# Computer Science and Information Engineering National Chi Nan University <br> <br> Discrete Mathematics 

 <br> <br> Discrete Mathematics}

Dr. Justie Su-Tzu Juan

Chapter 2 Fundamentals of Logic
§ 2.1 Basic Connectives and Truth tables

Slides for a Course Based on the Text Discrete \& Combinatorial Mathematics (5 ${ }^{\text {th }}$ Edition) by Ralph P. Grimaldi

## § 2.1 Basic Connectives and Truth tables

Def : statement (proposition) : either true or false, not both.
ex: $\quad \checkmark p$ : Combinatorics is a required course for sophomores. $\checkmark q$ : Margaret Mitchell wrote Gone with the Wind.
$\checkmark r: 2+3=5$.
$x$ "What a beautiful evening!"
$x$ "Get up and do your exercises."
$x$ "The number $x$ is an integer."
Def: 1. primitive statement: No way to break them down into anything simpler.
2. 反之: compound statement

## § 2.1 Basic Connectives and Truth tables

Def: 1. negation; denoted by $\neg p$; read as "not $p$ ".
ex: 上ex中 $p$ :
$\neg p=$ "Combinatorics is not a required course for sophomores."
Def: 2. compound statement, using the following logical connectives.
a) Conjunction; denoted by $p \wedge q$; read as " $p$ and $q$ ".
b) Disjunction;
$\left\{\begin{array}{l}\text { denoted by } p \vee q ; \text { read as " } p \text { (inclusive) or } q " . \\ \text { denoted by } p \vee q ; \text { read as " } p \text { exclusive or } q " .\end{array}\right.$
(c) Fall 2023, Justie Su-Tzu Juan

## § 2.1 Basic Connectives and Truth tables

Def: 2. compound statement.
c) Implication; denoted by $p \rightarrow q$; read as " $p$ implies $q$ ". $\equiv$ (i) If $p$, then $q$
(ii) $\boldsymbol{p}$ is sufficient for $\boldsymbol{q}$
(iii) $\boldsymbol{p}$ is a sufficient condition for $\boldsymbol{q}$
(iv) $p$ only if $q$
(v) $q$ is necessary for $p$
(vi) $q$ is a necessary condition for $p$
(vii) $p$ is called the hypothesis of the implication.
(viii) $\boldsymbol{q}$ is called the conclusion of the implication.
d) Biconditional; denoted by $p \leftrightarrow q$; read as " $p$ if and only if $q$ ".
(i) " $p$ is necessary and sufficient for $q$."
(ii) ${ }^{66} \boldsymbol{p}$ iff $\boldsymbol{q} \cdot{ }^{\boldsymbol{\prime \prime}}{ }_{\text {(c) Fall 2023, Justie Su-Tzu Juan }}$

## § 2.1 Basic Connectives and Truth tables

Def: truth table: "0" for false and " 1 " for true.
Table2.1:


| $p$ | $q$ | $p \wedge q$ | $p \vee q$ | $p \vee q$ | $p \rightarrow q$ | $p \leftrightarrow q$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 0 | 1 | 1 |

ex: "If $2+3=6$, then $2+4=7$ " is true.

## § 2.1 Basic Connectives and Truth tables

EX 2.1: $s$ : Phyllis goes out for a walk.
$t$ : The moon is out.
$u$ : It is snowing.
a) $(t \wedge \neg u) \rightarrow s$ :
b) $t \rightarrow(\neg u \rightarrow s):$ " $\neg u \rightarrow s$ " means " $(\neg u) \rightarrow s$ ",
c) $\neg(s \leftrightarrow(u \vee t)): \quad \operatorname{not}{ }^{\text {" }} \neg(u \rightarrow s)$ "
d) "Phyllis will go out walking if and only if the moon is out" : $s \leftrightarrow t$
e) "If it is snowing and the moon is not out, then Phyllis will not go out for a walk": $(u \wedge \neg t) \rightarrow \neg s$
f) "It is snowing but Phyllis will still go out for a walk" : $u \wedge s$ (where "but" " "and")

## § 2.1 Basic Connectives and Truth tables

EX 2.2 : "If I weigh more than 120 pounds, then I shall enroll in an exercise class".
$p$ : I weigh more than 120 pounds. $q$ : I shall enroll in an exercise class. Penny's statement: $\boldsymbol{p} \rightarrow \boldsymbol{q}$

