Computer Science and Information Engineering National Chi Nan University Discrete Mathematics Dr. Justie Su-Tzu Juan

Chapter 2 Fundamentals of Logic § **2.4 The Use of Quantifiers**

Slides for a Course Based on the Text Discrete & Combinatorial Mathematics (5th Edition) by Ralph P. Grimaldi

- **Def** : *open statement* :
 - 1) contains \geq 1 variables;
 - 2) not statement;
 - 3) becomes a statement when the variables are replaced by certain allowable choices.
- **<u>Def</u>** : *universe* (*of discourse*) for the open statement : The set of all allowable choices.

- <u>ex</u> : 1) "The number x + 2 is an even integer" not statement
 - 2) "The number x + 2 is an even integer" is an open statement
 - 3) "The number x + 2 is an even integer" is denoted by p(x)then $\neg p(x)$: "The number x + 2 is not an even integer"
 - 4) Let q(x, y): The numbers y +2, x − y, and x + 2y are even integers.
 - Hence, p(5) is F: The number 7 is an even integer.
 - $\neg p(7)$ is T: The number 9 is not an even integer.
 - q(4, 2) is T: The numbers 4, 2 and 8 are even integers. q(5, 2), q(4, 7) are F:
 - $\neg q(5, 2), \neg q(4, 7)$ are T:

<u>Def</u> : 1) *existential quantifier* : $\exists x$:

"for some x", "For at least one x", "there exists an x such that".

2) *universal quantifier* : $\forall x$:

"for all x", "for every x", "for each x", "for any x".

3) *quantified statement* : open statement with quantifier.

$$\underbrace{\text{Note}}_{2} : 1) \exists x \exists y \ q(x, y) = \exists x, y \ q(x, y)$$
$$2) \forall x \ \forall y \ q(x, y) = \forall x, y \ q(x, y)$$

 $\underline{ex}: r(x): "2x$ is an even integer", universe = all integers1) $\forall x r(x)$ 2) $\exists x r(x)$ 3) $\forall x \neg r(x)$ 3) $\exists x \neg r(x)$

(c) Fall 2023, Justie Su-Tzu Juan

<u>Def</u>: 1) *free variable*: the variable x in each of open statement p(x)
2) *bound variable*: the variable x in the statement ∃x p(x) or ∀x p(x)

Ex 2.36 : The universe = R $p(x): x \ge 0$ $q(x): x^2 \ge 0$ $r(x): x^2 - 3x - 4 = 0$ $s(x): x^2 - 3 > 0$ 1) $\exists x [p(x) \land r(x)]$ Let x = 4, then p(4) is true and r(4) is true \therefore [p(4) \land r(4)] is true $\Rightarrow \exists x [p(x) \land r(x)]$ is true. 2) $\forall x [p(x) \rightarrow q(x)]$ $x \mid p(x) \quad q(x) \quad p(x) \rightarrow q(x)$ $< 0 | \mathbf{F}$ $\Rightarrow \forall x [p(x) \rightarrow q(x)]$ is true. $\geq 0 \mid T \mid T$ Т (c) Fall 2023, Justie Su-Tzu Juan 5

$p(x): x \ge 0 \ q(x): x^2 \ge 0 \ r(x): x^2 - 3x - 4 = 0 \ s(x): x^2 - 3 > 0$

§ 2.4 The Use of Quantifiers

Note: " $\forall x [p(x) \rightarrow q(x)]$ "可能被敘述成: a) For every real number x, if $x \ge 0$, then $x^2 \ge 0$. b) Every nonnegative real number has a nonnegative square. c) The square of any nonnegative real number is a nonnegative real number.

d) All nonnegative real numbers have nonnegative squares.

3) $\exists x [p(x) \rightarrow q(x)]$ is true

1') $\forall x [q(x) \rightarrow s(x)]$ (1) $\exists x [p(x) \land r(x)]$) Let x = 1, q(1) is true, but s(1): 1 - 3 > 0 is false $\therefore q(1) \rightarrow s(1)$ is false, i.e. x = 1 is a counterexample $\Rightarrow \forall x [q(x) \rightarrow s(x)]$ is false. (不只一個反例, $\forall -\sqrt{3} < x < \sqrt{3}$ 皆是)

