Computer Science and Information Engineering National Chi Nan University

 Discrete Mathematics

 Discrete Mathematics}

Dr. Justie Su-Tzu Juan

Chapter 1 Fundamental Principles of Counting

§ 1.3 Combinations: The Binomial Theorem
Slides for a Course Based on the Text Discrete \& Combinatorial Mathematics (5 $5^{\text {th }}$ Edition) by Ralph P. Grimaldi
(c) Fall 2023, Justie Su-Tzu Juan

§ 1.3 Combinations: The Binomial Theorem

See textbook from p. 15 to $\mathbf{p} .19$ by yourself.
If there are \boldsymbol{n} distinct objects, each selection, or combination, of r of these objects, with no reference to order, corresponds to r ! permutations of size \boldsymbol{r} from the \boldsymbol{n} objects. Thus the number of combinations of size r from a collection of size n, denoted $C(n, r)$, where $0 \leq r \leq n$, satisfies $(r!) \times C(n, r)=P(n, r)$ and

$$
C(n, r)=\frac{P(n, r)}{r!}=\frac{n!}{r!(n-r)!}, \quad 0 \leq r \leq n .
$$

Also denoted by $\binom{n}{r} \begin{aligned} & r! \\ & \left(=\binom{n}{r}\right) \text {, read as " } n \text { choose } r \text { ". }\end{aligned}$
Def: 1. For $r=0, C(n, 0)=1$, for all $n \geq 0$.
2. For all $0 \leq r \leq n, C(n, r)=n!/[r!(n-r)!]$.

§ 1.3 Combinations: The Binomial Theorem

EX 1.25 : Select 5 cards from 52 cards (5/52):
a) no clubs $\left({ }^{39}{ }_{5}\right)=575,757$.
b) at least one club \equiv not in $(a)=\left({ }_{5}^{5}\right)-\left({ }_{5}{ }_{5}\right)=2,023,203$.
c) obtain (b) in another way? Select one club, then 4/51?

$$
\left({ }^{13}\right) \cdot\left({ }^{51}{ }_{4}\right)=13 \times 249,900=3,248,700 .
$$

$$
\rightarrow \text { wrong!! }
$$

ex: 3C:5C-KC-7H-JS
5C : 3C-KC-7H-JS
KC : 3C-5C-7H-JS
\rightarrow all the same!! But count 3 times!!

§ 1.3 Combinations: The Binomial Theorem

d) another way :

Number of Clubs		Number of Cards that are not Clubs	
1	$\left({ }^{13}{ }_{1}\right)$	4	$\left({ }^{39}{ }_{4}\right)$
2	$\left({ }^{13}{ }_{2}\right)$	3	$\left({ }^{39}{ }_{3}\right)$
3	$\left({ }^{13} 3_{3}\right)$	2	$\left({ }^{39}{ }_{2}\right)$
4	$\left({ }^{13}{ }_{4}\right)$	1	$\left({ }^{39}{ }_{1}\right)$
5	$\left({ }^{13}{ }_{5}\right)$	0	$\left({ }^{39}\right)$

$$
\Rightarrow \sum_{i=1}^{5}\binom{13}{i}\binom{39}{5-i}=2,023,203
$$

§ 1.3 Combinations: The Binomial Theorem

Note : $\binom{n}{r}=\left({ }_{n-r}{ }_{n-r}\right), \forall n \geq r \geq 0$.
Thm 1.1 : The Binomial Theorem
If \boldsymbol{x} and \boldsymbol{y} are variables and \boldsymbol{n} is a positive integer, then

$$
\begin{aligned}
& (x+y)^{n}=\sum_{k=0}^{n}\left({ }_{n}{ }_{k}\right) x^{k} y^{n-k}=\sum_{k=0}^{n}\left({ }_{n-k}\right) x^{k} y^{n-k} \\
& \underline{e x}:(x+y)^{4}=(x+y)(x+y)(x+y)(x+y) \rightarrow x^{2} y^{2}
\end{aligned}
$$

Proof.

$$
(x+y)^{n}=(x+y)(x+y) \ldots(x+y)
$$

the coefficient of $x^{k} y^{n-k}$, where $0 \leq k \leq n$, is the number of different ways in which we can select $\boldsymbol{k} \boldsymbol{x}$'s from the n available factors

