Computer Science and Information Engineering National Chi Nan University

Discrete Mathematics

Dr. Justie Su-Tzu Juan

Chapter 1 Fundamental Principles of Counting

§ 1.3 Combinations: The Binomial Theorem

Slides for a Course Based on the Text Discrete & Combinatorial Mathematics (5th Edition) by Ralph P. Grimaldi

See textbook from p.15 to p.19 by yourself.

If there are *n* distinct objects, each selection, or combination, of r of these objects, with no reference to order, corresponds to r! permutations of size r from the n objects. Thus the number of combinations of size r from a collection of size n, denoted C(n, r), where $0 \le r \le n$, satisfies $(r!) \times C(n, r) = P(n, r)$ and $C(n,r) = \frac{P(n,r)}{r!} = \frac{n!}{r!(n-r)!}, \quad 0 \le r \le n.$ Also denoted by $\binom{n}{r}$ $(= \binom{n}{r})$, read as "*n* choose *r*". Def : 1. For r = 0, C(n, 0) = 1, for all $n \ge 0$. 2. For all $0 \le r \le n$, C(n, r) = n!/[r! (n - r)!].

EX 1.25 : Select 5 cards from 52 cards (5/52):

a) no clubs $({}^{39}_{5}) = 575,757.$

b) at least one club = not in (a) = $\binom{52}{5} - \binom{39}{5} = 2,023,203$.

c) obtain (b) in another way ? Select one club, then 4/51 ?

 $\binom{13}{1} \cdot \binom{51}{4} = 13 \times 249,900 = 3,248,700.$

 \rightarrow wrong!!

3

<u>ex</u>: 3C: 5C-KC-7H-JS 5C: 3C-KC-7H-JS KC: 3C-5C-7H-JS

 \rightarrow all the same!! But count 3 times!!

d) another way :

Number of Clubs		Number of Cards that are not	
		Clubs	
1	$(^{13}_{1})$	4	(³⁹ ₄)
2	$(^{13}_{2})$	3	(³⁹ ₃)
3	(¹³ ₃)	2	(³⁹ ₂)
4	(¹³ ₄)	1	(³⁹ 1)
5	$(^{13}_{5})$	0	$({}^{39}_{0})$

 $\Rightarrow \sum_{i=1}^{5} {\binom{13}{i} \binom{39}{5-i}} = 2,023,203.$

(c) Fall 2023, Justie Su-Tzu Juan

4

Note:
$$\binom{n}{r} = \binom{n}{n-r}, \forall n \ge r \ge 0.$$

<u>Thm 1.1</u> : The Binomial Theorem

If x and y are variables and n is a positive integer, then $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k} = \sum_{k=0}^n \binom{n}{n-k} x^k y^{n-k}$ <u>ex</u>: $(x+y)^4 = (x+y) (x+y) (x+y) (x+y) \rightarrow x^2 y^2$ Proof.

$$(x + y)^n = (x + y) (x + y) \dots (x + y)$$

nth factor

y)

the coefficient of $x^k y^{n-k}$, where $0 \le k \le n$, is the number of different ways in which we can select k x's from the n available factors

<u>EX 1.26</u> : a) $(x + y)^7$: the coefficient of $x^5 y^2 = ?$ $\binom{7}{2} = \binom{7}{5} = 21$ b) $(2a - 3b)^7$: the coefficient of $a^5 b^2 = ?$ $(2a - 3b)^7 = \sum_{k=0}^7 \binom{7}{k} (2a)^k (-3b)^{7-k}$ $= \sum_{k=0}^7 \binom{7}{k} 2^k \cdot (-3)^{7-k} \cdot a^k \cdot b^{7-k}$ $k = 5 \Rightarrow \binom{7}{5} \cdot 2^5 \cdot (-3)^{7-5} = 21 \cdot 32 \cdot 9 = 6048$

<u>Corollary 1.1</u>: $\forall n \in N$, (a) $\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = 2^n$ (b) $\binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \dots + (-1)^n \binom{n}{n} = 0$

Proof.