$p(x): x \ge 0 \ q(x): x^2 \ge 0 \ r(x): x^2 - 3x - 4 = 0 \ s(x): x^2 - 3 > 0$

§ 2.4 The Use of Quantifiers

2') $\forall x [r(x) \lor s(x)] (2) \forall x [p(x) \rightarrow q(x)])$ Let x = 1 (or $\frac{1}{2}$, $-\frac{3}{2}$, 0, ...), then r(1) is false and s(1) is false, too. \therefore $r(1) \lor s(1)$ is false $\Rightarrow \forall x [r(x) \lor s(x)]$ is false. 2") $\exists x [r(x) \lor s(x)]$ is true. 3') $\forall x [r(x) \rightarrow p(x)] (3) \exists x [p(x) \rightarrow q(x)])$ Let x = -1, $r(-1) = (-1)^2 - 3(-1) - 4 = 0$ is true, but p(-1) is false. \therefore $r(-1) \rightarrow p(-1)$ is false. (the unique counterexample) $\Rightarrow \forall x [r(x) \rightarrow p(x)]$ is false. Note: " $\forall x [r(x) \rightarrow p(x)]$ "可被敘述成: a) For every real number x, if $x^2 - 3x - 4 = 0$, then $x \ge 0$. b) For every real number x, if x is a solution of the equation $x^2 - 3x - 4 = 0$, then $x \ge 0$.

$\frac{\text{Remark}}{2} : 1) \forall x \ p(x) \Rightarrow \exists x \ p(x), \text{ for the universe} \neq \phi.$ $2) \exists x \ p(x) \Rightarrow \forall x \ p(x)$

Ex 2.37 :

a) The universe = R

1) If a number is rational, then it is a real number.

2) If *x* is rational, then *x* is real.

- (The use of the universal quantifier is *implicit* as opposed to *explicit*)
 - Let p(x) : x is a rational number
 - q(x): x is a real number

 $\Rightarrow (1) = (2) = \forall x \ [p(x) \rightarrow q(x)].$

Ex 2.37 : b) The universe = All triangles in the plane. "An equilateral triangle has three angles of 60°, and conversely." Let e(t) : Triangle t is equilateral a(t) : Triangle t has three angles of 60° \Rightarrow "" = $\forall t [e(t) \leftrightarrow a(t)]$

c) $\sin^2 x + \cos^2 x = 1$ (for all real number x) \Rightarrow The universe of x = R, $\forall x [\sin^2 x + \cos^2 x = 1]$

d) The universe = N
 "The integer 41 is equal to the sum of two perfect squares."
 ⇒ ∃m ∃n [41 = m² + n²]

Ex 2.38: $p(x) : x^2 \ge 0$ (1) The universe = $R : \forall x \ p(x)$ is true($\exists x \ p(x)$ is true)(2) The universe = $C : \forall x \ p(x)$ is false($\exists x \ p(x)$ is true) \therefore let x = i, then $p(i) : i^2 (= -1) \ge 0$ is false.

Ex 2.39 : See Textbook Table 2.21 : See Textbook

Def 2.6 : Let p(x), q(x) be open statements defined for a given universe.

1) p(x) is (*logically*) *equivalent* to $q(x) : \forall x [p(x) \Leftrightarrow q(x)] : p(x) \Leftrightarrow q(x)$ for each x in the universe.

2) p(x) logically implies $q(x) : \forall x [p(x) \Rightarrow q(x)] :$ $p(x) \Rightarrow q(x)$ for each x in the universe.

ex : The universe : all triangles in the plane. Let p(x) : x is equiangular, q(x) : x is equilateral

- : for all particular triangle $a, p(a) \leftrightarrow q(a)$ is true.
- $\therefore \forall x \ [p(x) \Leftrightarrow q(x)]$

<u>Note</u> : 1) $\forall x [p(x) \Leftrightarrow q(x)]$ iff $\forall x [p(x) \Rightarrow q(x)] \land \forall x [q(x) \Rightarrow p(x)]$ 2) <u>**Def**</u> 2.6 can be given for two open statements that involve ≥ 2 variable.

