Computer Science and Information Engineering National Chi Nan University **Discrete Mathematics** Dr. Justie Su-Tzu Juan

Chapter 2 Fundamentals of Logic § 2.1 Basic Connectives and Truth tables

Slides for a Course Based on the Text Discrete & Combinatorial Mathematics (5th Edition) by Ralph P. Grimaldi

<u>Def</u> : *statement* (*proposition*) : either *true* or *false*, <u>not</u> both.

- <u>ex</u>: ✓ p: Combinatorics is a required course for sophomores.
 ✓ q: Margaret Mitchell wrote Gone with the Wind.
 ✓ r: 2 + 3 = 5.
 - **x** "What a beautiful evening!"
 - **x** "Get up and do your exercises."
 - **x** "The number x is an integer."

Def : 1. *primitive statement*: No way to break them down into anything simpler.

2. 反之: compound statement

<u>Def</u> : 1. *negation*; denoted by $\neg p$; read as "*not* p".

- ex:上ex中p: $\neg p =$ "Combinatorics is <u>not</u> a required course for sophomores."
- Def: 2. compound statement, using the following logical connectives.
 a) Conjunction; denoted by p ∧ q; read as "p and q".

b) *Disjunction*; $\begin{cases}
denoted by <math>p \lor q$; read as "p (inclusive) or q". denoted by $p \lor q$; read as "p exclusive or q".
\end{cases}

Def : 2. compound statement. c) *Implication*; denoted by $p \rightarrow q$; read as "*p implies q*". \equiv (i) If p, then q (ii) p is sufficient for q (iii) p is a sufficient condition for q (iv) p only if q(v) q is *necessary* for p (vi) q is a *necessary condition* for p (vii) *p* is called the *hypothesis* of the implication. (viii) q is called the *conclusion* of the implication. d) *Biconditional*; denoted by $p \leftrightarrow q$; read as "*p* if and only if q". (i) "p is necessary and sufficient for q." (ii) "*p iff q*." (c) Fall 2023, Justie Su-Tzu Juan

ex : "If 2 + 3 = 6, then 2 + 4 = 7" is true.

(c) Fall 2023, Justie Su-Tzu Juan

5

EX 2.1 : s: Phyllis goes out for a walk. t: The moon is out. *u*: It is snowing. a) $(t \land \neg u) \rightarrow s$: b) $t \rightarrow (\neg u \rightarrow s)$: " $\neg u \rightarrow s$ " means " $(\neg u) \rightarrow s$ ", not " $\neg (u \rightarrow s)$ " c) \neg (s \leftrightarrow (u \lor t)): d) "Phyllis will go out walking if and only if the moon is out": $s \leftrightarrow t$ e) "If it is snowing and the moon is not out, then Phyllis will not go out for a walk": $(u \land \neg t) \rightarrow \neg s$ f) "It is snowing but Phyllis will still go out for a walk" : $u \wedge s$ (where "but" \equiv "and")

6

EX 2.2 : "If I weigh more than 120 pounds, then I shall enroll in an exercise class".

p: I weigh more than 120 pounds.

q: I shall enroll in an exercise class.

Penny's statement: $p \rightarrow q$

Case 1: p = 1 and q = 1: > 120 pounds and enrolls:Case 2: p = 1 and q = 0: > 120 pounds but not enroll:Case 3: p = 0 and q = 0: < 120 pounds and not enroll</td>:Case 4: p = 0 and q = 1: < 120 pounds but still enroll</td>:

EX 2.3 : In computer science: if-then, if-then-else.

ex : (if x > 2 (執行時,給定 "x"值,則 "x > 2"為一 "logical statement")
- then y = 2 ("executable statement", not "logical statement")
else y = 3 ("executable statement", not "logical statement")

ex:生活上的"→"與"↔" s→t: If you do your homework, then you will get to watch the baseball game.

 $t \rightarrow s$: You will get to watch the baseball game only if you do your homework.

8

EX 2.4 : "Margaret Mitchell wrote Gone with the Wind, and if $2 + 3 \neq 5$, then combinatorics is a required course for sophomores".