§ 1.3 Combinations: The Binomial Theorem

EX 1.26 : a) $(x+y)^{7}$: the coefficient of $x^{5} y^{2}=?\left({ }_{2}\right)=\left({ }_{5}\right)=21$
b) $(2 a-3 b)^{7}$: the coefficient of $\boldsymbol{a}^{5} \boldsymbol{b}^{\mathbf{2}}=$?

$$
\begin{aligned}
&(2 a-3 b)^{7}=\sum_{k=0}^{7}\left({ }_{k}{ }_{k}\right)(2 a)^{k}(-3 b)^{7-k} \\
&=\sum_{k=0}^{7}\left({ }_{k}^{k}\right) 2^{k} \cdot(-3)^{7-k} \cdot a^{k} \cdot b^{7-k} \\
& k=5 \Rightarrow\left({ }_{5}\right) \cdot 2^{5} \cdot(-3)^{7-5}=21 \cdot 32 \cdot 9=6048
\end{aligned}
$$

(b) $\left({ }^{n} \mathbf{0} \mathbf{0}\right)-\left({ }^{n}{ }_{1}\right)+\left({ }^{n}{ }_{2}\right)-\ldots+(-1)^{n}\left({ }_{n}{ }_{n}\right)=0$

Proof.

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} \cdot x^{k} \cdot y^{n-k}
$$

(a) Let $x=y=1 \Rightarrow 2^{n}=\sum^{n}{ }_{k=0}\binom{n}{k}=\binom{n}{0}+\left(\begin{array}{c}n_{1}\end{array}\right)+\binom{n_{2}}{2}+$
(b) Let $x=-1, y=1 \Rightarrow(-1+1)^{n}=0=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k}(1)^{n-k}$

$$
=\binom{n}{0}-\left({ }_{1}^{n}\right)+\ldots+(-1)^{n}\left(n_{n}^{n}\right)
$$

§ 1.3 Combinations: The Binomial Theorem

Theorem 1.2: multinomial theorem

$$
\begin{gathered}
\forall n, t \in \mathrm{~N} \\
\left(x_{1}+x_{2}+\ldots+x_{t}\right)^{n}=\sum_{\substack{n_{i} \in \mathrm{Z} \text { (} \leq n_{i} \leq n \forall 1 \leq i \leq t \\
\text { and } n_{1}+n_{2}+\ldots+n_{t}=n}} \\
n_{1}!n_{2}!\cdots n_{t}! \\
x_{1}^{n_{1}} x_{2}^{n_{2}} \cdots x_{t}^{n_{t}}
\end{gathered}
$$

Proof.

$$
\begin{aligned}
& \binom{n}{n_{1}}\binom{n-n_{1}}{n_{2}} \cdots\binom{n-n_{1}-n_{2}-\cdots-n_{t-1}}{n_{t}} \\
& =\frac{n!}{n_{1}!\left(n-n_{1}\right)!} \frac{\left(n-n_{1}\right)!}{n_{2}!\left(n-n_{1}-n_{2}\right)!} \cdots \frac{\left(n-n_{1}-n_{2}-\cdots-n_{t-1}\right)!}{n_{t}!\left(n-n_{1}-n_{2}-\cdots 1-n_{t}\right)!} \\
& =\frac{n!}{n_{1}!n_{2}!\cdots n_{t}!}
\end{aligned}
$$