Def 2.7 :

1) The *contrapositive* of $\forall x [p(x) \rightarrow q(x)]$ is $\forall x [\neg q(x) \rightarrow \neg p(x)]$ 2) The *converse* of $\forall x [p(x) \rightarrow q(x)]$ is $\forall x [q(x) \rightarrow p(x)]$

3) The *inverse*

of $\forall x \ [p(x) \rightarrow q(x)]$ is $\forall x \ [q(x) \rightarrow p(x)]$ of $\forall x \ [p(x) \rightarrow q(x)]$ is $\forall x \ [\neg p(x) \rightarrow \neg q(x)]$

Ex 2.40 : The universe = all quadrilaterals in the plane Let s(x) : x is a square, e(x) : x is equilateral a) $\forall x [s(x) \rightarrow e(x)]$ is a true statement $\Leftrightarrow \forall x [\neg e(x) \rightarrow \neg s(x)]$ (the contrapositive) b) $\forall x [e(x) \rightarrow s(x)]$ is a false statement (the converse) $\Leftrightarrow \forall x [\neg s(x) \rightarrow \neg e(x)]$ (the inverse)

Ex 2.41 : The universe = R Let p(x) : |x| > 3, q(x) : x > 3a) $\forall x [p(x) \rightarrow q(x)]$ is false. (let x = -5, p(-5) : T, q(-5) : F) b) The converse of (a) = Every real number greater than 3 has magnitude (or, absolute value) greater than 3. $\forall x [q(x) \rightarrow p(x)]$ is true.

p(x): |x| > 3, q(x): x > 3

§ 2.4 The Use of Quantifiers

Ex 2.41:
c) The inverse of (a) is also true : ∀x [¬p(x) → ¬q(x)]:
"If the magnitude of a real number is less than or equal to 3, then the number itself is less than or equal to 3."
(b) ⇔ (c)
d) The contrapositive of (a) = ∀x [¬q(x) → ¬p(x)] (is false):
"If a real number is less than or equal to 3, then so is its magnitude."

- $(\mathbf{d}) \Leftrightarrow (\mathbf{a})$
- e) Let r(x) : x < -3, defined for the universe of all real number : Statement : $\forall x [p(x) \rightarrow (r(x) \lor q(x))]$ Contrapositive : $\forall x [\neg (r(x) \lor q(x)) \rightarrow \neg p(x)]$ Converse : $\forall x [(r(x) \lor q(x)) \rightarrow p(x)]$ Inverse : $\forall x [\neg p(x) \rightarrow \neg (r(x) \lor q(x))]$ $\Rightarrow \forall x [p(x) \Leftrightarrow (r(x) \lor q(x))]$

(c) Fall 2023, Justie Su-Tzu Juan

Ex 2.42 : The universe = Z Let r(x) : 2x + 1 = 5, $s(x) : x^2 = 9$. 1) $\exists x [r(x) \land s(x)]$ is false \therefore no integer *a* such that 2a + 1 = 5 and $a^2 = 9$ 2) $\exists x r(x) \land \exists x s(x)$ is true $\therefore \exists b = 2, r(b) : 2b + 1 = 5$ is true $\exists c = 3, s(c) : c^2 = 9$ is true 3) $\exists x [r(x) \land s(x)] \Leftrightarrow [\exists x r(x) \land \exists x s(x)]$ $[\exists x r(x) \land \exists x s(x)] \Rightarrow \exists x [r(x) \land s(x)]$

Def : 1) ⇔ is read "is not logically equivalent to"
2) ⇒ is read "does not logically imply"

 $\underbrace{\text{Note}}_{\text{Proof.}} : \exists x \ [p(x) \land q(x)] \Rightarrow [\exists x \ p(x) \land \exists x \ q(x)]$ Proof.

If $\exists x [p(x) \land q(x)]$ is true then there is at least one element *c* in the universe s.t. $p(c) \land q(c)$ is true.

: $[p(c) \land q(c)] \Rightarrow p(c) \text{ and } [p(c) \land q(c)] \Rightarrow q(c)$ (by Conjunctive Simplification)

i.e. $\exists x \ p(x)$ is true and $\exists x \ q(x)$ is true

 \therefore [$\exists x \ p(x) \land \exists x \ q(x)$] is true.

Table 2.22 : See Textbook

Ex 2.43 : Let p(x), q(x) and r(x) denote open statements for a given universe.