 $(x+y)^{n} = \sum_{k=0}^{n} \binom{n}{k} \cdot x^{k} \cdot y^{n-k}$ (a) Let $x = y = 1 \Rightarrow 2^{n} = \sum_{k=0}^{n} \binom{n}{k} = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n}$ (b) Let $x = -1, y = 1 \Rightarrow (-1+1)^{n} = 0 = \sum_{k=0}^{n} \binom{n}{k} (-1)^{k} (1)^{n-k}$ $= \binom{n}{0} - \binom{n}{1} + \dots + (-1)^{n} \binom{n}{n}$

(c) Fall 2023, Justie Su-Tzu Juan

6

Theorem 1.2 : multinomial theorem $\forall n, t \in \mathbb{N}$ $(x_1 + x_2 + \dots + x_t)^n = \sum \frac{n!}{n_1! n_2! \cdots n_t!} x_1^{n_1} x_2^{n_2} \cdots x_t^{n_t}$ $n_i \in \mathbb{Z} \ 0 \leq n_i \leq n \ \forall \ 1 \leq i \leq t$ and $n_1 + n_2 + ... + n_t = n$ **Proof.** $\binom{n}{n}\binom{n-n_1}{n}\cdots\binom{n-n_1-n_2-\cdots-n_{t-1}}{n_t}$ $=\frac{n!}{n_1!(n-n_1)!}\frac{(n-n_1)!}{n_2!(n-n_1-n_2)!}\cdots\frac{(n-n_1-n_2-\cdots-n_{t-1})!}{n_t!(n-n_1-n_2-\cdots-n_t)!}$ $=\frac{n!}{n_1!n_2!\cdots n_r!}$

$$\underline{\text{Def}}: \frac{n!}{n_1! n_2! \cdots n_t!} = \binom{n}{n_1 n_2 \cdots n_t} (= \binom{n}{n_1 n_2 \cdots n_t}) \text{ called multinomial coefficient.}$$

<u>EX 1.27</u>: a) $(x + y + z)^7$: the coefficient of $x^2 y^2 z^3 = 7! / (2! 2! 3!) = 210$ the coefficient of $x y z^5 = 7! / 5! = 42$ the coefficient of $x^3 z^4 = 7! / (3! 4!) = 35$ b) $(a + 2b - 3c + 2d + 5)^{16}$: the coefficient of $a^2 b^3 c^2 d^5 = ?$

Sol.

General item : $({}^{16}_{i\,j\,k\,l\,m}) a^i (2b)^j (-3c)^k (2d)^l (5)^m$ Let i = 2; j = 3; k = 2; l = 5 $\Rightarrow m = 16 - 2 - 3 - 2 - 5 = 4$ \Rightarrow the coefficient of $a^2 b^3 c^2 d^5$ $= ({}^{16}_{23254}) 2^3 (-3)^2 2^5 5^4 = 435,891,456,000,000$

Computer Science and Information Engineering National Chi Nan University

Discrete Mathematics

Dr. Justie Su-Tzu Juan

Chapter 1 Fundamental Principles of Counting

§ 1.4 Combinations With Repetition

Slides for a Course Based on the Text Discrete & Combinatorial Mathematics (5th Edition) by Ralph P. Grimaldi

<u>Note</u> : *n* : distinct object, *r* : arrangement size \Rightarrow *n^r*, \forall *r* \geq 0.

EX 1.28 : 7 high school freshmen,

4 purchases : cheeseburger, hot dog, taco, fish sandwich. How many purchases are possible?

Sol.

http://zh.wikipedia.org/wiki/%E5%A2%A8%E8%A5%BF%E5%93%A5%E5%8D%B7%E9%A5%BC

see Table 1.6 : c, c, h, h, t, t, f
$$\Rightarrow xx | xx | xx | x$$

t, t, t, t, t, f, f $\Rightarrow | | xxxxx | xx$
 $\Rightarrow (3+7)! / (7! 3!) = (10_7)$

The number of combinations of *n* objects taken *r* at a time, with repetition, is $C(n + r - 1, r) = \frac{(n + r - 1)!}{r!(n-1)!} = \binom{n+r-1}{r}$

EX 1.29: 20 kinds of donuts, select a dozen: $\binom{20+12-1}{12} = \binom{31}{12} = 141,120,525.$

EX 1.30 : 4 vice presidents / \$1000 (each multiple of \$100) (a) C(4 + 10 - 1, 10) = C(13, 10) = 286

(b) each receive at least \$100:

C(4+6-1, 6) = 84

(c) each receive at least \$100, and Mona get at least \$500:

C(4 + 2 - 1, 2)= C(3 + 2 - 1, 2) + C(3 + 1 - 1, 1) + C(3 + 0 - 1, 0)= 10

(c) Fall 2023, Justie Su-Tzu Juan

11

EX 1.31 : 7 bananas, 6 oranges / 4 children : each at least one banana

Sol.

see Table 1.7 : 1)
$$1, 2, 3$$
 $b | b | b |$
2) $1, 3, 3$ $b | | b b |$
 $\Rightarrow 6! / (3! 3!) = (^{6}_{3})$
see Table 1.8 : 1) $1, 2, 2, 3, 3, 4$ $o | oo | oo | o$
 $3) 2, 2, 2, 3, 3, 3$ $| ooo | ooo |$
 $\Rightarrow (6 + 3)! / (6! 3!) = (^{9}_{6})$

 $\Rightarrow C(4+3-1,3) \cdot C(4+6-1,6) = 1680.$

EX 1.32 : message : 12 different symbols + 45 spaces with at least 3 spaces between each pair of consecutive symbols How many?