(c) Fall 2023, Justie Su-Tzu Juan

§ 1.3 Combinations: The Binomial Theorem

Def : $\frac{n!}{n_{1}!n_{2}!\cdots n_{t}!}=\binom{n}{n_{1} n_{2} \cdots n_{t}}\left(=\left(\begin{array}{ll}n & n_{1} n_{2} \ldots n_{t}\end{array}\right)\right)$ called multinomial.
EX 1.27 : a) $(x+y+z)^{7}$:
the coefficient of $\boldsymbol{x}^{\mathbf{2}} \boldsymbol{y}^{2} z^{3}=7!/(2!2!3!)=210$ the coefficient of $x y z^{5}=7!/ 5!=42$ the coefficient of $x^{3} z^{4}=7!/(3!4!)=35$
b) $(a+2 b-3 c+2 d+5)^{16}$:
the coefficient of $a^{2} b^{3} c^{2} d^{5}=$?
Sol.
General item : $\left({ }^{16}{ }_{i j k l m}\right) a^{i}(2 b)^{j}(-3 c)^{k}(2 d)^{l}(5)^{m}$
Let $i=2 ; j=3 ; k=2 ; l=5$
$\Rightarrow m=16-2-3-2-5=4$
\Rightarrow the coefficient of $a^{2} b^{3} c^{2} d^{5}$

$$
=\left({ }^{16}{ }_{23254}\right) 2^{3}(-3)^{2} 2^{5} 5^{4}=435,891,456,000,000
$$

(c) Fall 2023, Justie Su-Tzu Juan

Computer Science and Information Engineering National Chi Nan University

 Discrete Mathematics

 Discrete Mathematics}

Dr. Justie Su-Tzu Juan

Chapter 1 Fundamental Principles of Counting
 § 1.4 Combinations With Repetition

Slides for a Course Based on the Text Discrete \& Combinatorial Mathematics (5 ${ }^{\text {th }}$ Edition) by Ralph P. Grimaldi

§ 1.4 Combinations With Repetition

Note : \boldsymbol{n} : distinct object, r : arrangement size $\Rightarrow \boldsymbol{n}^{r}, \forall r \geq 0$.
EX 1.28: 7 high school freshmen,
4 purchases : cheeseburger, hot dog, taco, fish sandwich. How many purchases are possible?
Sol.

$$
\begin{array}{r}
\text { see Table } 1.6: \mathrm{c}, \mathrm{c}, \mathrm{~h}, \mathrm{~h}, \mathrm{t}, \mathrm{t}, \mathrm{f} \Rightarrow x x|x x| x x \mid x \\
\mathrm{t}, \mathrm{t}, \mathrm{t}, \mathrm{t}, \mathrm{t}, \mathrm{f}, \mathrm{f} \Rightarrow| | x_{x} \mathrm{x} x x \mid x x \\
\Rightarrow(3+7)!/(7!3!)=\left({ }^{10}{ }_{7}\right)
\end{array}
$$

The number of combinations of n objects taken r at a time, with repetition, is $C(n+r-1, r)=\frac{(n+r-1)!}{r!(n-1)!}=\binom{n+r-1}{r}$

§ 1.4 Combinations With Repetition

EX 1.29: 20 kinds of donuts, select a dozen:

$$
\left({ }^{20+12-1}{ }_{12}\right)=\left({ }^{31}{ }_{12}\right)=141,120,525 .
$$

EX 1.30: 4 vice presidents / \$1000 (each multiple of \$100)
(a) $C(4+10-1,10)=C(13,10)=286$
(b) each receive at least $\$ 100$:

$$
C(4+6-1,6)=84
$$

(c) each receive at least $\$ 100$, and Mona get at least $\$ 500$:

$$
\begin{aligned}
& C(4+2-1,2) \\
& =C(3+2-1,2)+C(3+1-1,1)+C(3+0-1,0) \\
& =10
\end{aligned}
$$

§ 1.4 Combinations With Repetition

EX 1.31: 7 bananas, 6 oranges / 4 children : each at least one banana
Sol.

$$
\begin{aligned}
& \text { see Table } 1.7 \text { : 1) } \begin{array}{|l|l|}
1,2,3 & b|b| b \mid \\
1,3,3 & b||b b| \\
\hline 1, ~
\end{array} \\
& \Rightarrow 6!/(3!3!)=\left({ }_{3}{ }_{3}\right) \\
& \text { see Table } 1.8: 1 \text {) } 1,2,2,3,3,4|o| o o|o o| o \\
& \text { 3) } 2,2,2,3,3,3 \quad|000| 000 \mid \\
& \Rightarrow(6+3)!/(6!3!)=\binom{9}{6} \\
& \Rightarrow C(4+3-1,3) \cdot C(4+6-1,6)=1680 .
\end{aligned}
$$