> Case 1: $p=1$ and $q=1:>120$ pounds and enrolls: Case 2: $p=1$ and $q=0:>120$ pounds but not enroll : Case 3: $p=0$ and $q=0: \leq 120$ pounds and not enroll : Case 4: $p=0$ and $q=1: \leq 120$ pounds but still enroll :

## § 2．1 Basic Connectives and Truth tables

EX 2.3 ：In computer science：if－then，if－then－else．
ex：（if $\boldsymbol{x}>\mathbf{2}$（執行時，給定＂$x$＂值，則＂$x>2$＂為一＂logical statement＂） then $y=2$（＂executable statement＂，not＂logical statement＂） else $\boldsymbol{y}=\mathbf{3}$（＂executable statement＂，not＂logical statement＂）
ex：生活上的＂$\rightarrow$＂與＂$\leftrightarrow "$
$s \rightarrow t$ ：If you do your homework，then you will get to watch the baseball game．
$t \rightarrow s:$ You will get to watch the baseball game only if you do your homework．

## § 2.1 Basic Connectives and Truth tables

EX 2.4: "Margaret Mitchell wrote Gone with the Wind, and if $2+3 \neq 5$, then combinatorics is a required course for sophomores".
$\equiv q \wedge(\neg r \rightarrow p)$

| $p$ | $q$ | $r$ | $\neg r$ | $\neg r \rightarrow p$ | $q \wedge(\neg r \rightarrow p)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 | 1 | 1 |
| 1 | 0 | 0 | 1 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 1 | 0 | 1 | 1 |

## § 2．1 Basic Connectives and Truth tables

EX 2．5：The truth tables for（1）$p \vee(q \wedge r)$ ；（2）$(p \vee q) \wedge r$ ．

| $p$ | $q$ | $r$ | $q \wedge r$ | $p \vee(q \wedge r)$ | $\boldsymbol{p} \vee \boldsymbol{q}$ | $(p \vee q) \wedge r$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 1 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 1 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 |

$\therefore$ 不可以只寫 $p \vee q \wedge r$ ，需標明為 $p \vee(q \wedge r)$ 或 $(p \vee q) \wedge r!!$

## § 2.1 Basic Connectives and Truth tables

EX 2.6: $p \rightarrow(p \vee q), p \wedge(\neg p \wedge q)$

| $p$ | $q$ | $p \vee q$ | $p \rightarrow(p \vee q)$ | $\neg p$ | $\neg p \wedge q$ | $p \wedge(\neg p \wedge q)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 0 |
| 1 | 0 | 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 |

$p \rightarrow(p \vee q)$ is true for all truth value;
$p \wedge(\neg p \wedge q)$ is false for all truth value.

## § 2.1 Basic Connectives and Truth tables

Def 2.1: A compound statement is called a contradiction (tautology) if it is false (true) for all truth value assignments for its component statements, denoted by $F_{0}\left(T_{0}\right)$.
ex: $\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n}\right) \rightarrow q$
only need to prove:

$$
" \text { when } p_{1}=p_{2}=\ldots=p_{n}=1 \text { and } q \text { must }=1 ",
$$

then $\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n}\right) \rightarrow q$ is a tautology and we have a valid argument.

Def: Where such $\boldsymbol{p}_{\boldsymbol{i}}$ is called given statements (premises); $q$ is called conclusion.

## Computer Science and Information Engineering National Chi Nan University <br> Discrete Mathematics

Dr. Justie Su-Tzu Juan

# Chapter 2 Fundamentals of Logic § 2.2 Logical Equivalence: The Laws of Logic 

Slides for a Course Based on the Text
Discrete \& Combinatorial Mathematics (5 ${ }^{\text {th }}$ Edition) by Ralph P. Grimaldi

## § 2.2 Logical Equivalence: The Laws of Logic

In arithmetic and algebra: $x=y$ iff $|x|=|y|$ and $x y>0$. In geometry: $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$ iff $\overline{\mathrm{AB}}=\overline{\mathrm{DE}}$ and $\overline{\mathrm{BC}}=\overline{\mathrm{EF}}$ and $\overline{\mathrm{CA}}=\overline{\mathrm{FD}}$. In logical? algebra of propositions