- 1) $\forall x [p(x) \land (q(x) \land r(x))] \Leftrightarrow \forall x [(p(x) \land q(x)) \land r(x)]$
 - **:** For each *a* in the universe,

 $p(a) \land (q(a) \land r(a)) \Leftrightarrow (p(a) \land q(a)) \land r(a)$

- $\therefore \forall x [p(x) \land (q(x) \land r(x))] \Leftrightarrow \forall x [(p(x) \land q(x)) \land r(x)]$
- 2) $\exists x [p(x) \rightarrow q(x)] \Leftrightarrow \exists x [\neg p(x) \lor q(x)]$
 - **...** For each *c* in the universe,

 $[p(c) \to q(c)] \Leftrightarrow [\neg p(c) \lor q(c)]$

 $\therefore \exists x \ [p(x) \to q(x)] \text{ is true iff } \exists x \ [\neg p(x) \lor q(x)] \text{ is true}$ i.e. $\exists x \ [p(x) \to q(x)] \Leftrightarrow \exists x \ [\neg p(x) \lor q(x)]$

Ex 2.43:
3) a)
$$\forall x \neg \neg p(x) \Leftrightarrow \forall x p(x)$$

b) $\forall x \neg [p(x) \land q(x)] \Leftrightarrow \forall x [\neg p(x) \lor \neg q(x)]$
c) $\forall x \neg [p(x) \lor q(x)] \Leftrightarrow \forall x [\neg p(x) \land \neg q(x)]$
4) a) $\exists x \neg \neg p(x) \Leftrightarrow \exists x p(x)$
b) $\exists x \neg [p(x) \land q(x)] \Leftrightarrow \exists x [\neg p(x) \lor \neg q(x)]$
c) $\exists x \neg [p(x) \lor q(x)] \Leftrightarrow \exists x [\neg p(x) \land \neg q(x)]$

$$\frac{\text{Remark}}{\text{Proof.}} : \neg [\forall x \ p(x)] \Leftrightarrow \exists x \neg p(x)$$

 \neg [$\forall x p(x)$] : It is not the case that for all x, p(x) holds.

1) "¬ [
$$\forall x p(x)$$
]" is true = " $\forall x p(x)$ " is false

= For some *a* of the universe, $\neg p(a)$ is true

$$=$$
 " $\exists x \neg p(x)$ " is true

2) " $\exists x \neg p(x)$ " is true = For some *b* of the universe, $\neg p(b)$ is true

= For some *b* of the universe, p(b) is false

= " $\forall x \ p(x)$ " is false

= "¬ [$\forall x p(x)$]" is true

by (1), (2) " $\neg [\forall x p(x)]$ " is true iff " $\exists x \neg p(x)$ " is true Similar, " $\neg [\forall x p(x)]$ " is false iff " $\exists x \neg p(x)$ " is false

Table 2.23 :

$$\neg [\forall x p(x)]$$
 $\Leftrightarrow \exists x \neg p(x)$ $\neg [\exists x p(x)]$ $\Leftrightarrow \forall x \neg p(x)$ $\neg [\forall x \neg p(x)]$ $\Leftrightarrow \exists x \neg \neg p(x)$ $\neg [\forall x \neg p(x)]$ $\Leftrightarrow \exists x \neg \neg p(x)$ $\neg [\exists x \neg p(x)]$ $\Leftrightarrow \forall x \neg \neg p(x)$

Rules of Negating Statements with One Quantifier.

Ex. 2.44 : The universe = Z1) Let p(x) : x is odd, $q(x) : x^2 - 1$ is even "If x is odd, then $x^2 - 1$ is even" = $\forall x [p(x) \rightarrow q(x)]$ (T) $\neg [\forall x (p(x) \rightarrow q(x))]$ $\Leftrightarrow \exists x \ [\neg \ (p(x) \rightarrow q(x))] \Leftrightarrow \exists x \ [\neg \ (\neg \ p(x) \lor q(x))]$ $\Leftrightarrow \exists x \ [\neg \neg p(x) \land \neg q(x))] \Leftrightarrow \exists x \ [p(x) \land \neg q(x))]$ = "There exists an integer x such that x is odd and $x^2 - 1$ is odd" (F) 2) r(x) : 2x + 1 = 5, $s(x) : x^2 = 9$ (In Ex 2.42) $\exists x \ [r(x) \land s(x)]$ is false, $\neg [\exists x \ (r(x) \land s(x))]$ is true? $\neg [\exists x (r(x) \land s(x))] \Leftrightarrow \forall x [\neg (r(x) \land s(x))]$ $\Leftrightarrow \forall x [\neg r(x) \lor \neg s(x))]$ = "For every integer x, $2x + 1 \neq 5$ or $x^2 \neq 9$."