§ 1.4 Combinations With Repetition

EX 1.32: message : $\mathbf{1 2}$ different symbols $+\mathbf{4 5}$ spaces with at least 3 spaces between each pair of consecutive symbols How many?
Sol.

$$
\begin{aligned}
& 45-(3 \cdot 11)=12 \\
& 12!\cdot C(11+12-1,12) \doteqdot 3.097 \cdot 10^{14}
\end{aligned}
$$

EX 1.33: All integer solutions : $x_{1}+x_{2}+x_{3}+x_{4}=7$ where $x_{i} \geq 0$, $\forall 1 \leq i \leq 4$.
Sol.

$$
C(4+7-1,7)=120 .
$$

§ 1.4 Combinations With Repetition

Note: The following are the equivalence:
(a) The number of integer solution of the equation

$$
x_{1}+x_{2}+\ldots+x_{n}=r, x_{i} \geq 0, \quad 1 \leq i \leq n
$$

(b) The number of selections, with repetitions, of size r from a collection of size n.
(c) The number of ways r identical objects can be distributed among \boldsymbol{n} distinct containers.

EX 1.34: 10 identical white marbles (彈珠) among six distinct containers!
Sol.

$$
\begin{aligned}
& x_{1}+x_{2}+\ldots+x_{6}=10 \\
& C^{6+10-1}{ }_{10}=C^{15}{ }_{10} \Rightarrow 3003
\end{aligned}
$$

(c) Fall 2023, Justie Su-Tzu Juan

§ 1.4 Combinations With Repetition

EX 1.35: $x_{1}+x_{2}+\ldots+x_{6}<10, x_{i} \geq 0,1 \leq i \leq 6$.
Sol.

$$
\begin{aligned}
& \left(\Rightarrow x_{1}+x_{2}+\ldots+x_{6}=k, k \in \mathrm{~N} \text { and } 0 \leq k \leq 9\right) \\
& \Rightarrow x_{1}+x_{2}+\ldots+x_{6}+x_{7}=10, \quad x_{i} \geq 0,1 \leq i \leq 6, x_{7}>0 \\
& \text { Let } x_{7}-1=y_{7} \\
& \Rightarrow x_{1}+x_{2}+\ldots+x_{6}+y_{7}=9, \quad x_{i} \geq 0, y_{7} \geq 0 \\
& \Rightarrow C(7+9-1,9)=5005 .
\end{aligned}
$$

EX 1.36: $(x+y)^{n}:$ total number of terms $=$?

$$
\begin{aligned}
& \Rightarrow C(2+n-1, n)=n+1 \\
& (w+x+y+z)^{10}: \text { total number of terms }=? \\
& \Rightarrow C(4+10-1,10)=286
\end{aligned}
$$

§ 1.4 Combinations With Repetition

EX 1.37 : (a) compositions of 4 (partitions for the number 4) :

1) 4
2) $3+1$
3) $2+2$
4) $1+3$
5) $2+1+1$
6) $1+2+1$
7) $1+1+2$
8) $1+1+1+1$
(b) the number of composition for " 7 ".
(i) one summand : 1
(ii) two summands: $w_{1}+w_{2}=7 \Rightarrow x_{1}+x_{2}=5, x_{1}, x_{2} \geq 0$

$$
\Rightarrow\left({ }^{2+5-1}{ }_{5}\right)=\left(\mathbf{6}_{5}\right)
$$

(iii) three summands: $y_{1}+y_{2}+y_{3}=7$

$$
\begin{aligned}
& \Rightarrow z_{1}+z_{2}+z_{3}=4, z_{1}, z_{2}, z_{3} \geq 0 \\
& \quad \Rightarrow\left({ }^{3+4-1} 1_{4}\right)=\left(6_{4}\right)
\end{aligned}
$$

(vii) seven summands

$$
\Rightarrow\left({ }^{7+0-1} 0\right)=\left({ }_{0}^{6}\right)
$$

$$
\Rightarrow \sum_{k=0}{ }^{6}\left({ }^{6}{ }_{k}\right)=2^{6}(\text { by corollary } 1.1)
$$