Ex 2.7 :

| $p$ | $q$ | $\neg p$ | $\neg p \vee q$ | $p \rightarrow q$ |
| :--- | :---: | :---: | :---: | :---: |
| $\mathbf{0}$ | $\mathbf{0}$ | 1 | 1 | $\mathbf{1}$ |
| $\mathbf{0}$ | 1 | 1 | 1 | 1 |
| $\mathbf{1}$ | $\mathbf{0}$ | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 1 |

Def 2.2 : Two statements $s_{1}, s_{2}$ are said to be logically equivalent, write $s_{1} \Leftrightarrow s_{2}$, when
$\left\{\begin{array}{l}s_{1} \text { is true iff } s_{2} \text { is true; } \\ s_{1} \text { is false iff } s_{2} \text { is false. }\end{array}\right.$
(c) Fall 2023, Justie Su-Tzu Juan

## § 2.2 Logical Equivalence: The Laws of Logic

ex: | $p$ | $q$ | $p \rightarrow q$ | $q \rightarrow p$ | $(p \rightarrow q) \wedge(q \rightarrow p)$ | $p \leftrightarrow q$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ |
| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ |
| $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ | 1 | 0 | 0 |
| $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ |

$(p \leftrightarrow q) \Leftrightarrow(p \rightarrow q) \wedge(q \rightarrow p) \therefore(p \leftrightarrow q) \Leftrightarrow(\neg p \vee q) \wedge(\neg q \vee p)$

| $p$ | $q$ | $p \vee q$ | $p \vee q$ | $p \wedge q$ | $\neg(p \wedge q)$ | $(p \vee q) \wedge \neg(p \wedge q)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 1 | 1 | 1 | 0 | 1 | 1 |
| 1 | 0 | 1 | 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 | 1 | 0 | 0 |

$$
(p \underline{\vee} q) \Leftrightarrow(p \vee q) \wedge \neg(p \wedge q)
$$

(c) Fall 2023, Justie Su-Tzu Juan

## § 2.2 Logical Equivalence: The Laws of Logic

Note : In fact, we may even eliminate either $\wedge$ or $\boldsymbol{v}$.
In real number, $\forall a, b \in R,-(a+b)=(-a)+(-b)$.
In logical?
Ex 2.8 :

| $p$ | $q$ | $p \wedge q$ | $\neg(p \wedge q)$ | $\neg p$ | $\neg q$ | $\neg p \vee \neg q$ | $p \vee q$ | $\neg(p \vee q)$ | $\neg p \wedge \neg q$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | 1 | 1 | 0 | 1 | 1 |
| $\mathbf{0}$ | $\mathbf{1}$ | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 |
| 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 |
| $\mathbf{1}$ | $\mathbf{1}$ | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |

DeSMorgan's Laws:
(i) $\neg(p \wedge q) \Leftrightarrow \neg p \vee \neg q$
(ii) $\neg(p \vee q) \Leftrightarrow \neg p \wedge \neg q$
(c) Fall 2023, Justie Su-Tzu Juan

## § 2.2 Logical Equivalence: The Laws of Logic

In real number, $\forall a, b, c \in R, a \times(b+c)=(a \times b)+(a \times c)$
(Distributive Law of Multiplication over Addition)
Ex 2.9 :

| $p$ | $q$ | $r$ | $p \wedge(q \vee r)$ | $(p \wedge q) \vee(p \wedge r)$ | $p \vee(q \wedge r)$ | $(p \vee q) \wedge(p \vee r)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| 1 | 0 | 0 | 0 | 0 | 1 | 1 |
| 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 |

The Distributive Laws of $\wedge$ over $\vee: p \wedge(q \vee r) \Leftrightarrow(p \wedge q) \vee(p \wedge r)$. The Distributive Laws of $\vee$ over $\wedge: p \vee(q \wedge r) \Leftrightarrow(p \vee q) \wedge(p \vee r)$.

