin \phi$
- $\therefore \phi \subset A$

EX 3.7 : ① Determine the number of subsets of the set $C = \{1, 2, 3, 4\}$.

 $2 \times 2 \times 2 \times 2 = 2^4 = 16$ (include ϕ and *C*)

② Determine the number of subsets of two elements from *C*.

$$C(4, 2) = 6$$

3 $\therefore 2^4 = C_0^4 + C_1^4 + C_2^4 + C_3^4 + C_4^4 = \sum_{k=0,4} C(4,k)$

Def : The subset of one element = the *singleton* subset.

<u>Def 3.4</u> : The *power set* of A , denoted by $\mathscr{P}(A)$ (or 2^A) ≡ The collection of all subsets of A .

$$\underline{\mathbf{EX} \ 3.8}: C = \{1, 2, 3, 4\}$$

$$\mathscr{P}(C) = \{\phi, \\ \{1\}, \{2\}, \{3\}, \{4\}, \\ \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \\ \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}, \\ \{C\}$$

Remark : For any finite set *A* with $|A| = n, n \ge 0$

EX 3.9: Gray Code (略)

	00	0 Ø	000	000	000
0 Ø	10	0 $\{x\}$	100	010	001
$1 \{x\}$	11	$0 \{x,y\}$	110	011	101
	01	$0 \{y\}$	010	001	100
0 0 Ø	01	1 $\{y, z\}$	011	101	110
1 0 $\{x\}$	11	1 $\{x, y, z\}$	111	111	010
1 1 $\{x, y\}$	10	1 $\{x, z\}$	101	110	011
$0 1 {y}$	00	1 $\{z\}$	001 ←	100	111

EX 3.10:

(a) R, U, R, R, U, R, R, U ⇒ {2, 5, 8} from {1, 2, 3, 4, 5, 6, 7, 8}
(b) U, R, R, R, U, U, R, R ⇒ {1, 5, 6} from {1, 2, 3, 4, 5, 6, 7, 8}
(c) U, R, U, R, R, R, U, R ⇔ {1, 3, 7} from {1, 2, 3, 4, 5, 6, 7, 8}
The number of paths equals the number of subsets A of {1, 2, 3, 4, 5, 6, 7, 8} where |A| = 3

{1, 2, 3, 4, 5, 6, 7, 8}, where |A| = 3. = $C(8, 3) = \frac{8!}{35!} = 56$ ("U" 改 "R" $\Rightarrow |B| = 5 \Rightarrow C(8, 5) = \frac{8!}{53!} = 56$) (c) Fall 2023, Justie Su-Tzu Juan

EX 3.11 : There are 2⁶ ways to write 7 as a sum of one or more positive integers = There are 2⁶ subsets for {1, 2, 3, 4, 5, 6}

+ 1 + 1 + 1 + 1 + 1 + 1

Table 3.1

	Composition of 7		Determining Subset of {1, 2, 3, 4, 5, 6}		
(i)	1 + 1 + 1 + 1 + 1 + 1 + 1	(i)	ø		
(ii)	1 + 2 + 1 + 1 + 1 + 1	(ii)	{2}		
(iii)	1 + 1 + 3 + 1 + 1	(iii)	{3, 4}		
(iv)	2 + 3 + 2	(iv)	$\{1, 3, 4, 6\}$		
(v)	4 + 3	(v)	$\{1, 2, 3, 5, 6\}$		
(vi)	7	(vi)	$\{1, 2, 3, 4, 5, 6\}$		

EX 3.12 : For integers *n*, *r* with $n \ge r \ge 1$, C(n + 1, r) = C(n, r) + C(n, r - 1). Sol.

> Let $A = \{x, a_1, a_2, ..., a_n\}$ (1) All subsets of A that contains r elements = C(n+1, r). (2) $C \subseteq A$, where $x \in C$ and |C| = r : C(n, r-1). (3) $C \subseteq A$, where $x \notin C$ and |C| = r : C(n, r). \therefore (1) = (2) + (3) $\therefore C(n+1, r) = C(n, r) + C(n, r-1)$.

Another Sol.

使用<u>EX3.10</u>之方法: 視為(0,0)到(n+1-r,r)之走法:共C(n+1,r)= 最後一步為(i) R : (n-r,r); (ii) U : (n+1-r,r-1)= C(n,r) + C(n,r-1).

EX 3.13 : Find the number of nonnegative integer solutions of $x_1 + x_2 + ... + x_6 < 10$.

Sol.

 $\forall k, 0 \le k \le 9$, the number of solutions to $x_1 + x_2 + \dots + x_6 = k$ is $\binom{5+k}{k}$.

 $\therefore \text{ the answer} = \binom{5}{0} + \binom{6}{1} + \binom{7}{2} + \binom{8}{3} + \dots + \binom{9^{14}}{9^{14}}$ $= [\binom{6}{0} + \binom{6}{1}] + \binom{7}{2} + \binom{8}{3} + \dots + \binom{9^{14}}{9^{14}}$ $= [\binom{7}{1} + \binom{7}{2}] + \binom{8}{3} + \dots + \binom{9^{14}}{9^{14}}$ $= [\binom{2^8}{2} + \binom{8}{3}] + \dots + \binom{9^{14}}{9^{14}}$ $= \dots = \binom{8^{14}}{8} + \binom{9^{14}}{9^{14}} = \binom{9^{15}}{9^{15}} = 5005.$

EX 3.14 : **Pascal's triangle.**

(c) Fall 2023, Justie Su-Tzu Juan

Def :

a) \mathbf{Z} = the set of *integers* = {0, 1, -1, 2, -2, 3, -3, ...}

- **b**) N = the set of *nonnegative integers* or *natural numbers* = {0, 1, 2, 3, ... }
- c) \mathbf{Z}^+ = the set of *positive integers* = {1, 2, 3, ...} = {x \in \mathbf{Z} | x > 0}
- **d**) \mathbf{Q} = the set of rational numbers = { $a/b | a, b \in \mathbf{Z}, b \neq 0$ }
- e) \mathbf{Q}^+ = the set of *positive rational numbers* = { $r \in \mathbf{Q} | r > 0$ }

f) \mathbf{Q}^* = the set of *nonzero rational numbers*

- g) \mathbf{R} = the set of *real numbers*
- **h**) \mathbf{R}^+ = the set of *positive real numbers*
- i) \mathbf{R}^* = the set of *nonzero real numbers*
- **j**) **C** = the set of complex numbers = $\{x + yi | x, y \in \mathbf{R}, i^2 = -1\}$

k) **C*** = the set of *nonzero complex numbers*

- 1) For each $n \in \mathbb{Z}^+$, $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$
- m) For real numbers a, b with a < b, $[a, b] = \{x \in \mathbb{R} | a \le x \le b\}$, $(a, b) = \{x \in \mathbb{R} | a < x < b\}$, $[a, b) = \{x \in \mathbb{R} | a \le x < b\}$, $(a, b] = \{x \in \mathbb{R} | a \le x \le b\}$. The first set is called a *closed interval*, the second set an *open interval*, and the other two sets *half-open intervals*.