	<u> </u>				
q	r	$\neg r$	$\neg r \rightarrow p$	$q \land (\neg r \rightarrow p)$	
0	0	1	0	0	
0	1	0	1	0	1
1	0	1	0	0	ain
1	1	0	1	1	-
0	0	1	1	0	11
0	1	0	1	0	
1	0	1	1	1	1.1
1	1	0	1	1	
	q 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	q r 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1	q r $\neg r$ 001010101110001010101101101101	q r \neg r \neg r \rightarrow p 0 0 1 0 0 1 0 1 1 0 1 0 1 1 0 1 0 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	q r $\neg r$ $\neg r \rightarrow p$ $q \land (\neg r \rightarrow p)$ 0 0 1 0 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1

 $q \wedge r | p \vee (q \wedge r) | p \vee q | (p \vee q) \wedge r$ r q p () () () () ()

EX 2.5 : The truth tables for $\bigcirc p \lor (q \land r)$; $\oslash (p \lor q) \land r$.

 \therefore 不可以只寫 $p \lor q \land r$, 需標明為 $p \lor (q \land r)$ 或 $(p \lor q) \land r !!$

p	q	$p \lor q$	$p \to (p \lor q)$	$\neg p$	$\neg p \land q$	$p \wedge (\neg p \wedge q)$
0	0	0	1	1	0	0
0	1	1	1	1	1	0
1	0	1	1	0	0	0
1	1	1	1	0	0	0

 $\underline{\text{EX 2.6}}: p \to (p \lor q), p \land (\neg p \land q)$

 $p \rightarrow (p \lor q)$ is true for all truth value; $p \land (\neg p \land q)$ is false for all truth value.

11

<u>Def 2.1</u> : A compound statement is called a contradiction (tautology) if it is false (true) for all truth value assignments for its component statements, denoted by $F_0(T_0)$.

 $\underline{ex} : (p_1 \land p_2 \land \dots \land p_n) \rightarrow q$ only need to prove: "when $p_1 = p_2 = \dots = p_n = 1$ and q must = 1", then $(p_1 \land p_2 \land \dots \land p_n) \rightarrow q$ is a tautology and we have a valid argument.

<u>Def</u>: Where such p_i is called given statements (premises); q is called conclusion.

Computer Science and Information Engineering National Chi Nan University **Discrete Mathematics** Dr. Justie Su-Tzu Juan

Chapter 2 Fundamentals of Logic § 2.2 Logical Equivalence: The Laws of Logic Slides for a Course Based on the Text Discrete & Combinatorial Mathematics (5th Edition) by Ralph P. Grimaldi

In arithmetic and algebra: x = y iff |x| = |y| and xy > 0. In geometry: $\triangle ABC \cong \triangle DEF$ iff $\overline{AB} = \overline{DE}$ and $\overline{BC} = \overline{EF}$ and $\overline{CA} = \overline{FD}$. In logical? algebra of propositions

14

Def 2.2 : Two statements s_1, s_2 are said to be *logically equivalent*, write $s_1 \Leftrightarrow s_2$, when $\begin{cases} s_1 \text{ is true iff } s_2 \text{ is true;} \\ s_1 \text{ is false iff } s_2 \text{ is false.} \end{cases}$ (c) Fall 2023, Justie Su-Tzu Juan

0

()

 $(p \lor q) \Leftrightarrow (p \lor q) \land \neg (p \land q)$ (c) Fall 2023, Justie Su-Tzu Juan

0

0

Note : In fact, we may even eliminate either \land or \lor .

In real number, $\forall a, b \in \mathbb{R}$, -(a + b) = (-a) + (-b). In logical?

Note :
$$a + (b \times c) \neq (a + b) \times (a + c)$$

 $\underline{ex}: a = 2, b = 3, c = 5, a + (b \times c) = 17, (a + b) \times (a + c) = 35.$

Remark A :

 When "(s₁↔ s₂) is a tautology", then "s₁⇔ s₂". When "s₁⇔ s₂", then "(s₁↔ s₂) is a tautology".
 If s₁, s₂, s₃ are statements, and s₁⇔ s₂ and s₂⇔ s₃, then s₁⇔ s₃.