## § 2.2 Logical Equivalence: The Laws of Logic

Note : $a+(b \times c) \neq(a+b) \times(a+c)$

$$
\text { ex: } a=2, b=3, c=5, a+(b \times c)=17,(a+b) \times(a+c)=35 .
$$

## Remark A:

1) When " $\left(s_{1} \leftrightarrow s_{2}\right)$ is a tautology", then " $s_{1} \Leftrightarrow s_{2}$ ". When " $s_{1} \Leftrightarrow s_{2}$ ", then " $\left(s_{1} \leftrightarrow s_{2}\right)$ is a tautology".
2) If $s_{1}, s_{2}, s_{3}$ are statements, and $s_{1} \Leftrightarrow s_{2}$ and $s_{2} \Leftrightarrow s_{3}$, then $s_{1} \Leftrightarrow s_{3}$.
3) $s_{1} \nLeftarrow s_{2}$ means $s_{1}$ and $s_{2}$ are not logically equivalent.

## § 2．2 Logical Equivalence：The Laws of Logic

## The Laws of Logic（1／2）：

1）$\neg \neg p \Leftrightarrow p$
2）$\neg(p \vee q) \Leftrightarrow \neg p \wedge \neg q$
$\neg(p \wedge q) \Leftrightarrow \neg p \vee \neg q$
3）$p \vee q \Leftrightarrow q \vee p$
$p \wedge q \Leftrightarrow q \wedge p$
4）$p \vee(q \vee r) \Leftrightarrow(p \vee q) \vee r$ $p \wedge(q \wedge r) \Leftrightarrow(p \wedge q) \wedge r$
5）$p \vee(q \wedge r) \Leftrightarrow(p \vee q) \wedge(p \vee r)$ $p \wedge(q \vee r) \Leftrightarrow(p \wedge q) \vee(p \wedge r)$

Law of Double Negation （雙重否定律）
DeMorgan＇s Laws
（迪摩根定律）
Commutative Laws
（交換律）
Associative Laws
（結合律）
Distributive Laws
（分配律）

## § 2．2 Logical Equivalence：The Laws of Logic

The Laws of Logic（2／2）：

$$
\text { 6) } \begin{array}{rl}
p & \vee p \Leftrightarrow p \\
p & \wedge p \Leftrightarrow p \\
\text { 7) } p & \vee F_{0} \Leftrightarrow p \\
p & \wedge T_{0} \Leftrightarrow p \\
\text { 8) } p & \vee \neg p \Leftrightarrow T_{0} \\
p & \wedge \neg p \Leftrightarrow F_{0} \\
\text { 9) } p & \vee T_{0} \Leftrightarrow T_{0} \\
p & \wedge F_{0} \Leftrightarrow F_{0} \\
\text { 10) } p & p(p \wedge q) \Leftrightarrow p \\
p & \wedge(p \vee q) \Leftrightarrow p \\
\hline
\end{array}
$$

Idempotent Laws
（冪等律）
Identity Laws
（單一律，同一律）
Inverse Laws
（反定律，否定律）
Domination Laws
（支配律）
Absorption Laws
（吸收律）

## § 2.2 Logical Equivalence: The Laws of Logic

Def 2.3 : $s$ : statement contains only " $\neg$ ", " $\vee$ ", " $\wedge$ ", then the dual of $s$, denoted by $s^{d} \equiv$ replacing each $\wedge$ and $\vee$ by $\vee$ and $\wedge$, respectively, and $T_{0}$ and $F_{0}$ by $F_{0}$ and $T_{0}$, respectively.

$$
\underline{\text { ex }}: s=(p \wedge \neg q) \vee\left(r \wedge \boldsymbol{T}_{0}\right), s^{d}=(p \vee \neg q) \wedge\left(r \vee F_{0}\right)
$$

Thm 2.1: (The Principle of Duality) Let $s$ and $t$ be statements that contains no logical connectives other than $\wedge$ and $\vee$. If $s \Leftrightarrow t$, then $s^{d} \Leftrightarrow t^{d}$.