Sol.

 $45 - (3 \cdot 11) = 12$ 12! $\cdot C(11 + 12 - 1, 12) \Rightarrow 3.097 \cdot 10^{14}$

EX 1.33 : All integer solutions : $x_1 + x_2 + x_3 + x_4 = 7$ where $x_i \ge 0$, $\forall 1 \le i \le 4$. Sol.

C(4+7-1,7) = 120.

<u>Note</u> : The following are the equivalence: (a) The number of integer solution of the equation

 $x_1 + x_2 + \ldots + x_n = r, \ x_i \ge 0, \ 1 \le i \le n.$

- (b) The number of selections, with repetitions, of size *r* from a collection of size *n*.
- (c) The number of ways *r* identical objects can be distributed among *n* distinct containers.

EX 1.34: 10 identical white marbles (彈珠) among six distinct containers!

Sol.

$$x_1 + x_2 + \dots + x_6 = 10$$

$$C^{6+10-1}_{10} = C^{15}_{10} \Longrightarrow 3003$$

EX 1.35 :
$$x_1 + x_2 + \dots + x_6 < 10, x_i \ge 0, 1 \le i \le 6$$
.
Sol.
 $(\Rightarrow x_1 + x_2 + \dots + x_6 = k, k \in \mathbb{N} \text{ and } 0 \le k \le 9)$

$$\Rightarrow x_1 + x_2 + \dots + x_6 + x_7 = 10, \quad x_i \ge 0, \ 1 \le i \le 6, \ x_7 > 0$$

Let $x_7 - 1 = y_7$
$$\Rightarrow x_1 + x_2 + \dots + x_6 + y_7 = 9, \quad x_i \ge 0, \ y_7 \ge 0$$

$$\Rightarrow C(7 + 9 - 1, 9) = 5005.$$

 $\underline{EX \ 1.36}: (x+y)^n: \text{total number of terms} = ?$ $\Rightarrow C(2+n-1, n) = n+1.$ $(w+x+y+z)^{10}: \text{total number of terms} = ?$ $\Rightarrow C(4+10-1, 10) = 286$

EX 1.37 : (a) compositions of 4 (partitions for the number 4) : 5) 2 + 1 + 1 1)4 2) 3 + 1 6) 1 + 2 + 1 7) 1 + 1 + 2 3) 2 + 28) 1 + 1 + 1 + 1 **4)** 1 + 3(b) the number of composition for "7". (i) one summand : 1 (ii) two summands : $w_1 + w_2 = 7 \Rightarrow x_1 + x_2 = 5, x_1, x_2 \ge 0$ $\Rightarrow (^{2+5-1}_5) = (^6_5)$ (iii) three summands : $y_1 + y_2 + y_3 = 7$ $\Rightarrow z_1 + z_2 + z_3 = 4, z_1, z_2, z_3 \ge 0$ $\Rightarrow (^{3+4-1}_{4}) = (^{6}_{4})$ $\Rightarrow (^{7+0-1}_{0}) = (^{6}_{0})$ (vii) seven summands $\Rightarrow \sum_{k=0}^{6} {6 \choose k} = 2^{6}$ (by corollary 1.1) (c) Fall 2023, Justie Su-Tzu Juan 16

<u>Note</u> : for each positive integer $m \Rightarrow \sum_{k=0, m-1} {m-1 \choose k} = 2^{m-1}$

EX 1.38 : There are $2^{12-1} = 2^{11} = 2048$ compositions of 12. How many in those compositions where each summand is even? Sol.

For instance, 2 + 4 + 6 = 2(1 + 2 + 3) 2 + 8 + 2 = 2(1 + 4 + 1)8 + 2 + 2 = 2(4 + 1 + 1) 6 + 6 = 2(3 + 3). \Rightarrow # of compositions of 12, where each summand is even

- = # of compositions of 6
- $= 2^{6-1}$
- = 2⁵
- = 32.