3) $s_1 \Leftrightarrow s_2$ means s_1 and s_2 are not logically equivalent.

The Laws of Logic $(1/2)$:	
$1) \neg \neg p \Leftrightarrow p$	Law of Double Negation (雙重否定律)
$2) \neg (p \lor q) \Leftrightarrow \neg p \land \neg q$	DeMorgan's Laws
$\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$	(迪摩根定律)
3) $p \lor q \Leftrightarrow q \lor p$	Commutative Laws
$p \land q \Leftrightarrow q \land p$	(交換律)
4) $p \lor (q \lor r) \Leftrightarrow (p \lor q) \lor r$	Associative Laws
$p \land (q \land r) \Leftrightarrow (p \land q) \land r$	(結合律)
5) $p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$	Distributive Laws
$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$	(分配律)

The Laws of Logic $(2/2)$:	
6) $p \lor p \Leftrightarrow p$	Idempotent Laws
$p \land p \Leftrightarrow p$	(冪等律)
7) $p \lor F_0 \Leftrightarrow p$	Identity Laws
$p \wedge T_0 \Leftrightarrow p$	(單一律、同一律)
8) $p \lor \neg p \Leftrightarrow T_0$	Inverse Laws
$p \land \neg p \Leftrightarrow F_0$	(反定律、否定律)
9) $p \lor T_0 \Leftrightarrow T_0$	Domination Laws
$p \wedge F_0 \Leftrightarrow F_0$	(支配律)
10) $p \lor (p \land q) \Leftrightarrow p$	Absorption Laws
$p \land (p \lor q) \Leftrightarrow p$	(吸收律)

Def 2.3 : *s*: statement contains only "¬", " \checkmark ", " \land ", then the *dual* of *s*, denoted by $s^d \equiv$ replacing each \land and \lor by \lor and \land , respectively, and T_0 and F_0 by F_0 and T_0 , respectively.

$$\underline{ex}: s = (p \land \neg q) \lor (r \land T_0), s^d = (p \lor \neg q) \land (r \lor F_0).$$

Thm 2.1 : (The Principle of Duality) Let s and t be statementsthat contains no logical connectives other than \land and \lor . If $s \Leftrightarrow t$, then $s^d \Leftrightarrow t^d$.

Corollary : Law 2 through 10 can be established by proving one of the laws in each pair.

Substitution rules

 $\underline{ex}: (r \land s) \rightarrow q \Leftrightarrow \neg (r \land s) \lor q \quad (\text{see Table 2.11})$ In $\underline{Ex \ 2.7}: \neg p \lor q \Leftrightarrow p \rightarrow q$ replace each "p" by " $r \land s$ ", get $(r \land s) \rightarrow q \Leftrightarrow \neg (r \land s) \lor q$, too.

<u>Remark B</u> : (*Substitution rules*)

- 1) The compound statement *P* is a tautology and *p* is a primitive statement in *P*: Replace each *p* by the same *q*, get P_1 , then P_1 is also a tautology. (S1)
- 2) Let *P* be a compound statement and *p* is an arbitrary statement in *P* and let $q \Leftrightarrow p$: Replace one or more *p* by *q* get P_1 , then $P_1 \Leftrightarrow P$. (S2)

Ex 2.10 : a) $P: \neg (p \lor q) \leftrightarrow \neg p \land \neg q$ is a tautology. replace each *p* by $r \wedge s$: P_1 : $\neg [(r \land s) \lor q] \leftrightarrow [\neg (r \land s) \land \neg q]$ is also a tautology. replace each q by $t \rightarrow u$: $P_2: \neg [(r \land s) \lor (t \rightarrow u)] \leftrightarrow [\neg (r \land s) \land \neg (t \rightarrow u)]$ is a tautology. **b**) $p \land (p \rightarrow q) \mid [p \land (p \rightarrow q)] \rightarrow q$ $p \rightarrow q$ q 0 0 0 1 1 1 0 $[p \land (p \rightarrow q)] \rightarrow q$ is a tautology. replace each p by $r \rightarrow s$, q by $\neg t \lor u$: $[(r \rightarrow s) \land [(r \rightarrow s) \rightarrow (\neg t \lor u)]] \rightarrow (\neg t \lor u)$ is a tautology.