Corollary: Law 2 through 10 can be established by proving one of the laws in each pair.
(c) Fall 2023, Justie Su-Tzu Juan

## § 2.2 Logical Equivalence: The Laws of Logic

Substitution rules

$$
\begin{aligned}
& \quad \underline{\operatorname{ex}}:(r \wedge s) \rightarrow q \Leftrightarrow \neg(r \wedge s) \vee q \quad \text { (see Table 2.11) } \\
& \text { In Ex } 2.7: \neg p \vee q \Leftrightarrow p \rightarrow q \\
& \text { replace each " } p \text { " by " } r \wedge s \text { ", get }(r \wedge s) \rightarrow q \Leftrightarrow \neg(r \wedge s) \vee q, \text { too. }
\end{aligned}
$$

Remarlk B: (Substitution rules)

1) The compound statement $P$ is a tautology and $p$ is a primitive statement in $P$ : Replace each $p$ by the same $q$, get $P_{1}$, then $P_{1}$ is also a tautology. (S1)
2) Let $P$ be a compound statement and $p$ is an arbitrary statement in $P$ and let $q \Leftrightarrow p$ : Replace one or more $p$ by $q$ get $P_{1}$, then $P_{1} \Leftrightarrow P$. (S2)

## § 2.2 Logical Equivalence: The Laws of Logic

Ex $2.10:$ a) $P: \neg(p \vee q) \leftrightarrow \neg p \wedge \neg q$ is a tautology. replace each $p$ by $r \wedge s$ :
$P_{1}: \neg[(r \wedge s) \vee q] \leftrightarrow[\neg(r \wedge s) \wedge \neg q]$ is also a tautology. replace each $q$ by $t \rightarrow u:$
$P_{2}: \neg[(r \wedge s) \vee(t \rightarrow u)] \leftrightarrow[\neg(r \wedge s) \wedge \neg(t \rightarrow u)]$ is a tautology.
b)

| $p$ | $q$ | $p \rightarrow q$ | $p \wedge(p \rightarrow q)$ | $[p \wedge(p \rightarrow q)] \rightarrow q$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 | 1 |
| 1 | 0 | 0 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 |
| $[p \wedge(p \rightarrow q)] \rightarrow q$ is a tautology. |  |  |  |  |$.$|  |
| :--- |

replace each $p$ by $r \rightarrow s, q$ by $\neg t \vee u$ :
$[(r \rightarrow s) \wedge[(r \rightarrow s) \rightarrow(\neg t \vee u)]] \rightarrow(\neg t \vee u)$ is a tautology.
(c) Fall 2023, Justie Su-Tzu Juan

## § 2.2 Logical Equivalence: The Laws of Logic

Ex 2.11: a) Let $P:(p \rightarrow q) \rightarrow r, \because(p \rightarrow q) \Leftrightarrow \neg p \vee q$ Let $P_{1}:(\neg p \vee q) \rightarrow r$, then $P_{1} \Leftrightarrow P$, i.e. $(p \rightarrow q) \rightarrow r \Leftrightarrow(\neg p \vee q) \rightarrow r$. b) Let $P: p \rightarrow(p \vee q), \because \neg \neg p \Leftrightarrow p$ Let $P_{1}: p \rightarrow(\neg \neg p \vee q)$, then $P_{1} \Leftrightarrow P$. Let $P_{2}: \neg \neg p \rightarrow(\neg \neg p \vee q)$, then $P_{2} \Leftrightarrow P$, too.

Ex 2.12: Negate and simplify the com. statement $(\boldsymbol{p} \vee \boldsymbol{q}) \rightarrow \boldsymbol{r}$. Sol. 1) $(p \vee q) \rightarrow r \Leftrightarrow \neg(p \vee q) \vee r(b y(S 1)$ and $(s \rightarrow t) \Leftrightarrow \neg s \vee t)$ 2) Negating: $\neg[(p \vee q) \rightarrow r] \Leftrightarrow \neg[\neg(p \vee q) \vee r](b y(S 2))$ 3) $\neg[\neg(p \vee q) \vee r] \Leftrightarrow \neg \neg(p \vee q) \wedge \neg r$
(by DeMorgan's Law and (S1))
4) $\neg \neg(p \vee q) \wedge \neg r \Leftrightarrow(p \vee q) \wedge \neg r$
(by Law of Double Negation, (S1) and (S2))
$\therefore \neg[(\boldsymbol{p} \vee \boldsymbol{q}) \rightarrow r] \stackrel{(q) \text { Fall 2023, Justie Su-Tzu Juan }}{\Leftrightarrow}(\boldsymbol{p} \vee \boldsymbol{q}) \wedge \neg \boldsymbol{r}$