EX 1.39: for
$$i := 1$$
 to 20 do
for $j := 1$ to i do
for $k := 1$ to j do
Print $(i * j + k)$

print statement executed ?

Sol.

Since $1 \le k \le j \le i \le 20$, $\Rightarrow (^{20+3-1}_3) = (^{22}_3) = 1540$.

<u>Note</u> : $r (\geq 1)$ for loops : $\binom{20+r-1}{r}$ times.

Sol.

As EX 1.39, the statement executed : $1 \le j \le i \le n, \rightarrow (^{n+2-1}_2) = (^{n+1}_2),$ or 1 + 2 + 3 + ... + n.Therefore, $1 + 2 + 3 + ... + n = \sum_{i=1}^{n} i = (^{n+1}_2) = n (n + 1)/2.$

EX 1.41 : The counter at Patti and Terri's Bar has 15 bar stools. **OOEOOOEEEOOOEO**

means 10 occupied (O) stools and 5 empty (E) stools.

Say the occupancy of the 15 stools determine 7 runs, as shown:

OO E OOOO EEE OOO E O

Ĭn	run	run	run	run	run	rur

Find the total number of ways 5 E's and 10 O's can determine seven runs.

Sol. (1/2)

1. Start with E:

Let x_1 count the number of E's in the first run, x_2 count the number of O's in the second run, x_3 count the number of E's in the third run, ..., x_7 count the number of E's in the 7th run.

Sol. (2/2) 1. Start with E : $\begin{cases} x_1 + x_3 + x_5 + x_7 = 5, \quad x_1, x_3, x_5, x_7 > 0; \\ x_2 + x_4 + x_6 = 10, \qquad x_2, x_4, x_6 > 0. \end{cases}$ $\Rightarrow \begin{cases} y_1 + y_3 + y_5 + y_7 = 1, \quad y_1, y_3, y_5, y_7 \ge 0; \\ y_2 + y_4 + y_6 = 7, \qquad y_2, y_4, y_6 \ge 0. \end{cases}$ $\Rightarrow (^{4+}_1^{1-1}) \cdot (^{3+}_7^{7-1}) = C(4, 1) \cdot C(9, 7) = 4 \cdot 36 = 144.$ 2. Start with O :

> Let w_1 count the number of O's in the first run, ... $\begin{cases} w_1 + w_3 + w_5 + w_7 = 10, & w_1, w_3, w_5, w_7 > 0; \\ w_2 + w_4 + w_6 = 5, & w_2, w_4, w_6 > 0. \end{cases}$ $\Rightarrow (^{4+}_6^{6-1}) \cdot (^{3+}_2^{2-1}) = C(9, 6) \cdot C(4, 2) = 84 \cdot 6 = 504.$ $\Rightarrow 144 + 504 = 648.$

Computer Science and Information Engineering National Chi Nan University **Discrete Mathematics** Dr. Justie Su-Tzu Juan

Chapter 2 Fundamentals of Logic § 2.1 Basic Connectives and Truth tables

Slides for a Course Based on the Text Discrete & Combinatorial Mathematics (5th Edition) by Ralph P. Grimaldi

Def : *statement* (*proposition*) : either *true* or *false*, <u>not</u> both.

- <u>ex</u>: ✓ p: Combinatorics is a required course for sophomores.
 ✓ q: Margaret Mitchell wrote Gone with the Wind.
 ✓ r: 2 + 3 = 5.
 - **x** "What a beautiful evening!"
 - **x** "Get up and do your exercises."
 - **x** "The number x is an integer."

Def : 1. *primitive statement*: No way to break them down into anything simpler.

2. 反之: compound statement

Def : 1. *negation*; denoted by $\neg p$; read as "*not* p".

- ex:上ex中p: ¬p = "Combinatorics is not a required course for sophomores."
- Def: 2. compound statement, using the following logical connectives.
 a) Conjunction; denoted by p ∧ q; read as "p and q".

b) *Disjunction*; $\begin{cases} denoted by <math>p \lor q$; read as "*p* (*inclusive*) or q". \\ denoted by $p \lor q$; read as "*p* exclusive or q". \end{cases}

- **Def : 2.** compound statement. c) *Implication*; denoted by $p \rightarrow q$; read as "*p implies q*". \equiv (i) If p, then q (ii) p is sufficient for q (iii) p is a sufficient condition for q (iv) p only if q (v) q is *necessary* for p (vi) q is a *necessary condition* for p (vii) p is called the *hypothesis* of the implication. (viii) q is called the *conclusion* of the implication.
 - d) Biconditional; denoted by p ↔ q; read as "p if and only if q".
 (i) "p is necessary and sufficient for q."
 (ii) "n iff q"
 - (ii) "*p iff q*."_{(c) Fall 2023, Justie Su-Tzu Juan}