(c) Fall 2023, Justie Su-Tzu Juan

§ 1.4 Combinations With Repetition

Note : for each positive integer $m \Rightarrow \sum_{k=0, m-1}\left({ }^{m-1}{ }_{k}\right)=2^{m-1}$
EX 1.38: There are $2^{12-1}=2^{11}=2048$ compositions of 12 . How many in those compositions where each summand is even? Sol.

$$
\text { For instance, } \begin{array}{rlc}
2+4+6=2(1+2+3) & 2+8+2=2(1+4+1) \\
8+2+2=2(4+1+1) & 6+6=2(3+3)
\end{array}
$$

\Rightarrow \# of compositions of 12 , where each summand is even
= \# of compositions of 6
$=2^{6-1}$
$=2^{5}$
$=32$.

§ 1.4 Combinations With Repetition

> EX 1.39: for $\boldsymbol{i}:=1$ to 20 do for $\boldsymbol{j}:=1$ to \boldsymbol{i} do for $\boldsymbol{k}:=1$ to \boldsymbol{j} do Print $(i * j+k)$
print statement executed?
Sol.

$$
\begin{aligned}
& \text { Since } 1 \leq k \leq j \leq i \leq 20, \\
& \Rightarrow\left({ }^{20+3-1} 3\right)=\left({ }^{22}{ }_{3}\right)=1540 .
\end{aligned}
$$

Note : $r(\geq 1)$ for loops : $\left({ }^{(20+r-1} r\right)$ times.

§ 1.4 Combinations With Repetition

$$
\text { EX 1.40: } \begin{aligned}
& \text { counter }:=0 \\
& \text { for } i:=1 \text { to } n \text { do } \\
& \quad \text { for } j:=1 \text { to } i \text { do } \\
& \quad \text { counter }:=\text { counter }+1
\end{aligned}
$$

Sol.
As EX 1.39, the statement executed:

$$
1 \leq j \leq i \leq n, \rightarrow\left({ }^{n+2-1}{ }_{2}\right)=\left({ }^{n+1} 2\right)
$$

or

$$
1+2+3+\ldots+n
$$

Therefore,

$$
1+2+3+\ldots+n=\sum_{i=1}^{n} i=\left(n^{n+1} 2\right)=n(n+1) / 2 .
$$

(c) Fall 2023, Justie Su-Tzu Juan

§ 1.4 Combinations With Repetition

EX 1.41: The counter at Patti and Terri's Bar has 15 bar stools. OOEOOOOEEEOOOEO
means 10 occupied (O) stools and 5 empty (E) stools.
Say the occupancy of the 15 stools determine 7 runs, as shown:

Find the total number of ways 5 E's and 10 O's can determine seven runs.
Sol. (1/2)

1. Start with E:

Let x_{1} count the number of E 's in the first run,
x_{2} count the number of O 's in the secondrun,
x_{3} count the number of E 's in the third run, ...,
x_{7} count the number of E' E's in the 7 th run.

§ 1.4 Combinations With Repetition

Sol. (2/2)

1. Start with \mathbf{E} :

$$
\begin{aligned}
& \left\{\begin{array}{l}
x_{1}+x_{3}+x_{5}+x_{7}=5, \quad x_{1}, x_{3}, x_{5}, x_{7}>0 \\
x_{2}+x_{4}+x_{6}=10, \quad x_{2}, x_{4}, x_{6}>0 .
\end{array}\right. \\
& \Rightarrow\left\{\begin{array}{l}
y_{1}+y_{3}+y_{5}+y_{7}=1, \quad y_{1}, y_{3}, y_{5}, y_{7} \geq 0 \\
y_{2}+y_{4}+y_{6}=7, \quad y_{2}, y_{4}, y_{6} \geq 0 .
\end{array}\right. \\
& \Rightarrow\left({ }^{4+}{ }_{1}{ }^{1-1}\right) \cdot\left({ }^{3+}{ }_{7}{ }^{7-1}\right)=C(4,1) \cdot C(9,7)=4 \cdot 36=144 .
\end{aligned}
$$