## § 2.2 Logical Equivalence: The Laws of Logic

Ex 2.13 : p: Joan goes to Lake George.
$q$ : Mary pays Joan's shopping spree
$p \rightarrow q$ : If Joan goes to Lake George, then Mary pays for Joan's shopping spree.
$\neg(p \rightarrow q):$ ?
Sol.
$\because p \rightarrow q \Leftrightarrow \neg p \vee q$
$\therefore \neg(p \rightarrow q) \Leftrightarrow \neg(\neg p \vee q)$
$\Leftrightarrow \neg \neg p \wedge \neg q \quad$ (by DeMorgan's Law)
$\Leftrightarrow p \wedge \neg q \quad$ (by Law of Double
Negation)
$\therefore \neg(p \rightarrow q)$ : Joan goes to Lake George, but Mary does not pay for Joan's shopping spree.

## § 2.2 Logical Equivalence: The Laws of Logic

Note: The negation of an if-then statement does not begin with the word if. $\because$ It is not another implication.

$$
\begin{aligned}
& \text { Ex 2.14: } s: p \rightarrow q, s^{d}=? \\
& : \because p \rightarrow q \Leftrightarrow \neg p \vee q \quad \therefore s^{d}=(\neg p \vee q)^{d}: \neg p \wedge q \\
& \text { Ex 2.15: }: \begin{array}{|c|c|c|c|c|c|}
\hline p & q & p \rightarrow q & \neg q \rightarrow \neg p & q \rightarrow p & \neg p \rightarrow \neg q \\
\hline \mathbf{0} & \mathbf{0} & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{array} \\
& (p \rightarrow q) \Leftrightarrow(\neg q \rightarrow \neg p) ;(q \rightarrow p) \Leftrightarrow(\neg p \rightarrow \neg q) .
\end{aligned}
$$

## § 2．2 Logical Equivalence：The Laws of Logic

Def：1）$\neg \boldsymbol{q} \rightarrow \neg \boldsymbol{p}$ is call the contrapositive of $\boldsymbol{p} \rightarrow \boldsymbol{q}$ ．（反證命題）
2）$q \rightarrow p$ is call the converse of $p \rightarrow q$ ．
3）$\neg p \rightarrow \neg q$ is call the inverse of $p \rightarrow q$ ．

Note $:(p \rightarrow q) \Leftrightarrow(q \rightarrow p) ; \quad(\neg p \rightarrow \neg q) \Leftrightarrow(\neg q \rightarrow \neg p)$
ex：p：Today is Mother＇s day．
$q$ ：Tomorrow is Monday．
－The implication $p \rightarrow q:$ TRUE
－The contrapositive $\neg q \rightarrow \neg p$ ：TRUE
－The converse $q \rightarrow p$ ：？
－The inverse $\neg p \rightarrow \neg q:$ ？

## § 2．2 Logical Equivalence：The Laws of Logic

Ex 2．16：Find a simpler statement that is logically equivalent to

$$
(p \vee q) \wedge \neg(\neg p \wedge q)
$$

Sol．（ Not mention any application of（S1）（S2））

$$
\begin{array}{ll}
(p \vee q) \wedge \neg(\neg p \wedge q) & \\
\Leftrightarrow(p \vee q) \wedge(\neg \neg p \vee \neg q) & (\because \text { DeMorgan's Law }) \\
\Leftrightarrow(p \vee q) \wedge(p \vee \neg q) & (\because \text { Law of Double Negation }) \\
\Leftrightarrow p \vee(q \wedge \neg q) & (\because \text { Distributive Law of } \vee \text { over } \wedge) \\
\Leftrightarrow p \vee F_{0} & (\because \text { Inverse Law }) \\
\Leftrightarrow p & (\because \text { Identity Law }) \\
\therefore(p \vee q) \wedge \neg(\neg p \wedge q) \Leftrightarrow p
\end{array}
$$