$$\underline{\operatorname{Ex} 2.11}: a) \operatorname{Let} P: (p \to q) \to r, \because (p \to q) \Leftrightarrow \neg p \lor q$$

$$\operatorname{Let} P_1: (\neg p \lor q) \to r, \operatorname{then} P_1 \Leftrightarrow P,$$

$$i.e. (p \to q) \to r \Leftrightarrow (\neg p \lor q) \to r.$$

$$b) \operatorname{Let} P: p \to (p \lor q), \because \neg \neg p \Leftrightarrow p$$

$$\operatorname{Let} P_1: p \to (\neg \neg p \lor q), \operatorname{then} P_1 \Leftrightarrow P.$$

$$\operatorname{Let} P_2: \neg \neg p \to (\neg \neg p \lor q), \operatorname{then} P_2 \Leftrightarrow P, \operatorname{too.}$$

Ex 2.12 : Negate and simplify the com. statement $(p \lor q) \rightarrow r$. Sol. 1) $(p \lor q) \rightarrow r \Leftrightarrow \neg (p \lor q) \lor r$ (by (S1) and $(s \rightarrow t) \Leftrightarrow \neg s \lor t$) 2) Negating: $\neg [(p \lor q) \rightarrow r] \Leftrightarrow \neg [\neg (p \lor q) \lor r]$ (by (S2)) 3) $\neg [\neg (p \lor q) \lor r] \Leftrightarrow \neg \neg (p \lor q) \land \neg r$ (by DeMorgan's Law and (S1)) 4) $\neg \neg (p \lor q) \land \neg r \Leftrightarrow (p \lor q) \land \neg r$ (by Law of Double Negation, (S1) and (S2)) $\therefore \neg [(p \lor q) \rightarrow r] \Leftrightarrow (p \lor q) \land \neg r$

- **Ex 2.13** : *p*: Joan goes to Lake George. *q*: Mary pays Joan's shopping spree $p \rightarrow q$: If Joan goes to Lake George, then Mary pays for Joan's shopping spree. $\neg (p \rightarrow q)$: ? **Sol.** $\therefore p \rightarrow q \Leftrightarrow \neg p \lor q$ $\therefore \neg (p \rightarrow q) \Leftrightarrow \neg (\neg p \lor q)$
 - $\begin{array}{ll} \Leftrightarrow \neg \neg p \land \neg q & (by DeMorgan's Law) \\ \Leftrightarrow p \land \neg q & (by Law of Double \\ Negation) \end{array}$
 - $\therefore \neg (p \rightarrow q)$: Joan goes to Lake George, but Mary does not pay for Joan's shopping spree.

Note : The negation of an if-then statement does **not** begin with the word if. \therefore It is not another implication.

Def: 1) $\neg q \rightarrow \neg p$ is call the *contrapositive* of $p \rightarrow q$. (反證命題)2) $q \rightarrow p$ is call the *converse* of $p \rightarrow q$.(逆命題)3) $\neg p \rightarrow \neg q$ is call the *inverse* of $p \rightarrow q$.(轉命題)

 $\underline{\text{Note}}: (p \to q) \Leftrightarrow (q \to p); \quad (\neg p \to \neg q) \Leftrightarrow (\neg q \to \neg p)$

- ex: p: Today is Mother's day.
 - q: Tomorrow is Monday.
 - The implication $p \rightarrow q$: **TRUE**
 - The contrapositive $\neg q \rightarrow \neg p$: TRUE
 - The converse $q \rightarrow p$: ?
 - The inverse $\neg p \rightarrow \neg q$: ?