2. Start with \mathbf{O} :

Let \boldsymbol{w}_{1} count the number of O 's in the first run,

$$
\begin{aligned}
& \begin{cases}w_{1}+w_{3}+w_{5}+w_{7}=10, & w_{1}, w_{3}, w_{5}, w_{7}>0 ; \\
w_{2}+w_{4}+w_{6}=5, & w_{2}, w_{4}, w_{6}>0 .\end{cases} \\
& \Rightarrow\left({ }^{4+}{ }_{6}{ }^{6-1}\right) \cdot\left({ }^{3+}{ }_{2}^{2-1}\right)=C(9,6) \cdot C(4,2)=84 \cdot 6=504 .
\end{aligned}
$$

Computer Science and Information Engineering National Chi Nan University

Discrete Mathematics

Dr. Justie Su-Tzu Juan

Chapter 2 Fundamentals of Logic

§ 2.1 Basic Connectives and Truth tables

Slides for a Course Based on the Text Discrete \& Combinatorial Mathematics (5 ${ }^{\text {th }}$ Edition) by Ralph P. Grimaldi

§ 2.1 Basic Connectives and Truth tables

Def : statement (proposition) : either true or false, not both.
ex : $\quad \checkmark p$: Combinatorics is a required course for sophomores.
$\checkmark q$: Margaret Mitchell wrote Gone with the Wind.
$\checkmark r: 2+3=5$.
x "What a beautiful evening!"
x "Get up and do your exercises."
x "The number x is an integer."
Def: 1. primitive statement: No way to break them down into anything simpler.
2. 反之: compound statement

§ 2.1 Basic Connectives and Truth tables

Def: 1. negation; denoted by $\neg p$; read as "not p ".
ex: 上ex中 p :
$\neg p=$ "Combinatorics is not a required course for sophomores."

Def: 2. compound statement, using the following logical connectives.
a) Conjunction; denoted by $p \wedge q$; read as " p and q ".
b) Disjunction;
$\left\{\begin{array}{l}\text { denoted by } p \vee q ; \text { read as " } p \text { (inclusive) or } q " . \\ \text { denoted by } p \vee q ; \text { read as " } p \text { exclusive or } q " \text {. }\end{array}\right.$

§ 2.1 Basic Connectives and Truth tables

Def: 2. compound statement.
c) Implication; denoted by $p \rightarrow q$; read as " p implies q ". \equiv (i) If p, then q
(ii) p is sufficient for q
(iii) p is a sufficient condition for q
(iv) p only if q
(v) q is necessary for p
(vi) q is a necessary condition for p
(vii) p is called the hypothesis of the implication.
(viii) q is called the conclusion of the implication.
d) Biconditional; denoted by $p \leftrightarrow q$; read as " p if and only if q ".
(i) " p is necessary and sufficient for q."
(ii) ${ }^{66} \boldsymbol{p}$ iff $\boldsymbol{q} \cdot{ }^{\boldsymbol{9} \text { (c) Fall 2023, Justie Su-Tzu Juan }}$

§ 2.1 Basic Connectives and Truth tables

Def : truth table: " 0 " for false and " 1 " for true.
Table2.1:

p	q	$p \wedge q$	$p \vee q$	$p \vee q$	$p \rightarrow q$	$p \leftrightarrow q$
0	0	0	0	0	1	1
0	1	0	1	1	1	0
1	0	0	1	1	0	0
1	1	1	1	0	1	1

ex: "If $2+3=6$, then $2+4=7$ " is true.

§ 2.1 Basic Connectives and Truth tables

EX 2.1 : \boldsymbol{s} : Phyllis goes out for a walk.
t : The moon is out.
$u: I t$ is snowing.
a) $(t \wedge \neg u) \rightarrow s$:
b) $t \rightarrow(\neg u \rightarrow s)$: " $\neg u \rightarrow s$ " means " $(\neg u) \rightarrow s$ ",
c) $\neg(s \leftrightarrow(u \vee t))$: not " $\neg(u \rightarrow s)$ "
d) "Phyllis will go out walking if and only if the moon is out" $: s \leftrightarrow t$
e) "If it is snowing and the moon is not out, then Phyllis will not go out for a walk" : $(u \wedge \neg t) \rightarrow \neg s$
f) "It is snowing but Phyllis will still go out for a walk" : $u \wedge s$ (where "but" ="and")