Ex：＂這周離散和計概至少有一堂課會點名，並且不可能離散不點名而計概點名＂

## § 2．2 Logical Equivalence：The Laws of Logic

Ex 2.17 ：Find a simpler statement：$\neg[\neg[(p \vee q) \wedge r] \vee \neg q]$. Sol．

$$
\begin{array}{ll}
\neg[\neg[(p \vee q) \wedge r] \vee \neg q] & \\
\Leftrightarrow \neg \neg[(p \vee q) \wedge r] \wedge \neg \neg q & (\because \text { DeMorgan's Law }) \\
\Leftrightarrow[(p \vee q) \wedge r] \wedge q & (\because \text { Law of Double Negation }) \\
\Leftrightarrow(p \vee q) \wedge(r \wedge q) & (\because \text { Associative Law of } \wedge) \\
\Leftrightarrow(p \vee q) \wedge(q \wedge r) & (\because \text { Commutative Law of } \wedge) \\
\Leftrightarrow[(p \vee q) \wedge q] \wedge r & (\because \text { Associative Law of } \wedge) \\
\Leftrightarrow q \wedge r & (\because \text { Absorption Law })
\end{array}
$$

Ex：＂今天沒有做到沒有暨遲到或早退且上課打瞌睡，或者沒有遲到。＂
Note：By Ex 2.7 ：$\neg[[(p \vee q) \wedge r] \rightarrow \neg q] \Leftrightarrow \neg[\neg[(p \vee q) \wedge r] \vee$ $\neg q] . \therefore \neg[[(p \vee q) \wedge r] \rightarrow \neg q] \Leftrightarrow q \wedge r$.

## § 2.2 Logical Equivalence: The Laws of Logic

Ex 2.18 (1/3): Switching Network : wires, switches connecting two terminals $T_{1}, T_{2}$, each switch is either open (0) or close (1).

| (a) |  | ) | $\Gamma p$ | (c) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\bullet$ | - | - |  | $p-$ |  |
| T | T | T | q $T$ |  |  | T |
| 1 | 2 | 1 | $p \vee q^{2}$ <br> parallel | 1 | $p \wedge q$ | $\begin{gathered} 2 \\ \text { series } \end{gathered}$ |

Simplify the switching network (d):

(c) Fall 2023, Justie

## § 2.2 Logical Equivalence

Ex 2.18 (2/3): Represented by the stateluent:

$$
(p \vee q \vee r) \wedge(p \vee t \vee \neg q) \wedge(p \vee \neg t \vee r)
$$

$\Leftrightarrow p \vee[(q \vee r) \wedge(t \vee \neg q) \wedge(\neg t \vee r)]$ (Distributive Law of $\vee$ over $\wedge$ )
$\Leftrightarrow p \vee[(q \vee r) \wedge(\neg t \vee r) \wedge(t \vee \neg q)]$ (Commutative Law of $\wedge$ )
$\Leftrightarrow p \vee[((q \wedge \neg t) \vee r) \wedge(t \vee \neg q)] \quad$ (Distributive Law of $\vee$ over $\wedge$ )
$\Leftrightarrow p \vee[((q \wedge \neg t) \vee r) \wedge(\neg \neg t \vee \neg q)$ (Law of Double Negation)
$\Leftrightarrow p \vee[((q \wedge \neg t) \vee r) \wedge \neg(\neg t \wedge q)] \quad$ (DeMorgan's Law)
$\Leftrightarrow p \vee[\neg(\neg t \wedge q) \wedge((\neg t \wedge q) \vee r)] \quad($ Commutative Law of $\wedge)$
$\Leftrightarrow p \vee[[\neg(\neg t \wedge q) \wedge(\neg t \wedge q)] \vee[\neg(\neg t \wedge q) \wedge r]]$
(Distributive Law of $\wedge$ over $\vee$ )
$\Leftrightarrow p \vee\left[F_{0} \vee[\neg(\neg t \wedge q) \wedge r]\right]$
$\Leftrightarrow p \vee[[\neg(\neg t \wedge q)] \wedge r]$
(Inverse Law of $\wedge$ )
$\Leftrightarrow p \vee[r \wedge[\neg(\neg t \wedge q)]]$
(Identity Law of $v$ )


## § 2.2 Logical Equivalence: The Laws of Logic

Ex 2.18 (3/3):
Hence $(p \vee q \vee r) \wedge(p \vee t \vee \neg q) \wedge(p \vee \neg t \vee r)$ $\Leftrightarrow p \vee[r \wedge(t \vee \neg q)]$

$\therefore$ the network (e) is equivalent to the original network (d)