Ex 2.16 : Find a simpler statement that is logically equivalent to $(p \lor q) \land \neg (\neg p \land q).$ Sol. (Not mention any application of (S1) (S2)) $(p \lor q) \land \neg (\neg p \land q)$ $\Leftrightarrow (p \lor q) \land (\neg \neg p \lor \neg q)$ ("." DeMorgan's Law) $\Leftrightarrow (p \lor q) \land (p \lor \neg q)$ ('.' Law of Double Negation) (: Distributive Law of \lor over \land) $\Leftrightarrow p \lor (q \land \neg q)$ $\Leftrightarrow p \lor F_0$ (:: Inverse Law) (:: Identity Law) $\Leftrightarrow p$ $\therefore (p \lor q) \land \neg (\neg p \land q) \Leftrightarrow p$ Ex: "這周離散和計概至少有一堂課會點名, 並且不可能

不點名而計概點名"

Ex 2.17 : Find a simpler statement: $\neg [\neg [(p \lor q) \land r] \lor \neg q]$. Sol.

 $\neg [\neg [(p \lor q) \land r] \lor \neg q]$ $\Leftrightarrow \neg \neg [(p \lor q) \land r] \land \neg \neg q$ (`.` DeMorgan's Law) $\Leftrightarrow [(p \lor q) \land r] \land q$ (`.` Law of Double Negation) $\Leftrightarrow (p \lor q) \land (r \land q)$ $(`.` Associative Law of \land)$ $(`.` Commutative Law of \land)$ $\Leftrightarrow [(p \lor q) \land q] \land r$ $(`.` Associative Law of \land)$ $(`.` Associative Law of \land)$ $(`.` Associative Law of \land)$

Ex: "今天沒有做到沒有暨遲到或早退且上課打瞌睡,或者沒 有遲到。"

<u>Note</u>: By <u>Ex 2.7</u>: \neg [[$(p \lor q) \land r$] $\rightarrow \neg q$] $\Leftrightarrow \neg$ [\neg [$(p \lor q) \land r$] $\lor \neg q$]. \therefore \neg [[$(p \lor q) \land r$] $\rightarrow \neg q$] $\Leftrightarrow q \land r$.

Ex 2.18 (1/3): Switching Network : wires, switches connecting two terminals T_1, T_2 , each switch is either open (0) or close (1). (a) (b) $\lceil p \rceil$ (c)

§ 2.2 Logical Equivalence

$$\begin{bmatrix} p \\ q \\ T_1 \\ r \end{bmatrix} \begin{bmatrix} p \\ t \\ -q \end{bmatrix} \begin{bmatrix} p \\ -r \end{bmatrix} \begin{bmatrix} p \\$$

Ex 2.18 (2/3): Represented by the statement

 $(p \lor q \lor r) \land (p \lor t \lor \neg q) \land (p \lor \neg t \lor r)$ $\Leftrightarrow p \lor [(q \lor r) \land (t \lor \neg q) \land (\neg t \lor r)] \text{ (Distributive Law of \lor over \land)}$ $\Leftrightarrow p \lor [(q \lor r) \land (\neg t \lor r) \land (t \lor \neg q)] \text{ (Commutative Law of \land)}$ $\Leftrightarrow p \lor [((q \land \neg t) \lor r) \land (t \lor \neg q)] \text{ (Distributive Law of \lor over \land)}$ $\Leftrightarrow p \lor [((q \land \neg t) \lor r) \land (\neg \neg t \lor \neg q)] \text{ (Law of Double Negation)}$ $\Leftrightarrow p \lor [((q \land \neg t) \lor r) \land (\neg (\neg t \land q)] \text{ (DeMorgan's Law)}$ $\Leftrightarrow p \lor [\neg (\neg t \land q) \land ((\neg t \land q) \lor r)] \text{ (Commutative Law of \land)}$ $\Leftrightarrow p \lor [[\neg (\neg t \land q) \land ((\neg t \land q)] \lor [\neg (\neg t \land q) \land r]] \text{ (Distributive Law of \land over \lor)}$

 $\Leftrightarrow p \lor [F_0 \lor [\neg(\neg t \land q) \land r]]$ (Inverse Law of \land) $\Leftrightarrow p \lor [[\neg(\neg t \land q)] \land r]$ (Identity Law of \lor) $\Leftrightarrow p \lor [r \land [\neg(\neg t \land q)]]$ (Commutative Law of \land) $\Leftrightarrow p \lor [r \land (t \lor \neg q)]$ (De Morgan'is statistic to bouble Negation)

... the network (e) is equivalent to the original network (d)