§ 2.1 Basic Connectives and Truth tables

EX 2.2 : "If I weigh more than 120 pounds, then I shall enroll in an exercise class".
p : I weigh more than 120 pounds. q : I shall enroll in an exercise class. Penny's statement: $\boldsymbol{p} \rightarrow \boldsymbol{q}$

$$
\begin{aligned}
& \text { Case 1: } p=1 \text { and } q=1:>120 \text { pounds and enrolls : } \\
& \text { Case 2: } p=1 \text { and } q=0:>120 \text { pounds but not enroll : } \\
& \text { Case 3: } p=0 \text { and } q=0: \leq 120 \text { pounds and not enroll } \\
& \text { Case 4: } p=0 \text { and } q=1: \leq 120 \text { pounds but still enroll }
\end{aligned}
$$

§ 2．1 Basic Connectives and Truth tables

EX 2.3 ：In computer science：if－then，if－then－else．
ex：（if $\boldsymbol{x}>2$（執行時，給定＂x＂值，則＂$x>2$＂為一＂logical statement＂） then $y=2$（＂executable statement＂，not＂logical statement＂） else $\boldsymbol{y}=\mathbf{3}$（＂executable statement＂，not＂logical statement＂）
ex：生活上的＂\rightarrow＂與＂$\leftrightarrow "$
$s \rightarrow t$ ：If you do your homework，then you will get to watch the baseball game．
$t \rightarrow s$ ：You will get to watch the baseball game only if you do your homework．

§ 2.1 Basic Connectives and Truth tables

EX 2.4: "Margaret Mitchell wrote Gone with the Wind, and if $2+3 \neq 5$, then combinatorics is a required course for sophomores".
$\equiv q \wedge(\neg r \rightarrow p)$

p	q	r	$\neg r$	$\neg r \rightarrow p$	$q \wedge(\neg r \rightarrow p)$
0	0	0	1	0	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	0	1	1
1	0	0	1	1	0
1	0	1	0	1	0
1	1	0	1	1	1
1	1	1	0	1	1

§ 2．1 Basic Connectives and Truth tables

EX 2．5：The truth tables for（1）$p \vee(q \wedge r)$ ；（2）$(p \vee q) \wedge r$ ．

p	q	r	$q \wedge r$						
$p \vee(q \wedge r)$	$p \vee q$								
$(p \vee q) \wedge r$									
0			0	0	0	0	$	$	p
:---:									
0									

\therefore 不可以只寫 $p \vee q \wedge r$ ，需標明為 $p \vee(q \wedge r)$ 或 $(p \vee q) \wedge r!!$
（c）Fall 2023，Justie Su－Tzu Juan

§ 2.1 Basic Connectives and Truth tables

EX $2.6: p \rightarrow(p \vee q), p \wedge(\neg p \wedge q)$

p	q	$p \vee q$	$p \rightarrow(p \vee q)$	$\neg p$	$\neg p \wedge q$	$p \wedge(\neg p \wedge q)$
0	0	0	1	1	0	0
0	1	1	1	1	1	0
1	0	1	1	0	0	0
1	1	1	1	0	0	0

$p \rightarrow(p \vee q)$ is true for all truth value; $p \wedge(\neg p \wedge q)$ is false for all truth value.

§ 2.1 Basic Connectives and Truth tables

Def 2.1: A compound statement is called a contradiction (tautology) if it is false (true) for all truth value assignments for its component statements, denoted by $F_{0}\left(T_{0}\right)$.
ex: $\left(\boldsymbol{p}_{1} \wedge \boldsymbol{p}_{2} \wedge \ldots \wedge \boldsymbol{p}_{\boldsymbol{n}}\right) \rightarrow \boldsymbol{q}$
only need to prove:

$$
" \text { when } p_{1}=p_{2}=\ldots=p_{n}=1 \text { and } q \text { must }=1 ",
$$

then $\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n}\right) \rightarrow q$ is a tautology and we have a valid argument.

Def: Where such $\boldsymbol{p}_{\boldsymbol{i}}$ is called given statements (premises);
q is called conclusion.