EX 2.1 : *s*: Phyllis goes out for a walk. t: The moon is out. *u*: It is snowing. a) $(t \land \neg u) \rightarrow s$: b) $t \rightarrow (\neg u \rightarrow s) : "\neg u \rightarrow s"$ means " $(\neg u) \rightarrow s"$, not " $\neg (u \rightarrow s)$ " c) \neg (s \leftrightarrow (u \lor t)) : d) "Phyllis will go out walking if and only if the moon is out": $s \leftrightarrow t$ e) "If it is snowing and the moon is not out, then Phyllis will not go out for a walk": $(u \land \neg t) \rightarrow \neg s$ f) "It is snowing but Phyllis will still go out for a walk" : $u \wedge s$ (where "but" \equiv "and")

EX 2.2 : "If I weigh more than 120 pounds, then I shall enroll in an exercise class".

p: I weigh more than 120 pounds.*q*: I shall enroll in an exercise class.

Penny's statement: $p \rightarrow q$

Case 1: p = 1 and q = 1: > 120 pounds and enrolls:Case 2: p = 1 and q = 0: > 120 pounds but not enroll:Case 3: p = 0 and q = 0: < 120 pounds and not enroll</td>:Case 4: p = 0 and q = 1: < 120 pounds but still enroll</td>:

EX 2.3 : In computer science: if-then, if-then-else.

- ex: (if x > 2 (執行時 · 給定 "x"值 · 則 "x > 2"為一 "logical statement") - then y = 2 ("executable statement", not "logical statement") else y = 3 ("executable statement", not "logical statement")
- ex: 生活上的 "→" 與 "↔" s → t: If you do your homework, then you will get to watch the baseball game. t → s: You will get to watch the baseball game only if you
 - do your homework.

EX 2.4 : "Margaret Mitchell wrote Gone with the Wind, and if $2 + 3 \neq 5$, then combinatorics is a required course for sophomores". $= a \wedge (-r \rightarrow n)$

q 0 0	<i>r</i> 0 1	¬ r 1	$\neg r \rightarrow p$	$q \land (\neg r \rightarrow p)$	
0 0	0	1	0	0	
0	1			U	
	T	0	1	0	1
1	0	1	0	0	ain
1	1	0	1	1	
0	0	1	1	0	T
0	1	0	1	0	110 B.
1	0	1	1	1	
1	1	0	1	1	
	1 0 0 1 1	$ \begin{array}{c cccc} 1 & 0 \\ 1 & 1 \\ 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \\ \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

EX 2.5 : The truth tables for $\bigcirc p \lor (q \land r)$; $\oslash (p \lor q) \land r$.

p	q	r	$q \wedge r$	$p \lor (q \land r)$	$p \lor q$	$(p \lor q) \land r$
			0	0	0	0
0	0	0	0	0	0	0
0	0	1		0		0
0	1	0	U	U	I	0
0	1	1	1	1	1	1
1	0	0	0	1	1	0
1	0	1	0	1	1	1
1	1	0	0	1	1	0
1	1	1	1	1	1	1

(c) Fall 2023, Justie Su-Tzu Juan

!!

p	q	$p \lor q$	$p \rightarrow (p \lor q)$	$\neg p$	$\neg p \land q$	$p \wedge (\neg p \wedge q)$
0	0	0	1	1	0	0
0	1	1	1	1	1	0
1	0	1	1	0	0	0
1	1	1	1	0	0	0

 $\underline{\text{EX 2.6}}: p \to (p \lor q), p \land (\neg p \land q)$

 $p \rightarrow (p \lor q)$ is true for all truth value; $p \land (\neg p \land q)$ is false for all truth value.

Def 2.1 : A compound statement is called a *contradiction* (*tautology*) if it is false (true) for all truth value assignments for its component statements, denoted by $F_{\theta}(T_{\theta})$.

 $\underline{ex} : (p_1 \land p_2 \land \dots \land p_n) \rightarrow q$ only need to prove: "when $p_1 = p_2 = \dots = p_n = 1$ and q must = 1", then $(p_1 \land p_2 \land \dots \land p_n) \rightarrow q$ is a tautology and we have a valid argument.

<u>Def</u>: Where such p_i is called *given statements* (*premises*); q is called *conclusion*.