More than one quantifier (More than one variable)
$$\underline{Ex 2.45}: \forall x \forall y p(x, y) \Leftrightarrow \forall y \forall x p(x, y)$$
 $\underline{ex}: The universe = R$ 1) $\forall x \forall y (x + y = y + x) \Leftrightarrow \forall y \forall x (x + y = y + x)$ 2) $\forall x \forall y (xy = yx) \Leftrightarrow \forall y \forall x (xy = yx)$ $\underline{Ex 2.46}: \forall x, y, z p(x, y, z) \Leftrightarrow \forall y, x, z p(x, y, z)$ $\Leftrightarrow \forall x, z, y p(x, y, z) \dots f \hbar$

 $(\forall x, y, z \equiv \forall x, \forall y, \forall z)$

 $\underline{\mathbf{ex}}$: The universe = R

 $\forall x \forall y \forall z [x + (y + z) = (x + y) + z]$ $\Leftrightarrow \forall y \forall x \forall z [x + (y + z) = (x + y) + z]$

(c) Fall 2023, Justie Su-Tzu Juan

Ex 2.47 : $\exists x \exists y \ p(x, y) \Leftrightarrow \exists y \exists x \ p(x, y)$ **ex** : For the universe of all integer "There exist integer x, y such that x + y = 6" $\exists x \exists y \ (x + y = 6) \Leftrightarrow \exists y \exists x \ (x + y = 6)$

Both \exists and \forall **Ex 2.48**: The universe = Z, let p(x, y) : x + y = 171) $\forall x \exists y p(x, y) :$ **"For every integer** x, there exist an integer y such that x + y = 17" (T) $\because \forall x : \text{let } y = 17 - x \text{ is a integer}$ $\therefore x + y = x + (17 - x) = 17$ (Each x gives rise to a different value of y) 2) $\exists y \forall x p(x, y) :$ **"There exist an integer** y so that for all integer x, x + y = 17" (F) \therefore Once an integer y is selected, only x satisfy x + y = 17 is $y - 17 \rightarrow \leftarrow$

 $\therefore \forall x \exists y \ p(x, y) \Leftrightarrow \exists y \ \forall x \ p(x, y)$

Note : See Textbook (1. careful & precise, 2. related statements)

Ex 2.49 : The universe of x, y are equal. What is the negation of $\forall x \exists y [(p(x, y) \land q(x, y)) \rightarrow r(x, y)]$ $\neg [\forall x \exists y [(p(x, y) \land q(x, y)) \rightarrow r(x, y)]]$ Sol. $\Leftrightarrow \exists x \left[\neg \left[\exists y \left[(p(x, y) \land q(x, y)) \rightarrow r(x, y) \right] \right] \right]$ $\Leftrightarrow \exists x \; \forall y \neg [(p(x, y) \land q(x, y)) \rightarrow r(x, y)]$ $\Leftrightarrow \exists x \; \forall y \;\neg \; [\neg \; (p(x, y) \land q(x, y)) \lor r(x, y)]$ $\Leftrightarrow \exists x \forall y [\neg \neg (p(x, y) \land q(x, y)) \land \neg r(x, y)]$ $\Leftrightarrow \exists x \; \forall y \; [(p(x, y) \land q(x, y)) \land \neg r(x, y)]$ \Rightarrow When we want to prove " $\forall x \exists y [(p(x, y) \land q(x, y)) \rightarrow r(x, y)]$ " as the conclusion, use the method of Proof by Contradiction. We would assume the negation of this conclusion as an additional premise. i.e. the additional premise = " $\exists x \forall y [(p(x, y) \land q(x, y)) \land \neg r(x, y)]$ "

Ex 2.50 : In calculus, the definition of *limit* : Let *I* be an open interval containing the real number *a* and suppose the function *f* is defined throughout *I*, except possibly at *a*. We say *f* has the limit *L* as *x* approaches *a*, and write $\lim_{x\to a} f(x) = L$, iff for every $\varepsilon > 0$, there exist a δ > 0 so that, for all *x* in *I*, $(0 < |x - a| < \delta) \rightarrow (|f(x) - L| < \varepsilon)$. This can be expressed in symbolic form as : $\lim_{x\to a} f(x) = L \Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0$

 $\forall x \ [(0 < |x - a| < \delta) \rightarrow (|f(x) - L| < \varepsilon)]$

The universe = the real number in the open interval *I*, except possibly *a*. To negate this definition :

Sol.

 $\lim_{x \to a} f(x) \neq L$ $\Leftrightarrow \neg \left[\forall \varepsilon > 0, \exists \delta > 0 \ \forall x \ \left[(0 < |x - a| < \delta) \rightarrow (|f(x) - L| < \varepsilon) \right] \right]$ $\Leftrightarrow \exists \varepsilon > 0, \forall \delta > 0 \exists x \neg [(0 < |x - a| < \delta) \rightarrow (|f(x) - L| < \varepsilon)]$ $\Leftrightarrow \exists \varepsilon > 0, \forall \delta > 0 \exists x \neg [\neg (0 < |x - a| < \delta) \lor (|f(x) - L| < \varepsilon)]$ $\Leftrightarrow \exists \varepsilon > 0, \forall \delta > 0 \exists x [\neg \neg (0 < |x - a| < \delta) \land \neg (|f(x) - L| < \varepsilon)]$ $\Leftrightarrow \exists \varepsilon > 0, \forall \delta > 0 \exists x [(0 < |x - a| < \delta) \land (|f(x) - L| \ge \varepsilon)]$ \therefore $\lim_{x \to a} f(x) \neq L$ iff there exist a positive real number ε such that for every positive real number δ , there is an x in I such that $0 < |x - a| < \delta$ (this is, $x \neq a$ and its distance from *a* is less than δ), but $|f(x) - L| \ge \varepsilon$ (this is, the value of f(x)) differs form L by at least ε).

Computer Science and Information Engineering National Chi Nan University

Discrete Mathematics Dr. Justie Su-Tzu Juan

Chapter 2 Fundamentals of Logic § 2.5 Quantifiers, Definitions, and the **Proofs of Theorems** (1)

Slides for a Course Based on the Text Discrete & Combinatorial Mathematics (5th Edition) by Ralph P. Grimaldi

Note : In definition, an implication can be read as a biconditional, and, <u>only in definition</u>.

Ex 2.51 : (1/2)

a) Universe : all quadrilaterals in the plane.

- A : "If a quadrilaterals is a rectangle then it has four equals angles."
- **B** : "If a quadrilaterals has four equal angles, then it is a rectangle."

Let p(x) : x is a rectangle. q(x) : x has four equal angles A: $\forall x [p(x) \rightarrow q(x)]$

B: $\forall x [q(x) \rightarrow p(x)]$

Actually, they are both intending: $\forall x \ [p(x) \leftrightarrow q(x)]$

Ex 2.51 : (2/2) b) Universe = Z

> A : "For every integer *n*, we call *n* even if it is divisible by 2." Let p(n) : n is an even integer q(n) : n is divisible by 2 (or, n = 2k, for some integer *k*) (or, $\exists k \ [n = 2k]$)

A: $\forall n \ [q(n) \rightarrow p(n)]$ Actually, $\forall n \ [p(n) \leftrightarrow q(n)]$

Ex 2.52: Universe = $\{2, 4, 6, ..., 26\}$
For all n (n = 2, 4, ..., 26), we can write n as the sum of
at most three perfect squares.Sol.method of exhaustion : ($\pi R - \hbar$, eta HRR = 4, eta HRR

<u>Def</u> : *Corollary* : follow immediately from a *theorem*

The Rule of Universal Specification:

 $\forall x \text{ for a given universe, } p(x) \text{ is true, the } p(a) \text{ is true for each } a \text{ in the universe.}$

Ex 2.53 : (1/4)		$\forall x \ [m(x) \rightarrow c(x)]$	
a) Universe = all peop	ole	<i>m(9</i>)	
$m(x): x$ is a mathematics professor, $\therefore c(g)$			
c(x): x has stud	lied calculus		
All mathematics j	professors have st	udied calculus.	
Leona is a mather	matics professor.		
Therefore Leona has studied calculus.			
Let $\mathcal{G} =$ Leona (in our universe) then :			
Steps	Reason		
1) $\forall x [m(x) \rightarrow c(x)]$ Premise			
2) $m(g)$	Premise		
3) $m(\mathcal{G}) \rightarrow c(\mathcal{G})$	(1) & the Rule of a constant of the result	of Universal Specification	
4) : $c(9)$	(2), (3) and the b	Rule of Detachment	

Ex 2.53 : $(2/4)$ b) Universe = all tr p(t) : t has q(t) : t is an r(t) : t has c : trian See Textbook.	riangles in the plane two sides of equal length isosceles triangle two angles of equal measure agle XYZ	$r(c)$ $[p(t) \rightarrow q(t)]$ $[q(t) \rightarrow r(t)]$ $p(c)$
Step	Reasons	
$1) \; \forall t \; [p(t) \rightarrow q(t)]$	Premise	
2) $p(c) \rightarrow q(c)$	(1) and the Rule of Universal S	Specification
3) $\forall t [q(t) \rightarrow r(t)]$	Premise	
4) $q(c) \rightarrow r(c)$	(3) and the Rule of Universal S	Specification
5) $p(c) \rightarrow r(c)$	(2), (4) and the Law of the Syll	logism
$6) \neg r(c)$	Premise	-
7) $\therefore \neg p(c)$	(5), (6) and Modus Tollens (c) Fall 2023, Justie Su-Tzu Juan	32

Ex 2.53 : (3/4)

c) Universe = student at a particular college.

- *m* : Mary Gusberti, a student of this college.
- j(x): x is a junior.
- s(x) : x is a senior.
- p(x): x is enrolled in a physical education class
- No junior or senior is enrolled in a physical education class

Mary Gusberti is enrolled in a physical education class Therefore Mary Gusberti is not a senior

i.e.
$$\forall x [(j(x) \lor s(x)) \rightarrow \neg p(x)]$$

$$p(m)$$

$$\therefore \neg s(m)$$

§ 2	.5 Quantifiers, Definitions	s, and t $p(m)$ $\forall x [(j(x) \lor s(x)) \rightarrow \neg p(x)]$
		$\neg s(m)$
F	2x 2.53 : (4/4)	
-	c) Sol.	
	Step	Reason
	$1) \forall x [(j(x) \lor s(x)) \to \neg p(x)]$	Premise
	2) $p(m)$	Premise
	3) $(j(m) \lor s(m)) \rightarrow \neg p(m)$	(1) and the Rule of Universal Specification
	4) $p(m) \rightarrow \neg (j(m) \lor s(m))$	(3) and $(q \rightarrow t) \Leftrightarrow (\neg t \rightarrow \neg p)$, and Law of Double Negation
	5) $p(m) \rightarrow (\neg j(m) \land \neg s(m))$	(4) and DeMorgan's Law
	$6) \neg \mathbf{j}(\mathbf{m}) \land \neg \mathbf{s}(\mathbf{m})$	(2), (5) and the Rule of Detachment
	7) $\therefore \neg s(m)$	(6) and the Rule of Conjunctive Simplification

(c) Fall 2023, Justie Su-Tzu Juan

Note : the Rule of Universal Specification + Modus Ponens, Modus Tollens

c : a member of the fixed universe

p(x), q(x): open statements defined for this universe

Ex (1/2): Universe = all polygons in the plane c : quadrilateral *EFGH*, where $\angle E = 91^{\circ}$ p(x): x is a square q(x) : x has four sides (1') All squares have four sides, Quadrilateral EFGH has four sides Therefore quadrilateral *EFGH* is a square (1") $\forall x \ [p(x) \rightarrow q(x)]$ q(c) $\overline{ \cdot \cdot p(c) } \leftarrow \text{false}$ $\therefore \forall x \ [p(x) \rightarrow q(x)] \text{ and } c \text{ is a polygon in the plane}$ $\therefore p(c) \rightarrow q(c), \text{ but } [p(c) \rightarrow q(c)] \land q(c) \not\rightarrow p(c)$

- ... invalid!!
- (converse)

Ex (2/2): (2') All squares have four sides Quadrilateral *EFGH* is not a square Therefore quadrilateral *EFGH* does not have four sides (2") $\forall x [p(x) \rightarrow q(x)]$ $\neg p(c)$ $\therefore \neg q(c)$ $\therefore \forall x [p(x) \rightarrow q(x)]$ and c is a polygon in the plane

- $\therefore p(c) \rightarrow q(c), \text{ but } [(p(c) \rightarrow q(c)) \land \neg p(c)] \not\rightarrow \neg q(c)$
- ... invalid!!

(inverse)